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I

Mean-field theory and renormalization-group arguments are used to study the phase diagram

of an anisotropic n-component d-dImensional magnetic system with a uniaxially random magnetic

field. The resulting phase diagram is shown to be very similar to that of anisotropic antiferromag-

nets in a uniform field: For small random fields, the system orders along the direction of uniaxial

anisotropy, with exponents which are related to those of nonrandom Ising systems in d —2 dimen-

sions. For larger random fields, parallel to the direction of uniaxial anisotropy, the transverse
n —1 spin components order, with exponents which are unaA'ected by the random field. The two

regions are separated by a spin-flop first-order line, by an intermediate "mixed" phase, and by a

tetracritical (or bicritical) point. The exponents at this multicritical point are shown to coincide,
near d =6, with those of the random-field Ising model, This phase diagram is shown to describe

the behavior of random-site spin glasses in a uniform magnetic field. Other types of anisotropic
random fields, related experimental realizations and other generalizations are also mentioned.

Although some of the quantitative results are found only near d =6, qualitative results are be-

lieved to apply at d =3 as well.

I. INTRODUCTION

The Hamiltonian of a magnetic system with a ran-
dom quenched magnetic field may be written in the
form X=——XXJiS; SJ —gHS;

I +j A l

(1.3)

ly equivalent (in the renormalization-group sense) to
the simple ones which we explicitly mention. '

The Hamiltonian (1.1) can thus be written

se =——X X Ju S; SJ —$H; S;
iwja=l i

If we now define a new order parameter

r; =8;H;/Hp (1.4)

p, (H,) = —,
'

[5(H, +H,)+5(H, -H, )] . (1.2)

Many other distributions will turn out to be universal-

Here, S, —= [S;, . . . , S;"I is a classical n-component
spin vector, located at the site i of a d-dimensional lat-
tice, J;,. is the exchange-coupling coefticient between
the eth spin components, and H; is a local random
field, with distribution P [H, }. We shall consider
mainly symmetric distributions P [H;}= P [ —H;}.

In a previous paper, ' we showed that an isotropic-
field distribution may change, under some conditions,
the order of the magnetic transition from second to
first order, at a tricritical point. In the present paper
we shall be concerned with anisotropic field distribu-
tions. In particular, we shall consider the case in
which the random field is always along one spatial
direction, i.e., H; =H;5 i. The actual local value of
H, will be random, with distribution p(H, ), and will be
assumed to be independent of the fields at any other
lattice point. To be more explicit, we shall first as-
sume that H; =+Hp at random, i.e.,

then (1.3) becomes

aC =—X XJur; rg Hoxr-
i&j a i

where

(1.5)

JJ = J0 H;Hj/Hp~ =+Jg (1.6)

Equation (1.5) represents a magnetic system, with

spins 7; and with random-exchange coefIIicients which
have zero average, in a uniform magnetic field Hp
along the 1 axis. This is a model for some random-site

spin glasses. ' 5 The spin-glass order parameter S; is re-
lated to the magnetic order parameter 7; via Eq.
(1.4).'

The transformation from (1.3) to (1.5) is also use-
ful in the study of antiferromagners In simple . cases,
the antiferromagnetic order amounts to dividing the
system into two interpenetrating sublattices, so that in
the ground state the spins on one sublattice are paral-
lel to each other, and those in different sublattices are
antiparallel. Such a situation, for small uniform fields
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JIJ)J/J= ''' =J/J)0 (1.7)

Hp, will result from (1.5), if J& (0 for i and J on
different sublattices, and JJ & 0 for i and j on the
same sublattice. If we change the signs of the spins
on one sublattice, via Eq. (1.4), we recover Eq. (1.3),
with S; now representing the staggered magnetization.

The uniform field Hp now looks like a staggered field
Equation (1.3) can thus represent a ferromagnet in a
random field, a spin glass, or an antiferromagnet. The
only difference between the antiferromagnet and the
other cases is that for the former, the fields H/ s are
not random.

The effects of a uniform magnetic field on the anti-
ferromagnetic phase transition have been studied for a

long time. If the system is uniaxially anisotropic, i.e.,

H

flop

tra

order

longitu
UAIOXI

ara magnetic

critical
int

then for sufticiently weak fields one expects antifer-
romagnetic ordering in the 1 direction ((S& ) A 0).
However, Neel already pointed out that for
suSciently strong fields, parallel to this direction, the
spins will 'Jap" over, via a first-order transition, into
an alignment that is predominantly perpendicular to
the 1 axis. This first-order line ends at a bicritical
point. ' Under different conditions, the uniaxial
"longitudinal" phase does not flop directly into the
"transverse" one, but the two form an intermediate
"mixed" phase, into which the transitions are second
order. ""In this case, the four second-order lines
meet at a tetracritical point.

The analogy mentioned above suggests, that a simi-
lar situation may occur for the random-field model.
In this paper we show that, indeed, a spin Pop tran-si

tion and a multicritical point do occur in this model. Sec-
tion II is devoted to a mean-field analysis of the
model Hamiltonian (1.3), with the distribution (1.2).'

Indeed, a bicritical point is found, when the random
field Ho is sufticiently strong to overcome the uniaxial
anisotropy [Eq. (1.7)]. The resulting phase diagram is
shown in Fig. 1. Renormalization-group recursion re-
lations, for a continuous spin version of the model,
are set up in Sec. III, and the resulting multicritical
and anisotropic fixed points are analyzed and dis-
cussed in Secs. IV and V. Generalizations of the
model are considered in Sec. VI, and the results and
their experimental implications are summarized in Sec.
VII.

number of lattice sites. For convenience, we concen-
trate here on the Heisenberg case n =3. The free en-
ergy per spin thus becomes

F = —'c XJ.(M.)'
2

r

I
lng p X(cJ M +H; )2

'1/2' '

(2.2)

where [ ),„denotes averaging over the magnetic field
distribution, P = I/ka T, and

g(i x i) = J dS;exp(x S;)

4m sinhi x i

The magnetization M is the solution of the self-
consistency equation

(2.3)

FIG. 1. Schematic mean-field phase diagram for the

uniaxial random-field model. The local field is Ho, and it is

directed along the axis of uniaxial anisotropy.

II. MEAN-FIELD THEORY

cothx/

x/

1 p(cJ M +H; ), (2.4)
/ . av.

As in Ref. 1,'4 we now replace (1.3) by its mean-
field approximation

sC p
= Nc XJ (M )2—

0

where

x =P H +2cgJ~MH
a

—g X (cJ~M~ + H;~) S;~
a

where c is the coordination number and N is the

(2.1) +c' $ (J )'(M )'

In the particular case of interest [Eq. (1.2)],

(2.5)
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H, =+Hog ~, Eq. (2.4) simply becomes

M = (f+—+f )PcJ M

+ , (f+ —f)P—Hog-. i

with

f+ =cothx+/x+ —I/x4

(2.6)

tive for PH0 & 1.37, and the transition is second order
for these values of PH0. As the temperature is

lowered at fixed Ho, one of the coefficients a will be-
come negative, and the appropriate spin component
will order. For isotropic exchange, J =—J, the
transverse spin components n =2, 3 will order first for
any finite Ho, since one always has f~(x) &0. For the
uniaxially anisotropic case, Eq. (1.7), the longitudinal
(a =1) spin component will order first only if

t

x) =p H +c X(J) (M)
a

(2.7) (J' —J')/J' & 2fi(PHp)'/fp (2.14)

+ 2cH,J'M'

One can now solve Eq. (2.6), and choose the solution
which minimizes the free energy

[lng (x ) + lng (x )]1 (2.8)

(F),„=—ln ' +—Xa (M )'4m sinhPHa

/3 PHO

+ X6 (M.)'(MP)'+
a, P

(2.9)

with

a.=P(cJ ) {kpT —cJ [fo —2f((PHa)'8. )]]

(2.10)

b = , /3'c'(J )'(JP)'f—
4f.p =fi +2f~(s.i + 8. pi) + —,f35 ispt

(2.11)

(2.12)

and

fo =cothx/x —I /x2

ft =cothx/(2x) + 1/(2 sinh'x) —1/x2

f2=2/x2 —xcothx/(2sinh x)
—3/(4 sinh2x) —3cothx/(4x)

f3 = 15 cothx/(8x) + 15/(8 sinh2x)

+x' coth'x/(2 sinh2x)

(2.13)

+x2/(4 sinh'x) +3xcothx/(2 sinh~x) —6/x'

where x = PHD.
An explicit calculation shows, that all f p are posi-

Since we are mainly concerned with the phase tran-
sition from the paramagnetic (M =0) to the ferromag-
netic (M &0) phase, it is useful to expand (2.8)
around M=0. For small I,

For higher values of Ho (or lower anisotropies, the
transverse components again order first. The point at
which the two sides of Eq. (2.14) are equal is there-
fore a bicritical point, and the phase diagram in
temperature —random-field plane is schematically
shown in Fig. 1.

Another explicit calculation sho~s that b]'2 ) b]ib22
for all the values of PHD. Hence, the transition from
the uniaxially ordered phase to the flopped phase is
indeed first order, and there is no intermediate mixed
phase. ' "The first-order nature of the flop line has
also been checked directly, from Eqs. (2.6) and (2.8).

If the anisotropy is strong, condition (2.14) may still
hold even at /3Ho ——1.37. For PHD & 1.37 one finds
that bii & 0, and the transition into the uniaxially or-
dered phase becomes first order, as discussed in detail
in Ref. 1. We shall not consider this first-order re-
gime any further here except for noting that at
/3HO—- 1.37, the bicritical point will have new proper-
ties, as it becomes a higher-order multicritical point.

The phase diagram shown in Fig, 1 has exactly the
same form as found for antiferromagnets in a uniform
field, " in agreement with the conjectured analogy
between the two cases.

One can easily generalize the above discussion. For
example, if the magnitude of the field Ho is also ran-
dom, Eqs. (2.6), (2.8), (2.10), and (2.11) must be
averaged over all possible magnitudes. This will

change the numerical details, but not the general
features of the phase diagram. Similarly, if the ran-
dom field is not exactly aligned in the direction of the
uniaxial anisotropy (the 1 axis), this will introduce
terms like M'M' into Eq. (2,9), and the analysis will

become somewhat more complicated, as the magneti-
zation will not be along an axis. If there is a random-
field component in the transverse plane, with average
zero, then the analysis again becomes similar to the
one mentioned above, but with modified coefficients
in Eq. (2.9). We shall return to some of these cases
below, in Sec. VI.

III. RENORMALIZATION GROUP

A. Continuous-spin Hamiltonian

In order to analyze Hamiltonian (1.1), or (1.3),
with standard renormalization-group techniques, " ' it
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is useful to transform it into a continuous spin form.
For simplicity, we follow here the standard ap-
proach, " " i.e., we associate with each spin a weight
factor

I

For simplicity, we also follow previous
renormalization-group studies of the random-field
problem, 's 3' and replace the 8 distribution (1.2) by a
Gaussian distribution, i.e.,

exp[ —W(S)] =exp( —,(S (' —f4(S }'— . )

(3.1)
(Hi H/), „=A.sag ispi (3.4)

and write the partition function as

Z = &t d"nS exp(3'. )

with

3.=—pse-gw(s, ) .

(3.2)

(3.3)

We shall return to this assumption later, to argue that
many other distributions will be universally equivalent
to the Gaussian one' (see Sec. VI A).

As usual, " ' we next Fourier transform the spin
variables S; into o.~ and rescale the spins so that the
final' form of 3'.becomes

JC= Jl X(f~+q )o o Xu~p J J,o' cr cT o' J Ii o'
2

(3.5)

where r is now linear in (kpT —cJ ),
&

stands for'Jq
(2n) 'I d q with (q ( & A, and

given fixed point, then we shall choose

d+2-q
(2 b A (3;7a)

(3.6)

with A. ~ 2 and 8(q) =—(2rr)~gt~i(q).
An alternative approach, following Hubbard, will

lead to similar results. This approach was used expli-
citly in Ref. 1. In particular, it was shown there that
using this approach one finds that the initial values of
the parameters r, u &, etc. , are proportional to the
appropriate coefficients a and b p of Eqs.
(2.9)—(2.1 1).

8. Recursion relations

We now follow the usual routine of renormalization
group in random systems2: We integrate out the
spins in the partition function with A/b & } q ( & A,
and rescale q into b q and o- into ( o~~ where g is

chosen so that some coefficient in the first (quadratic)
term in the new Hamiltonian (3.5) remains un-
changed. If the spin component S is critical at a

where q is fixed so that the coefficient of q'cr o-—
remains unchanged. If there are no critical fluctua-
tions in S, then we shall choose

Q=b~[l+O(u p, u iX)] (3.7b)

so that r remains unchanged. At the end we average
over the field variables h ' which have A/b & ( q ( & A,

and also calculate the new value of A., defined
in (3.6). The explicit calculation involves a dia;
grammatic expansion in the last two terms in Eq.
(3.5). The final diagrams will involve" 8 2' four-line
vertices representing u p, two-line vertices (represent-
ed by empty circles) representing h. , and internal lines
representing the propagators (r +q3) '. At low ord-
er, some diagrams which contribute to the new in-
verse propagators and to the new vertices are sho~n
in Fig. 2. The appropriate recursion relations are [for
ri &r3= =r„, u p=u33, ui =—ui3, for ii. , P &1,
see (1.7)1

r, ' = $i b (ri+4Kq[3uii(A i(ri) + h A3(ri)) + (n —1)ui3A i(r3)] + . }

r2 42b (r2+4Kd[u12(A1("1) + ~A 2(rl)) + (n + 1)u22A l(r2)] + ' ' ' }

uii' = gi b (uii 4K„[9u,'i (A—3(ri) +2XA3(ri)) + (n —1)ui3A3(r3)] + .
)

u33' = (3b "(u33 4Ke[ui3 (A3(ri) +2—&A3(ri)) + (n +7)u33A3(r3)] + . )

(3.8)

(3.9)

(3.10)

(3.11)

ui3' = gi fjb (ui3 —4Kqui3[4ui3(8ii(ri, r3) + &83i(ri, r3)) +3uii(A3(ri) +2&A3(ri)) + (n +1)u32A3(r3)] + ' ' ' )

(3.12)
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and

ri~ = 0 (u~p, u~] )]. ) (3.1 3) IV. MULTICRITICAL POINT

A. Fixed point and exponents

X'= $2b dh[1. +0(u' )].')]

where

(r) =
l q" ' dq(r +q )™

~ A/b

=~.(0) mr—W.„(0),
8 „(r,,r,) = J q" '

dq (r, + q')™
x (rq+q') ",

(3.14)

(3.15)

(3.16)

At this stage, we must choose ( . We start with the
multicritical point, at which we expect all spin com-
ponents to become critical simultaneously. Using the
choice (3.7a), the prefactor in Eqs. (3.8), (3.9), and

(3.14) becomes b, that in Eqs. (3.18) and (3.19)
becomes b d[1+0(ri )], and that in Eq. (3.11) be-

4 —d —2g2
comes b '. Thus, both u~~A. and u~2) decay to
zero for d )6, where we expect the mean-field results
of Sec. II to apply. For d & 6, we can find nontrivial
fixed points with u~~A. and u~2A. of order ~=6 —d.
There are three such fixed points, i.e.,

and

] rr4i2 1'( d)—
2

(3.17)

) u,(, ] =0, tu,(] =./16K, +0(")
Xu = e/72Kd+0(e ) Xu =0

(4.1)

(4.2)

The recursion relations for r& and r2 involve the
variables u]]X and u]2X (but not u22X!). Therefore, we
must also consider recursion relations for these vari-
ables

and

Xu" = e/72Kd+0(e')

t u" = e/24Kd+0(e')
(4.3)

and

(u]]X)' = (] b "[u]])].—72Kd(u]]X) A3(r])

+ 0 [(u]])].)', u'p )]. . . ]) (3.18)

(u]2~) g] Qb (u]2X —16Kd(uj2)]) 82](r],f2)

—24Kd(u]])]) (u]q)]) A3(r])

+0[(u„x)',u.'p)], . . . ]) .
(3.19) r (c) r (c) —e/12 K~ + 0 (e2) (4.4)

Linearizing Eqs. (3.18) and (3.19) near each of these
fixed points, we find that only the third one is stable,
with order —e eigenvalue exponents —~ and ——,e.

One should note that at this fixed point, X ~ and
u & 0; in particular, u22 0. Therefore, we can ig-
nore terms of order u & compared to those of order
u pX. Returning now to Eqs. (3.8) and (3.9), we find
a fixed point of order e,

Having set up all the necessary recursion relations, we
now turn to a study of the possible fixed points.

Linearizing about this fixed point, we find the eigen-
vector Ar& =—Ar2, with eigenvalue exponent

1/v=2 —
3
e+0(e') (4.5)

( ) =

FIG. 2. Diagrams for the recursion relations for the tem-
perature variables r [Eqs. (3.8) and (3.9)J, the four spin

coeEcients u
& [Eqs. (3.10)—(3,12)J and the random-field

second cumulant A. [Eq. (3.14)J.

and the eigenvector Ar] =—0, with eigenvalue exponent
),=2+ 0(e').

The exponent v, given in (4.5), is the correlation
length critical exponent at the multicritical point. Other
exponents can now be derived from scaling relations.
It is interesting to note that at order ~, these are given
by exactly the same expressions as found for the Ising
model (n =1) in a random field. " This is simply a
result from the fact that the recursion relations for r~

and for u~~A. in our case coincide with those of the Is-
ing case. The interesting new result is, that the
transverse spin components, S', . . . , S", also have
Ising-like exponents at the multicritical point. T is
may, of course, change at higher order in ~.

The second exponent, X2, represents the crossover
from the "isotropic" behavior at the multicritical point
to anisotropic lower-symmetry behavior. The ap-
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propriate crossover exponent is (to order e)

$= k2v =2@= y (4.6)

B. Phase diagram

At the multicritical fixed point, all u p's are equal to
zero. However, one cannot ignore the way in which
they approach their zero value. " Near the fixed point
(4.3) uter and u, i decay to zero as I/A. , or exactly
as' 0 b . However, u22 decays to zero more slowly,
i.e., as b 2+' [see Eq. (3.11)]. Therefore, sufficiently
close to the multicritical point one has

12 ( ull u22
2 (4.7)

which is the condition for a tetracritical point!' ' We
therefore have here a very interesting situation: the
initial values of u p as given by mean-field theory [Eq.
(2.11)] or by the discussion which led to Eq. (3.5),
have u12 & u11 u22, or a bicritical point. This
means, that if the fluctuations are negligible, i.e., we
are far away from the multicritical temperature, we
should observe a phase diagram of the form exhibited
schematically in Fig. 1. However, as we approach
closer to criticality, the effective renormalized values

We shall return to the resulting anisotropic behavior
in Sec. V. We shall only mention here, that the fact
that y & 1 means that the two critical lines meet at the
multicritical point tangential to each other, "so that
the mean-field phase diagram in Fig. 1 must be slight-
ly modified near this point (see Fig. 3).

of u & change, and sufficiently close to the multicriti-
cal point the nature of the phase diagram seems to
change. It is a little dangerous to draw conclusive
statements about the nature of the phase diagram in
the ordered phases from our recursion relations, which
were set up only for the disordered phase. One should
really follow the analysis of Ref. 12 or 26, for the or-
dered phases. However, experience in these refer-
ences shows, that the recursion relations for u & are
not altered in the ordered phases. This leads us to the
conjecture, that sugciently close ro the multicritical point
the first orde-r spin Pop -line will probably split up into two

second-order lines, enclosing a region in which an inter-
mediate "mixed" phase should be observed. This situa-
tion is schematically drawn in Fig. 3. The lower end
of this intermediate phase region, where its second
order boundaries meet the flop line (at a bicritical
point?), is highly speculative. At this end, the fluc-
tuations related to the multicritical point are not very
strong, and (4.7) is probably not yet fulfilled. Further
details must await a full analysis in the ordered
phases.

The situation here is different from that discussed
in Ref. 12, ~here only the case u11 =—u22 was con-
sidered in any detail. For that case, the nature of the
multicritical point (i.e., bicritical or tetracritical) is

determined by the initial values of u1'1' = u22' and u1'2',

and is unaffected by the renormalization-group itera-
tions. It turns out, that this is no longer the case
when u11 and u22 are su%ciently different from each
other. Some changes in the nature of the phase di-
agram close to multicritical points were recently stu-
died by Lyuksyutov et al. ' However, the situation
we have here is completely new, and was not antici-
pated by them.

tra
order

(n- I) - component
andom

tetracritical
'nt

OrIl

V. ANISOTROPIC CRITICAL BEHA VIOR

We next wish to study the anisotropic behavior, to
which one crosses over when r1 and r2 do not satisfy
the conditions for bicriticality. If we try to keep the
choice (3.7a), then clearly ri ~ if ritoi & r2to' and
r2 ~ if r2~ ~ & r1 . Thus, fluctuations in the ap-
propriate spin components become negligible
(qi « r ) It is more conve. nient therefore to use the
choice (3.7b) .~4

longitudina
order

FIG. 3. Conjectured schematic phase diagram for the
uniaxial random-field model. Ho represents A,', with A.

defined by Eq. (3,6). The area between the "transverse" and
"longitudinal" phases represents the conjectured intermediate
"mixed" phase.

A. Longitudinal uniaxial ordering

We start with r2t i & rit i. Choosing $2 by (3.7b) and

gj by (3.7a), we have ri' =—r2 For 4 & d &. 6, the
coefficient of q2cFq(T

~q
with n & 1, becomes ir-

relevant. Similarly, u12A. and u22 are irrelevant, and
decay to zero. We are thus left with the variables u11)
and r1, which obey the same recursion relations as
they would for the Ising case, n =1. We can now use
the results of Refs. 18—21, and conclude that the
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longitudinal spin ordering has the same critical
behavior as does the pure Ising model in d —2 dimen-
sions 2p 2'

VI. GENERALIZATIONS

The results described here are easily generalized.

B. Transverse (n —1) ordering A. Non-Gaussian distributions

Wc now turn to the opposite anisotropy, ri ' & r2
or to "transverse" ordering. With the choices (3.7b)
for ji, and (3.7a) for (2, the coeScient of q2a. ~i

becomes irrelevant, and r i' —= r i. Similarly, u i i A. and
ui2A. decay to zero for all d & 2, and X' = X. The re-
cursion relation for u22 approaches, after a few itera-
tions, the form

22 b [u22 4Kd(n+)u22~2(r2)+'''1, (5 ~ I)

which is just the same as one would find for the usual
(n —1)-component spin problem without a random
field. This means mean field results for d & 4, and
the usual ~-expansion results" "for d & 4. We thus
see, that a random ordering fi-eld does not acct the criti

cal behavior of the spin components which are perpendicu
lar to its direction.

C. Intermediate summary

We are now at a point where an overview summary
of the results may help. Until this point, we have
concentrated on the model (1.3), or (3.5), i.e. , on the
case in which the random-ordering field is uniaxial,
and is directed along the axis of uniaxial anisotropy.
The resulting phase diagram is shown in Fig. 1(or in

Fig. 3). For random fields which are weak (compared
to the anisotropy), the ordering remains uniaxial, but
the critical exponents change very significantly, as they
would for the Ising model in a random field. For
strong random fields (or weak anisotropy), the order-
ing is perperidicular to the field, and the exponents are
the same as for a nonrandom (n —1)-component
problem. Note that for suftieiently strong fields, e.g. ,
Hp & eJ in the model discussed in Scc. II, there is no
ferromagnetic ordering at all. The transition tempera-
ture into the transverse (n —1)-components phase de-
creases to zero at some finite value of Ho. Near this
temperature, quantum eA'ects may become impor-
tant.

One should especially note the case of isotropic ex-
change, when initially r =—r and u &

———u. Once any
small uniaxial random field is introduced, e.g. , in the
1 direction, then the first iteration will yield ri' & r2'

[see Eqs. (3.8) and (3.9)], and the flow will go to the
(n —1)-components nonrandom fixed point. The
multicritical point is then on the temperature axis, and
is described by the nonrandom n-component fixed
point. Since T, (h.) —T, (0) —~'je, with @=—y & 1, the
critical line in the T —

A,
' plane meets the tempera-

ture axis at a right angle. '

First, we mention the Gaussian distribution of the
field, assumed in Eqs. (3.4) or (3.6). For a general
distribution, we shall have to consider also higher-
order cumulants of the field distribution, e.g. ,
{[(H')'l,„—3[(H'')212 I, etc. Similarly, one can con-
sider higher-order random coeEcients in Eq. (3.5),
e.g. , terms like

~1~2

+qk ql
I

k
CT

qk
(6.1)

B. Nonuniaxial random field

The results will be significantly altered if the ran-
dom field is not completely uniaxial, i.e. , if Eq. (3.4)
is generalized into

(~i Hj)av "agijgap (6.2)

allowing for random-field components both along and
perpendicular to the uniaxial anisotropy axis. Such
terms will introduce new two line vertices, i.e.,

A.„, which will introduce terms of order
u 25232(r2) into Eqs. (3.8) and (3.9), terms of order
u'2X2A2(r2) into Eqs. (3.10) and (3.11), etc. An im-

mediate result of this is, that the appropriate variables
near d=6now become u a(X kp)'j2, withan "isotro-
pic" bicritical point at

4Kdu p() Xn)' '=e/(n+8)+O(e') (6.3)

The behavior. near this bicritical point, for n 3, '7

will be the same as near the usual bicritical point at
d —2 dimensions. ' Moreover, if one is not exactly
at this bicritical point then one crosses over to
random-field Ising-like behavior (as discussed above)
or to random field (n 1) com-ponent beh—a. vio-r This.
latter behavior is very different from thc one
described in Sec. V. In particular, it leads to no fer-
romagnetic long-range order for n —1 ~ 2 and d & 4."

Ai
'

Ak
, where a is random, and one has all the cumu-

q
lants of a11 these coefficients as variables. Such terms
will arise if we start with the Hamiltonian (1.3), and
transform it into a continuous spin model as done in
Ref. 22. The analysis of this general case follows ex-
actly the same lines as for the isotropic n-component
ease, treated in Ref. 1. The final conclusion is that
none of these additional variables is relevant for
4 & d & 6, and therefore all our results are applicable
to the general case. Of course, we cannot give quanti-
tative predictions in this context about d =3.
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Hence, any transverse random fie-ld component, for the

Heisenberg case n = 3, will completely eliminate the
transverse ordered phase (Fig. I) at d= 3. There is
therefore an extremely important difference between
the uniaxial random field and the general one. Note
that this difference also occurs for the isotropic ex-
change case: A general random field, for n ~ 2, corn

pieteiy eliminates the ferromagnetic long rang-e order at
d= 3), whereas a uniaxial random field yields transverse
ordering. We emphasize again, that the spin-glass

models ' fall into the second category, and therefore
are results apply to these remodels at d =3.

C. Skew random field

An intermediate situation seems to occur for a skew
random field, i.e., one which is uniaxial, but not ex-
actly parallel to the axis of uniaxial anisotropy. This
would be relevant to the spin-glass case, if the mag-
netic field is not exactly aligned. If the field is in the
1-2 plane, at an angle 8 to the 1 axis, then we have

A, cos'8, n = P = l

(H; Hp)„='h. sin8cos8, a=1, p=2 or n=2, p=1
csin 8, a=P=2

(6.4)

In the mean-field approximation, discussed in Sec.
II, this will lead to additional terms, like
M'M2, M'(M2)', etc. , in Eq. (2.9). Diagonalizing the
resulting bilinear form, we find that some linear com-
binatiog of M' and M' will become critical. A similar
diagonalization in the renormalization group analysis
yields a random field Ising-like critical behavior for
this rotated order parameter. The situation is thus
quite similar to that of the antiferromagnet in a skew
uniform field'p ": There is an Ising-like critical sur-
face, in the Hp, -Hp - T space, and its cut through the

Hp =0 plane is shown in Fig. l (or Fig. 3).
2

We thus see, that most of the properties of an anti-
ferromagnet in a uniform field can be also expected
for the magnet in a random Geld. In particular, we
can also introduce a nonrandom ordering field H„
(this is not realizable for the spin glass), to study the
phase diagram in the H„-Hp-T space. ' Similarly, one
can identify the scaling axes in the Hp-T plane, etc.

VII. DISCUSSION

We first summarize our conclusions. The phase di-

agram of the uniaxial random-field model is summar-
ized in Figs. 1 and 3, which speak for themselves.
The phase diagram will become quite different if the
random field has more than one component, and one
should always be careful in determining which of the
two pictures applies to a given situation.

As reviewed in Ref. 1 or 18, there are many experi-
mental situations to which the random-field model ap-
plies, e.g. , for ferroelectric or structural displacive
transitions, etc. In most of these, one probably has
more than one random field components, and there-
fore the phase diagram in anisotropic cases should be
described in Sec. VIB. An experimental variation of
the exchange anisotropy, e.g. , by uniaxial stress'
for frozen random fields, should yield interesting new
effects at the multicritical point. The concentration of
the impurities which are responsible for the random
fields may serve as an experimental handle over Hp,

or 2 [Eq. (6.2)].
The uniaxial random-field model is directly applica-

ble to the random-site spin glasses. For anisotropic
spin glasses, one expects a phase diagram of the form
shown in Fig. 3, with Hp being the external magnetic
field. The "longitudinal" phase represents an Ising-like
spin glass, and the critical properties near the transi-
tion line (e.g. the magnetic susceptibility, related to
derivatives of (F)„with respect to Ho, which has a
cusp) are as described in Ref. 3. Note that a finite
magnetic field does not "smear" the spin-glass transi-
tion in the Ising case. Experiments on anisotropic
spin glasses, to check our predicted phase diagram,
will be quite helpful.

It should be emphasized again, that the whole dis-
cussion here is limited to "random site, " and not to
"random bond, " spin glasses. 6 The effects of local an-
isotropy on the longitudinal ordering of the latter was
recently studied using mean-field theory by Ghatak. "
The effects of a magnetic field on the (isotropic) tran-
sition, within these models, seem to smear the cusp in
the susceptibility. There seems to exist serious
differences between the effects of a field in the two
models, which must be studied in the future. Some
properties of the multicritical point in the "random-
bond" spin glass, due to anisotropic exchange
coeScients, wi11 be reported elsewhere. ' The general
question, of determining which spin glass model
should be used for a given system, also remains
open. '4

Finally, we note that much of our analysis was car-
ried out for d )4. Other techniques, e.g. , Monte
Carlo calculations, series expansions, real-space renor-
malization group, etc. , should be applied at d =3 for
better quantitative results. We believe, however, that
our qualitative results should apply for d & 4 as well.
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