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Mean-field theory and renormalization-group arguments are used to show that the phase transi-
tion in a system with a random ordering field becomes first order at sufficiently low transition tem-
perature, provided the (symmetric) random-field distribution function has a minimum at zero
field. The first-order region is separated from the second-order region by a tricritical point. Both
the critical and the tricritic'al exponents at d & 4 dimensions are shown to be the same as for the
pure system at d —2 dimensions. The relevance to spin glasses and other systems is discussed.
The new. tricritical point is very difterent from all previously studied tricritical points, as it deviates
from mean-field theory at d =5, and not at d =3. Although quantitative results are calculated
only at d =5 —~ dimensions, the qualitative results are expected to apply at d =3.

I. INTRODUCTION

The effects of a random quenched magnetic field
(or, in general, field conjugate to the order parameter)
on the critical behavior near a ferromagnetic (general)
phase transition has recently attracted some atten-
tion, ' 5 To discuss these effects, one considers a lat-
tice system with the Hamiltonian

by this model, if one considers them as assemblies of
magnetic clusters.

In order to obtain the thermodynamic properties of
the model, one must first calculate all thermodynamic
quantities for a given random distribution of fields
}H } and then average the results with the distribution
P (H;}. For example, the magnetization per spin will
be given by' '

X=——XJ;,S; S, —$H; S;
I WJ I

where S; is an n-component classical spin vector of
unit length, located at the lattice site i, J„" is the ex-
change coupling between sites i and j, and H; is a local
field. One is especially concerned with fields H; which
have a random distribution, characterized by a distri-
bution function P }H;},in the limit when the fields are
quenched, i.e., they vary on a much slower time scale
compared to the spin degrees of freedom.

Although it is not easy to imagine an experimental
realization of such random fields in the magnetic case
(local magnetic moments?), it is quite possible to
have them in other cases. Examples are random elec-
tric fields in ferroelectric or in charge-density-wave
transitions, strain fields due to impurities which couple
linearly to the order parameter in displacive transi-
tions, ' or random sources and sinks of superfluid
particles in the ideal Bose-gas case. ' For convenience,
we shall use the "magnetic" language through this pa-
per.

A very important realization of the model of a ran-
dom quenched field is related to random-site spin
glasses. ' In these, the order parameter is the projec-
tion of the local spin on the direction in which it
freezes at zero temperature, and the uniform magnetic
field plays the role of a random field, coupled linearly
to this order parameter. It has recently been sho~n
by Binder, " that many spin glasses can be described

M = ((M (Hi})),„

=—Jt d""II,P (H, } (M (H, })

-=—J1d"'e, P }H,}

1

x Tr XS;e a~ Tre ~~ (1.2)

Here, the angular brackets denote thermal averaging,
with all H s given, and ( ),„denotes averaging over
the random-field distribution. As usual, P = 1 jke T,
and W is the number of lattice sites.

As in previous work, ' ' we shall concentrate here
on distributions with no correlations among the ran-
dom fields, i,e.,

P(H, }=gp(H,) .
I

(Short-range correlations turn out to be irrelevant. )
Ho~ever, we wish to draw attention to the importance
of the properties of the local field distribution f-unction

p(H). Previous work' s concentrated only on Gaus-
sian 'distributions, i.e.,

po(A) =(27r)) " 'exp( —
} H }'/2Z)

Renormalization-group studies' for small X showed
that A. is a highly relevant variable near the nonran-
dom critical point A. =0. Its crossover exponent is
equal to the nonrandom susceptibility exponent, y.
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For any Anite A. , one expects a crossover to a new type
of critical behavior. At dimensions d & 4, this new
behavior is directly related to that of the pure system
in d —2 dimensions. For n «2, there is no fer-
romagnetic long-range order at d & 4. For n =1, the
behavior at 2 & d & 4 is expected to be very different
from that of the pure system, " and there is no
long-range order at d & 2.

Hamiltonian (1.1) with Gaussian distribution (1.4)
was recently studied, using mean-field theory for n = 1

by Schneider and Pytte. ' As might be expected intui-
tively, they And that as A, increases the critical tem-
perature for ferromagnetic ordering T, decreases, until
it reaches T, =0 for X'i'/cj =(2/n)'i' (c is the coordi-
nation number). The transition for ail values of X

remains second order. Schneider and Pytte also em-
phasize the role of the spin glass order parameter in
this decrease in T, : Above T„one has an "indepen-
dent spin phase, " in which each spin independently
orders parallel to its local random field. The fer-
romagnetic ordering at T, then has to compete with
this "spin-glass" ordering.

One should note the similarity between the phase
diagram (in the T —h.

'iz plane) found by Schneider
and Pytte' and that of an antiferromagnet in a uni-
form magnetic field (a "metamagnet"). In the antifer-
romagnet, above the transition point, the system
behaves paramagnetically, with the spins ordering
parallel to the field. This leads to a decrease in the
antiferromagnetic transition temperature with increas-
ing field: The antiferromagnetic order parameter
(staggered magnetization) has to compete with this
paramagnetic order. The analogies
paramagnetic independent (spin glass),
antiferromagnetic ferromagnetic, uniform
field random field are thus quite appealing. The
analogy becomes even more obvious when we replace
the ferromagnetic phase by the analogous spin-glass
phase, " and the "independent" phase by the
corresponding paramagnetic phase. In both the spin-
glass and the antiferromagnetic ordered phases the
spins point both parallel and antiparallel to the uni-
form magnetic field. The only difference is, that the
antiferromagnet has a finite repeating unit cell, which
becomes infinite for the spin glass.

The temperature-uniform field phase diagrams of
metamagnets exhibit several interesting multicritical
points. ' These involve a tricritical point, at which the
paramagnetic to antiferromagnetic transition becomes
first order, ' ' and a bicriticaf point, at which a spin
flopped phase, with ordering perpendicular to the uni-
form field, appears. " ' In this paper and in the sub-
sequent one, we show that such multicritical points
mav also appear for the magnet in a rando'm field,
depending on details of the distribution function
p(H).

This paper is devoted to the discussion of tricritical
points. We show, that vvhenever the distribution function

p (H ) has a minimum at zero field one should expect a
tricritical point and a first ord-er transition for sufficiently
low transition temperatures T, . Schneider and Pytte'
did not find a tricritical point, because the Gaussian
distribution (1.4) is maximal around the origin. In
fact, Binder' Ands, that the effective random-field dis-
tribution in spin glasses is not Gaussian, but rather
has a maximum at finite

~
H ~, and a minimum at

H =0. One should therefore expect to find a tricritical
point for spin glass transitions. In the following pa-
per we show, that a spatial anisotropy in the distribu-
tion p (H ) may lead to spin flop transitions and to bi

critical points.
To exhibit the existence of a tricritical point for

non-Gaussian field distributions, we first replace the
distribution (1.4), for the Ising case n =1, by

p, (H) =-,' [5(e-e,)+g(e+e,)] . (1.5)

'i kT/cy
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FIG. 1, Phase diagram for the Ising case, with the delta

distribution, Eq. (1.5). FM is the ferromagnetic phase, and

SG is the "spin glass, " or "independent" phase. TCP is the tri-

critical point.

This distribution represents a special case of the
random-site spin-glass model in a uniform magnetic
field Ho, as discussed in Refs. 8—12. In particular, its
mean-field solution can be directly read out of Ref. 9.
Instead, we simply follow the analysis of Ref. 5, re-
placing (1.4) by (1.5), in Sec. II. The resulting phase
diagram is shown in Fig. 1, exhibiting a tricritical point
and a first-order transition for sufficiently large values
of Ho. This discussion is then generalized to other
distributions p(H). The model is then transformed
into a continuous spin model in Sec. III, in prepara-
tion for the renormalization-group analysis of its criti-
cal and tricritical properties in Secs. IV and V. We
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find that the critical behavior in 6 —e dimensions is
the same as that of the "pure" system in 4 —e dimen-
sions, and that the tricritical behavior in 5 —~ dimen-
sions is the same as that of the "pure" system in 3 —e
dimensions. The case n ~2 is then separately dis-
cussed in Sec. VI, and the results are summarized in
Sec. VII.

II. MEAN-FIELD THEORY

For convenience, we now concentrate on discussing
the spin-

2
Ising case n =1. %e shall return to the

general case in Sec. VI. Following Schneider and
Pytte, ' mean-field theory is obtained by replacing
Hamiltonian (1.1) by

provided that 8 )0. Sufticiently close to the "pure"
transition, the "spin-glass" order parameters

q = ( (S;)'),„=[tanh'P (cJM + H )],„ (2.ga)

r = () (S;)[),„=[( tanhP(cJM + H;) (],„ (2.gb)

will not be very large. Similarly, (t;¹),„will also be
small compared to unity. Thus, the transition will oc-
cur close to the "pure" transition point PcJ = I, and
will be second order. For the Gaussian distribution
(1.4), one always has 8 & 0 when A =1. Therefore,
the transition is always second order.

The g distribution (1.5) yields different results: the
condition A =1 now simply reduces to

3'.0 = NcJMt ——X (cJM + H;) S, (2.1) A =/3cl(1 —tanhtPHo) =1 (2.9)

where c is the coordination number (the number of
spins which couple to a given spin with interaction J).
In the notation of Ref. 5, c = N and our J must be re-
placed by 2J/N. The free energy per spin is thus
(S; = +1)

F =
2

cJM2 —(I/p)

& [in[2 coshl3(eJM + H;)]],„ (2.2)

and the magnetization M is the solution of the equa-
tion

M = [tanhP(cJM + H )],„ (2.3)

which minimizes (2.2).
For any symmetric distribution of fields

p (H) =p (—H), it is clear that M = 0 is always a solu-
tion of (2.3). If the distribution is nonsymmetric,
M =0 is never a solution-, unless we add a uniform
field H„such that

[tanh [l3(H„+H;) ] ),„=0 (2.4)

M =~M -aM' —CM'- (2.5)

with

From now on we shall ignore this possibility, and con-
centrate on symmetric distributions.

The solution M =0 will have the lowest free energy
for sufficiently high temperatures and random fields.
As the temperature is lowered, one might find an ad-
ditional solution M W 0, with lo~er free energy. If
the transition is second order, we can find the transi-
tion point by expanding (2.3) around M =0,

while Eq. (2.7) becomes

8 = —,A (/3cJ)'(I —3 tanhtPHO) (2.10)

Thus, 8 becomes negative when tanhtIHH0 & 3. For
higher values of /3HO, one can no longer use the ex-
pansion (2.5) to find the nonzero solution for M. A
direct numerical solution of Eq. (2.3), however, shows
that in this range the transition becomes first order.
The resulting phase diagram is shown in Fig. 1. The
point

(pcJ), = —, ', tanh'(l3H ), = —, (n =1) (2.11)

[Q(/3H)], „=„) dH p(H) Q(PH)
I

2 '. x= —
J dx p —Q(x) (2.12)

Expanding p(x/P) near (x/P) 0,

p(x/13) =p(O)+ —,'p"(0)(x/p)'+ .
I

Eq. (2.12) becomes an expansion in inverse powers of

(2.13)

is thus a tricritical point.
For more-general distributions, one can no longer

separate the product in (2.7), to obtain (2.10). In-
stead, one must calculate explicitly the averages ih
Eqs. (2.6) and (2.7). It is instructive to consider these
averages for large P (low temperature), in the case of
a symmetric distribution p (H) which is an analytic
function of H. For any even function Q(pH), one
has

A =PcJ[l —(t,')„]
8 = —, (PcJ)'f(1 —t, ') (I —3t,')]„,

(2.6)

(2.7)

[Q(PH)]„=—p(0) Jl, dx Q(x)

+ —,p"(0) J dxx'Q(x) +
etc. , where t; = tanhPH, .

Indeed, a second-order transition is found at 3 =1, (2.14)
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In particular, Eqs. (2.6) and (2.7) yield

A = 2 cJp (0) + 0 (P 2)

8 = —,(ci)'p" (0) +O(P ')
(2.15)

For the Gaussian case, Eq. (1.4), pG(0) =(2mii) 't',
leading to the zero-temperature Schneider-Pytte tran-
sition condition A.

' 2/ci =- (2/vr)' ', and
pG" (0) = —(2/~k)', i.e., 8 & 0, even at the zero-
temperature transition. The transition at zero tem-
perature will become first order once p "(0) & 0. Note
that the 5 distribution (1.5) is the limit

t —(H' —Hp' )'
pp(H) =lim (2m') ' 2exp

O'M 2' (2.16)

and indeed p "(0) & 0 at any finite a.. If the transition
at zero temperature is first order, it is clear that 8
must change sign as a function of temperature, and a
tricritical point results.

It is interesting to note, that the random-field distri-
bution found by Binder' for the Ising spin glass
indeed seems to have a minimum at zero field, rather
than the Gaussian maximum. Thus, one should ex-
pect a tricritical point for these spin glasses.

III. CONTINUOUS-SPIN MODKI

In order to perform a renormalization-group, or a diagrammatic anaiysis of the Hamiltonian (1.1), it is convenient
first to transform it into a continuous spin model. ' Again, we concentrate first on the spin-

2
Ising case. A con-

venient way to do this transformation is to use the identity

iV

exp 2P X J;,S;S, =—7r 'D ' +do.;exp ——X(K ');,o.;o. +JXar;S;
IJ i 1 ij i

(3.1)

where D is the determinant and K is the inverse of the W x % matrix KJ =PJ;,. Substituting (3.1) into the parti-
tion function Z =Tr exp( —i3X), and performing the simple traces over S; = +I, we thus find

Z = w l D I lr Q dtr ex—p(SC) (3.2)

with

X= ——X (K ') so; at + X In[2 cosh(PH;+ a,) ]
ij i

The second sum in (3.3) can now be expanded in powers of o;,

(3.3)

in[2 cosh(PH;+ a.;)] =In(2 coshPH;) —X a; o;",
k 1

(3.4)

with

a, = t, , a; = —,(I— t, ), a, = —, t, (1 —t;—), a; =—„(I—t, )(1 3t, ), —(1) (2) 1 2 - (3) 1 2 (4) 1 .2

(3.5)

a; = —
—, t;(1 —t;2)(2 —3t;2), a, = ——(1 —t;2)(2 —15t;2+1St;4)

where t; = tanh(PH;).

We now concentrate on the quadratic terms in
(3.3), and define

~=—$ [(K ')„- —g;, [I —(t ),„]]tr;a, . (3.6)
ij

As usual in such calculations, "we next Fourier
transform the spin variables ~; into ~q, replace the
sum in the first Brillouin zone by an integral over
~ q ~

( A, expand the Fourier transform of

1 (r + q') (i tr
2 q

(3.7)

Here, r 4x. T —T0, where To is related to the mean-
field transition temperature [given, e.g. , by Eq. (2.6)
and A =1], J denotes (2') ~ J/d"q, (q ) ( A, and

j(K ');, —g,J [I —(t ),„]}in powers of q near q =0, and
rescale all spin variables by a constant $, o fo -so
that the coefficient of —,q c7

q
0

q
in Ko is equal to un-

ify
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higher powers of q are ignored since they are ir-

relevant. '

Finally, our Hamiltonian becomes K = 3.'0+ 3'.&,

where

X Xaik) k

i k=1

q

0 (7 CT
qi

1 2

qi q2 q3

X a O 0
q qq2 q3 -q

i
—q2-q3

(3.8)

with

a "' = ('[t' —(r')

a~"~=g"a, '"', k~2,
(3.9)

(3.10)

and

(3.11)

0 k =odd
( tk))

~uk'(q) k =even, (3.12)

)kk 8(q+p),
k, m =odd,

u, u g(q)5(p)

In the following discussions, we shall always calcu-
late thermodynamic quantities in terms of the vari-
ables a, and then, at the end, average these over
the distribution of random fields. Since we shall be
expanding everything in powers of Xi, or of a, the(k)

final results can always be expressed in terms of the
cumulants of the variables a '" . For symmetric distri-

butions p(H) =p( H), we have—

IV. RENORMALIZATION GROUP AT THE
CRITICAL POINT

We are now in a position to study the Hamiltonian
= +0+ Xi using the renormalization-group recur-

sion relations or diagrammatic expansions. Our natur-
al variables for these treatments are r, or the tempera-
ture [Eq. (3.7)l, and all the cumulants of the
coefficients a, as defined in Sec. III, i.e., A,k, uk,

v „, etc. In principle, one should construct recursion
relations for the full distribution function P (H;I, or
P [a

" ), but this distribution is fully characterized by

all its cumulants. '
One should note that if all a; 's are zero except

a; ", the model reduces to the one considered previ-
ously in Refs. 2 —4 (although the distribution is now
more general). If all a;tk~'s are zero except a;t2~, the
model reduces to that of a random "transition tem-
perature" To."' One can also follow the same
analysis for models with random "quadrupolar" cou-
pling (a "' =0 except for k -4), etc. , but it is dificult
to realize a situation in which both a; ' and a;"' are
zero for random systems.

We now follow Ref. 23, and construct recursion re-
lations for all our variables: We first integrate out all
variables o. with A/b (

~ q ~
( A in the partition

function, then rescale momenta q b q and spins
a- (o.k~ obtain recursion relations for the new vari-

ables r' and a " ', and finally find the new cumulants
of the a 's by averaging over their "old" distribution.

q
It is convenient to describe the various terms in Eq.
(3.8) by diagrams, as exhibited in Fig. 2. An external
line denotes a variable o-~ and an open circle at a ver-

tex of k lines denotes a variable a, with the sum of
all momenta (including this q) equal to zero. For
a ' ', it is convenient to separate out its average u4,
which we denote by a simple point vertex, with
momentum zero.

At the first stage of the renormalization-group itera-
tion, we expand exp(~+ X~) in powers of 3!~, and
integrate over spins a.-with A/b (

~ q ~
( A. After

+ Vk~h(q+P)

k, m =even,
,0, otherwise,

(3.13)
g(2)

etc. Here,

uk=(a;"),„, Xk~=(a;" a; )

(k) (m)&
Vkm i&i ~i l av uk um

(3.14)
a( )-u4

One easily extends these to higher-order cumulants-.
Note that u, -=0, from (3.9).

FIG. 2. Vertices describing the terms in the expansion

(3.8).
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rescaling momenta and spins, the new coefficients
a ' can be represented as sums of conriected di-

q
agrams. ' In these diagrams, all internal lines have
momenta in the range A/b &

~ q ~
& A, being integrat-

ed over. Some of the diagrams which contribute to
the new coefficient of 0 qqq q

are exhibited in Fig. 3.
For example, the fourth term here represents the con-
tribution

FIG. 4. Diagrams which contribute to
tion for the temperature variable r. The
first diagram denotes Xi&, and in the last

circle denotes ] 22.

the recursion rela-

open circle in the
one —

A, &3. The full

12(2u4 Jt a "(r +q]2) '
&l Jf a ' (r+q22)

q& q&

(4.1)

g2 bd+2

t] [1 + 0(ll4 ll4 X]]pu4)]]3X]]p X33Ã]] . ~ ~ )]

where J denotes integration over A/b & ~q ~
& A.

q
We now separate the new coefficient of (Jq 0

q
into its

average, which is obtained by averaging both sides
over the field distribution, and its deviation from the
average, which we denote by a '. For example, the
contribution of the term in Eq. (4.1) to the average
will be [see (3.13)]

12$'u4)].]] Jf (r +q') ' (4.2)

+ ~ a ~

FIG. 3. Diagrams which contribute to the recursion rela-

tion for the nonaveraged coefficient of quadratic spin terms.

which we represent by the first graph in Fig. 4. Here,
the small empty circle represents the parameter A. ii,
and the loop now has two propagators (the circle is
simply a new kind of a two line vertex). Similarly, the
fifth and sixth terms in Fig. 3 contribute the next two
graphs in Fig. 4 to the average. Note that the fifth
term yields v22, which we denote by a full circle at a
four-line vertex, while the sixth term yields A. i3, which
we denote by an empty circle. One can now easily
draw higher-order diagrams. These will yield many
more kinds of new vertices. For example, the cumu-
lant averages of a;"'(a;"')' and of (a,"')' will lead to
two more kinds of four line vertices, which will appear
only in diagrams with more than one loop.

None of the diagrams in Fig. 4 contributes to the
new coefficient of —,q'o.-a —, in the renormalized

Hamiltonian. If we wish to keep this coefficient equal
to unity, we thus choose '

(4.3)

With this choice, we immediately have all the neces-
sary recursion relations, e.g. ,

r'=b "[1+ 0(u4, u4 )]]]v22, it]3)] (4.4)

u4' = b "[u4+ 0(u4 i]]],u4X]3ll4v22 v244 l]33 ~ ~ )]

(4.5)

)]]]'= b "[X]]+0(u4 l]]],. ..)]

)I, ]3 = b [)].]3 + 0 (u4i] ] ] l].]3 ~ ~ ~ )]

V22 =b [V22+0(V22, . ..)]

(4.6)

(4.7)

(4.8)

(u4X]])' = b [1 + 0 (u4 X]2],. .. )] (4.9)

Thus, one recovers the Gaussian behavior for d )6,
but one expects deviations from it for d & 6. Indeed,
if all the other variables are ignored, there exists a
fixed point at d =6 —e, with (for general n)

4Kqu4X]] = a/(n + 8) + 0 (4 ) (4.10)

where Kd '=2» ]4r"~2I'(2 d). This is the fixed point

studied in earlier work, and it clearly describes the
behavior of the system when u4 & 0, when only a ' '

q
appears in 3!i and when only its second cumulant A. ii
is nonzero. The new variables in our model are, for
example, A. i3, v22, etc. Clearly, these are irrelevant at
d =6 —~, since they decay like b 2. All that remains
to be checked is whether they are "dangerously "ir-
relevant, "as is the coefficient u4. This coefficient is
important, although "irrelevent, " since it appears [e.g. ,
in Eq. (4.4)] multiplied by the highly relevant variable
A.ii. One can now explicitly check, that this will not
happen to A. i3 and v22. If we want to replace the sim-
ple u4 vertex in the first diagram of Fig. 4 by a A. i3 or
by a v22 vertex, to obtain contributions of order Xi3ih, ii
or v22A. ii to r', we immediately see that such contribu-

etc. Above four dimensions, all variables except r and
A. » are irrelevant, i.e., decay to zero. However, the
recursion relations for these depend on products like
u4A. ii. Therefore, one must consider the recursion re-
lation for this product, i.e.,
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tions must result from nonconnected graphs (at the
nonaveraged stage, exhibited in Fig. 3), and therefore
they must be absent. Thus, all the variables except r
and u4) i i can be completely ignored near d = 6, and
the critical behavior of all models with random fields, with

any kind of distribution, will lead to the same universal
critical behavior, provided u4 & 0.

For any u4 & 0, we can now consider all higher ord-
er diagrams. Keeping only those which involve
powers of u4h. , i (like the first one in Fig. 4. and not
the others in this figure or the third diagram in Fig.
3), these diagrams give the same results for critical
exponents at d =6 —e, to all orders in e, as one would
calculate for the nonrandom problem at d =4 —e.26

For small values of h. ii, Eq. (4.6) yields the crossover
exponent for Xii, which is equal to the nonrandom
susceptibility exponent y [only the first term in. (4.6)
contributes near Xii =0]. Thus, any thermodynamic
function will depend on A. ii through the scaled vari-
able X»/r', where r = [T —T, (X» ——0)]/T„and the
line T, (kii) will have the shape

T, (zii =0) —T, (liii) ~ )~i'(', (4.11)

V. RENORMALIZATION GROUP AT THE
TRICRITICAL POINT

The discussion of Sec. IV applies only when u4 & 0.
Returning to Eqs. (3.14), (3.12), (3.10), and (3.5), we
see that

u, = —,', ('[(I —r )(1 —3r,')]„, (5.1)

which is very reminiscent of Eq. (2.7). Indeed, when-
ever mean-field theory predicts a first-order transition
one should be very careful in the renormalization-
group analysis.

Once u4 & 0, one must keep higher-order terms in
the expansion (3.8). Returning to Eq. (3.5), one

If one plots T, vs )i.i'1', as done in Fig. 1, one thus
should find that the critical line meets the line A. ii =0
at a right angle (1 & y & 2). For dimensions
4 & d & 6, the pure system has mean field exponents,
i.e., y =1, and thus the line T, (h. i'P) starts as (Xi'12)'.

One should note that the diagrammatic approach
presented here works only for dimensions 4 & d & 6.
For d & 4, many of the variables we ignored, e.g. , Xi3,
v22, etc. , become relevant, and other approaches are
necessary. It is also possible that at d = 3, the model
with only Xii & 0 and the more general model dis-
cussed here may have different types of critical
behavior. One should note that if in addition to the
random field one also has a random exchange
coe/facien, or random T„ i.e., v22 &0, these are ir
relevant for d & 4. Although our quantitative results
apply only at d =6 —e, we believe that the general
qualitative features of the phase diagram are correct
also at d =3.

checks that for the examples considered above, u6 & 0
at the point where u4 becomes negative. We thus in-
clude in our analysis variables like u6, v24, A.33, etc.
The recursion relations for all these three variables
have a form like

u, ' = b' '"[u6+ g (u6' Z' )] (5.2)

In addition, one finds that u6 contributes to the equa-
tion for r', Eq. (4.4), through terms like u6) i'i, etc. ,
whereas v24 and A. 33 contribute through smaller powers
of A. », e.g. , v24A. ii and A33A. ii. Thus, we must consider
the additional recursion relation for u6Xii, which reads

(u6$ )" = b' 24 [u6$ + g (u y )] (5.3)

and ignore all other variables.
At this stage we thus have three basic parameters,

i.e., r, u4A. i], and u6P ]'], and the situation is completely
analogous to that of the pure system, where one con-
siders r, u4, and u6." ' One can now obtain the recu-
sion relations for the present model from those dis-
cussed for the pure system by simply replacing d by
d +2 everywhere. The rules for diagrams which con-
tain-u6 are similar to those discussed in Sec. IV and in
Ref. 4: In any given diagram, one must put a circle
(i.e., a Xi i vertex) on one internal line for each loop.

From Eq. (5.3) it is clear, that u6kii is irrelevant for
d & 5. Thus, for 5 & d & 6 one recovers the cross-
over from Gaussian tricritical behavior to the critical
behavior described above, similarly to the pure case. '
AT d =5 one expects logarithmic corrections to the
mean-field-like tricritical behavior, ' and at d & 5 one
can expand the tricritical exponents in powers of
e = 5 —d, e.g. , (for general n), 28 29

I + 5 (n +2)(n +4) 2 g( 3)
8 (3n +22)'

1 (n +2)(n +4) 2 g( 3)
12 (3n +22)2

u = —+ —e+ g(e')1 i

2 2

(5.4)

Again, it is probably unreasonable to extrapolate these
results down to d =3. However, since for n =1 one
expects a ferromagnetic transition at d & 2, ' one prob-
ably should also expect this transition to become first
order whenever u4 & 0. The exponents at this tricriti-
cal point are expected to be very different from those
of the pure system discussed in Ref. 27.

One should note the difference between the tricriti-
cal point we find here and that of a metamagnet. At
d =3, all "metamagnetic" tricritical points are univer-
sally equivalent, and exhibit mean field like behavior
with logarithmic corrections at d =3.' The tricritical
point generated by a random field does not belong to
the same universality class, and its exponents deviate
strongly from those predicted by mean-field theory at
d =3.'
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VI. SPINS %ITH MANY COMPONENTS 2M=AM —BM M —.
%e now return to the general n-component spin

Hamiltonian (1.1). The simple generalization of the 5
distribution (1.5) for n «2 is

p (H) =5(IH I' —Hp)&( —,n)/2r"/'Hp ' (61)

Here, all H s have one magnitude, I H;I = Hp, and all

the spatial directions of H; have the same probability.
One can then also consider other generalizations of
the Gaussian distribution (1.4), like the ones dis-

cussed towards the end of Sec. II.
In other cases, one may be interested in distribution

of cubic symmetry, e.g. , ones in which the random
field may point only along one of the 2n cubic axes

with

3 = —, cpJ[2cothpHp/pHp —(pHp) 2

—(sinhpHp) 2]

8 = „(cPJ—) [5(PH p sinhP Hp)

+5cothpHp(pHp) '

+ 8 cotllPHp(PHp sinh2PHp)

—17(PHp) —(sinhP Hp)

——, (sinh'PHp)

(6.8)

(6.9)

where e is a unit vector along the ath axis. Such dis-
tributions are probably relevent for systems like
SrTi03, when the titanium ions are dislocated. '

For any of these distributions, we can now repeat
the mean-field analysis of Sec. II. The free energy
now becomes

F = —cJ I M
I

—(1/P) [lng ( H;)],„ (6.3)

~here

n

pc(H) = X[5(H Hpe ) +5(H+Hpe )], (6.2)
2n

and a tricritical point is found at

(PcJ), = 5.4, (Hp/cJ), = 5.5 (n =3) . (6.10)

The full phase diagram is very similar to the one exhi-
bited in Fig. 1. If the magnitude of Hp is also ran-
dom, one can follow the same lines as done at the end
of Sec. II, and find general conditions on the behavior
of p(H) near the origin. One should note, however,
that the procedure here is somewhat more complicated
than for the Ising case: Eq. (2.12) now has the form
(for general n)

g(H;) -
J dS;expP(cJ M+H;).S;

(err) "
I„/2 i (p I

cJ M +H; I)

(plcJM+H/I)" ' '
(6.4)

[Q (pH)] „=2~"/21 —"
J~

H" 'dHJ2(H)Q(pH)

=, 22r"/2r — P " x" 'dxp —Q(x)Jp

where l„(x) is the Bessel function, and M is the solu-
tion of

42r sinh(PlcJ M +H;I)
plcJM+H, l

(6.6a)

I„/2(plcJ M +H;l)(cJ M +H;)

,
I /2 —i (PI cJ M + H I) I cj M + H

One can now solve (6.5) numerically to find the
value of M which minimizes F, or expand the right-
hand side of (6.5) around M =0 to find when a solu-
tion M & 0 appears.

For n =3, one has

(6.11)

If we try to substitute for Q (pH) the functions
A (PH) or 8(PH) of Eqs. (6.8) and (6.9), we find
that p(x/p) cannot be replaced by p(0), or else the
jntegral diverges. Thus, one must first integrate by
parts. For n =3, the resulting conditions will be on
the properties, of the function P (H), where

p (H) = d /2 (H)/dH .
We now turn to the renormalization-group analysis

for n «2. We can follow directly all the steps of Secs.
III, IV, and V. First, we use the identity (3.1) for
each spin component 5;, a = 1, . . . , n, to find the
continuous spin Hamiltonian

coth(p I
cJ M +H; I) —p 2icJM+H;

plcJM+H, l

x p(cJM+H;) (6.6b)
where [see Eq. (6.4)]

G (x) =(2~)""I (»)/»"" '

(6.12)

(6.13)

Expanding this about M =0, for the isotropic 5 distri-
bution (6.1), yields, similarly to (2.5),

We can now expand the last term in (6.12) in powers
of cr;,
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inG. (]pH, +-, )) =inG. (p| H, [)

cxi ' ' cxk Qia I
~ ~ 0 g/ j

k 1

(6.14)

the present model for n «2, at any finite width of the
random-field distribution, is somewhat academic, since
there is no ferromagnetic long-range order for n «2
at d & 4. The results for n =1 are believed to hold,
qualitatively, also for d & 4.

1 /(with the coefficients a; ' now being tensors. The
remaining discussion goes as for n =1: Fourier
transforms, cumulants of the random distribution of

1 /cthe coefficients a/ ', etc. The resulting recursion
relations near d =6, for isotropic distributions, again
lead to the fixed point (4.10), where now

(a; a;p),„=at)5 p (6.15)

(a, P&'),„= ,
'

u4(a —po, , + 5 ,5p, + S.r5p„) . (6.16)

The initial value of u4 is now again proportional to the
mean-field coefficient 8 [Eq. (6.9)], and thus a tricriti-
cal point arises when u4 ~0. This fixed point will de-
viate from mean-field behavior at d = 5, with the ex-
ponents (5.4).

The situation for the cubic distribution, Eq. (6.3), is
more complicated. Now, (6.16) will be replaced by

(a; p~~),„= u4(5 —psst;+5 ~8pg+8 g8p~&
1

+v45 &5 ~5 z (6.17)

Near d =6, we now have two important parameters,
i.e., u4A. 11 and v4A. 11. The recursion relations for these
are. exactly the same as those for the pure cubic sys-
tem at d —2 dimensions, and one expects new cubic
critical exponents for n & 3. ' The tricritical ex-
ponents below d =5 will also be modified. " More-
complicated distribution functions, with lower sym-
metries, will be discussed in a separate paper. '

Before concluding this section, it is worth emphasiz-
ing again that the discussion of the critical behavior of

V II. CONCLUSION

It has been demonstrated, using both mean-field
theory and renormalization-group arguments, that a
random-ordering field with an appropriate distribution
function will lead to a tricritical point and to a first-
order transition at sufficiently low temperatures. For
d & 4, the critical and tricritical exponents are the
same as those of the pure system in d —2 dimensions.
For d & 4, the system has no long-range order if
n «2, and therefore the experimental verification of
our conclusions must be limited to the Ising case,
tf =1.

The most promising system, for which the
"random"-field distribution is of the form discussed
here, is the spin glass. In this system, the magnitude
of the "random"field Ho is simply that of the external
field. Thus, for an Ising-like spin glass, in a
su%ciently high magnetic field, a tricritical point
should be observed.

Since our explicit calculations were carried out only
for d & 4, alternative calculation techniques should be
applied for n = 1 at d =3. Thus, Monte Carlo or
high-temperature series studies of this problem would
be very interesting, especially since the deviations
from mean-field theory are expected to be so large.
Very recent Monte Carlo calculations' indeed indicate
the existence of a tricritical point.
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