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The virtually rigorous renormalization-group technique of Kosterlitz is applied to the vortex
nucleation theory of superfluidity. The rate of decay of superfluid velocity and the superfluid

density for moving helium films are obtained. The results are applicable to all temperatures on
and below the critical point. Velocity exponents are directly related to the superfluid density of
a film at rest. Finite-velocity effects are shown to account for pronounced changes in the dissi-

pation and in the superfluid density near the critical point. This paper also confirms the predic-

tion that, for a film at rest, the critical point value of p, /T is a universal constant. At any

'nonzero velocity, however, finite-velocity effects will mask this res'ult. The subcritical static po-

larizability of a two-dimensional Coulomb gas with hard-core interactions is obtained, in direct

analogy to the p, calculation,

I. INTRODUCTION

The phenomenon of superfluidity in extremely thin
liquid 4He films is one of fundamental physical in-
terest. The usual explanation for superfluidity in the
bulk involves invoking macroscopic occupation of a
single. quantum state. In two dimensions, however, it
has been proven that there is no Bose-Einstein con-
densation. Therefore, at least in two dimensions, it
would appear that the explanation for superQuidity
cannot rely on a condensate.

It should be noted that there exists, in the litera-
ture, a series of papers which attempt to circumvent
the absence of Bose-Einstein condensation in the true
d =2 thermodynamic limit. ' The basic idea in this
work is that the divergences which prohibit a conden-
sate for a helium film of infinite area are marginal
logarithmic divergences. For example, the author
has examined the dynamics of the approach to ther-
mal equilibrium and has shown that low-temperature
ordering of the type found in the bulk can, in two-
dimensional systems at sufficiently low temperatures,
develop and persist for effectively infinite times be-
fore full thermal equilibrium sets in. However, given
that the characteristic time for fluctuations on the mi-

croscopic scale to reach thermal equilibrium is in the
range of 10 ' —10 ' sec, then the virtual conden-
sate predicted by this theory will occur at tempera-
tures an order of magnitude less that the observed
critical temperature. Films display superfluidity at
temperatures at which even a transitory virtual con-
densate is ruled out.

The correct explanation for the observed
superfluidity in two dimensions was developed intui-
tively by Kosterlitz and Thouless. ' The Kosterlitz

and Thouless paper showed that a number of sys-
tems, including Bose fluids, of order-parameter

dimensionality 2 can, in two spatial dimensions, have
a phase transition without the symmetry breaking
that characterizes phase transitions in the bulk. As
applied to helium, the basic physics in the Kosterlitz-
Thouless argument is that entropy and energy are
such that it is free energetically favorable to create an
isolated quantum of circulation only above a nonzero
temperature. In the low-temperature regime vortices
of opposing vorticity will remain in bound pairs. The
relevance of this description to two-dimensional
superfluidity may be seen by considering a thin in-

compressible film of fluid initially moving over a sta-
tionary substrate. The substrate will dissipate flow by
creating "eddies" —pairs of vortices which drift apart.
In the low-temperature regime there is a free-energy
barrier to be overcome before a pair of vortices can
be pulled arbitrarily far apart. It is this that impedes
low-temperature dissipation of flow and makes meta-
stable currents possible. It should be noted that the
discreteness of circulation in the quantum fluid is
crucial to the Kosterlitz-Thouless picture. No
superflow is possible in a classical two-dimensional
fluid. This is because at nonzero temperature there
will always be a small enough circulation below which
it is free energetically favorable to create isolated vor-
tices. These ideas were somewhat anticipated in ear-
lier papers by Fisher and Langer, 6 Langer and Rep-
py, and in still earlier work by others.

In the present paper the decay with time of the
superfluid velocity and the dependence of the
superfluid density on velocity will be calculated. The
technique used here is the renormalization-group for-
mulation developed by Kosterlitz' to solve the criti-
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cal properties of the two-dimensional X- Y model. It
was derived from a technique of Anderson and Yu-
val. " The Kosterlitz work is one of the rare in-
stances in which a nontrivial critical fixed point has
been found exactly. Critical exponents and some
other properties found by the Kosterlitz technique are
as exact as any renormalization-group prediction can
be.

The basic physics underlying the calculation of this
paper is an elaboration of the intuition mentioned
above. In a moving helium film, an isolated pair of
vortices of opposite vorticity will remain in a meta-
stable bound state, so long as their separation is less
than the inverse of the fluid's velocity (with appropri-
ate units). Thus the energy of a vortex-antivortex
pair separated a distance y normal to the direction of
flow is~

E(y) ca ln(y) —constvy

which has a local maximum at y —1/v. When ther-
mal fluctuations move the pair apart to a separation
exceeding -1/v, it becomes energetically favorable
for the pair to rapidly unbind, decreasing the fluid
velocity by 2n/L, where L is the macroscopic length
of the system. One may obtain two bits of informa-
tion from this physical intuition. As Langer and
Reppy have observed, the rate at which the
superfluid velocity decreases should be proportional
to the number of vortex pairs on the threshold of
instability y —1/v. At low temperatures this means
the rate of decrease of the superfluid velocity v is

t

dv
—Eo(v)—ce—exp

dt AT

where Eo(v) —ln(1/v) is the energy of a vortex pair
on the instability threshold. The low-temperature
theory of Langer and Reppy is an application to two
dimensions of the three-dimensional work of Fisher
and Langer. Note that, at suSciently low tempera-
tures for small enough v, the velocity is virtually con-
stant with time. The Fisher-Langer-Reppy theory
identifies the critical velocity as that value of v for
which observable changes in v occur within laboratory
times.

The second bit- of information that may be ob-
tained is the velocity dependence of the superfluid-
density. The total mass flow of the film relative to its
substrate is diminished by a net backflow due to the
metastable bound vortices. These will be assumed to
be distributed in quasiequilibrium according to their
energy as seen in the rest frame of the substrate.
Since it is energetically favorable to orient a vortex
pair in such a way as to minimize the local flow, the
bound vortices will produce an average current —a
vortex backflow —in the direction opposite to v.
(Remember that the vortex pairs separated by dis-
tances exceeding -1/v contribute to the reduction of
current, but in a different way: they fly apart and

where p, is in units of mass over area and A =5. In
(1.1) the standard constants are m: the mass of the
helium atom; kg'. Boltzman's constant; and P. the
temperature. P"(T) is the temperature-dependent
fixed-point value of the renormalized vortex-vortex
coupling constant. As the critical point is approached
from below

P'(T) =2+C[(T,—T)/T]' (1.2)

At low temperatures /3'(T) reduces to the bare
vortex-vortex coupling constant [the quantity Pt of

cause the deterioration of v with time. ) The
superfluid density for a film is simply the total meta-
stable mass flow divided by the velocity of the film
relative to its substrate. Since both the distribution
of bound vortices and the maximum stable separation
of vortex-antivortex pairs are dependent on the velo-
city, it should not be surprising that the eddy
backflow, and therefore p„ is also velocity depen-
dent.

In this paper the Kosterlitz technique will be used
to go beyond the simple isolated pair approximation
and take multiple vortex interactions into account. It
is important that this be done because it permits
making testable predictions at all subcritical tempera-
tures, not simply at low temperatures. It turns out
that the most pronounced effects are, in fact, near T, .
Because of the quantitative predictions that the Kos-
terlitz renormalization group can make, 4He thin
films provide a system for which the general vortex
nucleation theory of superfludity can be tested quite
strenuously. It is worth summarizing, in this intro-
duction, the results of the "marriage" of
renormalization-group and vortex nucleation theory
that takes place in this paper. One of the interesting
features is the appearance of factors of the velocity
raised to a power which vanishes as the critical point
is approached from below. These factors come from
the number density of vortex-antivortex pairs on the
instability threshold (at separation a:I/v). The intui-
tive explanation for the finite-velocity effects is dis-
cussed in a letter by Huberman, Myerson, and
Doniach. ' The underlying idea, however, is simply
the Kosterlitz and Thouless intuition that the free en-
ergy of a vortex-antivortex pair at infinite separation
vanishes as the critical point is approached from
below. This means that the number density of
vortex-antivortex pairs at separation ~1/v is finite
suSciently close to T„no matter how small v is.

For the superfluid density p„ it will be shown that

2m ka T f(T) (1 + v
p, = 2+

h 2m 1 —V2f(T)
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=10 vo, (1.3)

where vo is the velocity in cm/sec. Since the vortex
core size is substrate dependent, the precise
coefficient multiplying velocity must be determined
from a data fit. In recent work, Nelson and Koster-
litz' have derived an expression for p, of stationary
(v =0) films. Their definition of superfluid density is
appropriate to third sound&4 experiments and is rather
different from the mass flow definition, appropriate to
Andronikashvili-type experiments, which is used in
this paper. In addition, a different renormalization
group, due to Jose et aI. , ' was used by them. It is
gratifying, then, that, in the limit of zero velocity,
(1.1) agrees with the Nelson and Kosterlitz result.

An experimental consequence of (1.1)-(1.3) is

that, for a superfluid flowing at any finite velocity re-
lative to its substrate, one can always come
sufficiently close to the critical point for the velocity
dependent term to become important. This is be-
cause the velocity exponent 2[P '(T) —2] goes to
zero as T T,. If the superfluid's velocity relative to
its substrate is within several orders of magnitude of
1 cm/sec and if the estimated value of C is roughly
correct then velocity dependent effects should be-
come important within -0.25% of T, . The larger v

is, the broader the region of rounding o8' will be.
Preliminary reports of recent Andronikashvili-type
experiments by Bishop and Reppy' for helium on
Mylar are quite consistent with this theory. The ord-
er of magnitude, temperature range of the broaden-
ing are encouraging. They also find the temperature
range over which the drop occurs broadens when the
drive strength (and hence v) is increased. The
Bishop and Reppy experiments are the most direct
experiments for testing near critical theories of heli-
um films. Prior work, deducing p, from third sound
velocities, "is not inconsistent with (1.1). However
enhanced dissipation makes the third sound signal
difficult to detect near T,.

It is important to bear the velocity dependent
effects in mind when testing data for consistency with
the Nelson and Kosterlitz elegant observation that
the critical point value of p, /T for a film at rest is a
universal constant. The v"~ " rounding off near
T, must be subtracted when matching data to this

Eq. (1.3)]. Note that (1.1) and (1.2) imply that, in
two dimensions at zero velocity, the superfluid densi-
ty drops discontinuously to zero at the critical point.
The coefficient C in (1.2) is substrate dependent and
has no critical point singularities. It must be deter-
mined experimentally. A rough estimate' for near
the critical point (which is where C is important) is
C =1. The velocity v of the superfluid relative to its
substrate is in units of the inverse of the vortex core

0
size (-A '):

v= vo(m/ii) X10 s

dv [P"(T) -2]v'P' '

dg 1 —y&~&'~ ~&—
&&

(1.4)

where /3'(T) is related to p, by (1.1). vo, the at-
tempt frequency, is usually estimated to be 10'—
10"sec '. The presence of the extra factor of v

(which is not important at low temperature) is due to
the fact that free vortices can be retrapped. The de-
tails are given in Sec. III. The velocity in (1.4) is in
the units of (1.3). For a velocity v on the order of 1

mm/sec (1.4) and (1.2) imply that the decay will be-
come substantial (time constant —sec) within a few
percent of the critical point. The enhanced dissipa-
tion near T, is a standard feature of experiments on
films. ' ' Note that the Kosterlitz renormalization
group effectively substitutes (1 —T/T, )' ' where one
would have (I —T/T, ) in an isolated vortex pair ap-
proximation. The square root is important —without
it one would overestimate the regime of significant
dissipation by an order of magnitude.

In very interesting work Telschow and Hallock'
made direct observations of the time decay of
superfluid velocity. Their film coverages were in the
10 A range, so it is conceivable that non-two-
dimensional effects come into play. In addition, their
velocities were rather large &10 cm/sec. Although
the coverage dependence of their decays deviates
from the Langer-Replay low-temperature theory in a
manner qualitatively consistent with (1.4), this exper-

prediction.
A more subtle implication of (1.1) is the prediction

that the velocity exponent is directly related to the
value of p, for a film at rest:

2[P "(T)—2] p, (v =0) (g~2n/m~ks T) —4

Since the Kosterlitz renormalization group is good at
all temperatures below T„ this prediction is not limit-
ed to the critical region.

The careful reader of this paper will note that there
has been no mention of the backflo~ due to density
fluctuations. In three dimensions phonons comprise
a significant fr'action of the normal component. In
thin films, however, the phonon backflow is propor-
tion to (c&), where c3 denotes the third sound velo-
city. Typically c3 is on the order of 100 times the
bulk sound velocity, so phonon contributions in two
dimensions should be negligible. Furthermore, from
the critical phenomenist's standpoint, density fluctua-
tions in thin films are short-ranged irrelevant vari-
ables. ' ' This means that, even if a substrate with
small c3 existed, the phonon backflow contribution to
p, would be a nonsingular function of temperature.
It should be noted that density fluctuations are not ir-
relevant in three or more dimensions.

The second major result that will be developed in
this paper is the time dependence of the superfluid
velocity. This is found to be given by
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II. CALCULATION OF p,

In this section the notation of the Kosterlitz X- Y
model paper' will be followed. For a helium film
moving at velocity v the likelihood of finding N vor-
tices at locations r», . . . , rN is proportional to
exp( H /ksT). H" i—s the energy as seen in the rest
frame of the substrate'

HN = g P)p,p&ln(~ r; —r&~)+ V) g p(y;
B i)+N i~Ni'

(2.1)

In (2.1) p, is proportional to the circulation of the (th
vortex and

V) =2)S(v (2.2)

The direction of flow v is taken to be in the x direc-
tion; yi denotes the y component of the location ri of
the ith vortex. In a quantum fluid pi =+1 and

P(= ir pp2m/2m kaT (2.3)

where po is the average density of the helium film.
For statistical mechanical purposes, non-neutral col-
lections of vortices may be ignored-a In(Q) energy
must be supplied to obtain a film with a nonzero net

iment must presently be considered unexplained and
worthy of future investigation.

The reader is reminded that the v in these formulas
is the velocity of the superfluid relative to its sub-
strate. Obviously this need not be the same as the
laboratory velocity of the superfluid. Thus, in an
Andronikashvili-type experiment, +here the
superfluid is essentially still and the substrate oscil-
lates, v in this paper is proportional to the ratio of the
amplitude to the period of the substrate oscillation.

In Sec. II of this paper, the details of the calcula-
tion of the basic results (1.1)—(1.3) for p, will be dis-
cussed. In Sec. III the time development of v, Eq.
(1.4), is derived. The calculation of Sec. II is a
renormalization-group calculation. The discussion of
Sec. III is of less esoteric matters and should be more
accessible to nonspecialists.

The static properties of a two-dimensional
Coulomb gas with a hard-core (nonzero minimum
charge separation) interaction are equivalent to those
of two-dimensional vortices in helium. In Sec. II this
analogy is exploited to convert the expression (1.1)
for p, into an expression for the subcritical polariza-
bility of the two-dimensional Coulomb gas. The
analogy to (1.4) would be a relation for the electric
current j due to a uniform electric displacement vec-
tor S. jwould replace dv/dt and 8 would replace the
factors of v on the right side of (1.4). Unfortunately,
there are dynamical differences between vortices and
charges that make this second analogy questionable.

vorticity. This means that

(2.4)

The choice of units means that v is converted from
velocity in cm/sec by the factor of -10 4 given in
(1.3). Finally we note that the thermal average of
some function f of the vortex parameters, p, r, is
given by

where Z is the partition function and E», the vortex
fugacity, depends on the core energy of a vortex.
Changes in the substrate can change E». The in-
tegrals over the ri and the sums over pi must be con-
sistent with (2.4) and (2.5).

In addition to the minimum separation of Eq. (2.5)
there is a velocity dependent maximum scale of dis-
tance. This will be denoted rp(v) The m. aximum
distance scale expresses the fact that, in a moving
film, if a vortex-antivortex pair is pulled sufficiently
far apart, it will then become energetically favorable
for the pair to unbind. Such unstable pairs do not
contribute to the quasiequilibrium statistics of the
moving film but cause, instead, the deterioration of
velocity with time. In determining rp(v) we will go a
bit beyond the isolated vortex pair approximation and
will take multiple vortex interactions. into account.
Let us consider an ensemble of vortices with some
maximum scale of distance r" and superimpose on it a
vortex-antivortex pair separated a distance r which
exceeds r". After integrating over the ensemble of
metastable bound vortices, we generate an effective
interaction with parameters P;, V~ (other parameters
are irrelevant at large r) between the superimposed
pair. The minimum "dressed" energy of the superim-
posed pair occurs when the pair is oriented parallel to
the y axis and is 2P„-In(r/r) —V;r. rp(v) is defined

by

rp(v) rp(v) 2Prp(v) (2.6)

With this definition, rp(v) is the smallest value of r
having the property that any pair superimposed at
separation r ~ r" will be unstable.

Physically, one should picture a "gas" of vortex
pairs with maximum separation rp(v) in near equili-

There is an intrinsic minimum separation between
vortices, corresponding to the vortex core size.
There is no harm in making this a sharp cutoff,
which, with an appropriate choice of units of dis-
tance, is unity. Thus

(2.5)
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brium. Occasionally a pair will leak past the thres-
hold, rapidly unbinding. It is assumed that the leak-
age is rare enough for the gas of bound pairs to
maintain itself in quasiequilibrium. Note that the
quasiequilibrium statistical mechanics contains the
time-dependent velocity v.

There is some ambiguity in how one might impose
a "maximum scale of distance" on an ensemble of
vortices. The most workable definition is to simply
make ro(u) that scale of distance at which one stops
the renormalization group. It is not fruitful to use
less workable but perhaps more physically stringent
definitions. These will only effect the coeScients A

and uo in (1.1) and (1.4) and not the exponents.
Since both 3 and vo will also depend on the nature of
one's substrate, it is best to determine them experi-
mentally.

For determining the superfluid density the quantity
of interest is the vortex backflow, the average current
due to the metastable bound pairs jt'.

1
Jv =

PO $2~Plyf 0 (2.7)

This will be evaluated by the renormalization group.
The idea is to successively integrate the contribution
of vortex pairs separated by distances between 1 and
v, leaving a statistical mechanics problem of the same
form as the original problem except that the
minimum scale of distance in (2.5) is now r instead
of unity. After rescaling units of distance by v one
obtains a statistical mechanics problem with rescaled
parameters P„r K„and r V, replaing Pt, Kt, Vt of
the original problem. In the process of thinning vari-
ables between 1 and v, a contribution to jy will be
made. This will be denoted by J(r). The full vortex
backflow will be written

jv= J(&) + po" X2~piyi
1

i vO
(2.8)

In (2.8) ( ), denotes an expectation value taken with

respect to the renormalized Hamiltonian. The quan-
tities JS„r'K„V„h,„and J(r) are given by the
differential equations

where I (x) is essentially a modified Bessel function:

I (x) =— t d8cos Hexp(xcosg) (2.14)

Initial values are hatt
= I and J(1)=0. P, , Kt, and Vt

were given at the beginning of this section. Equa-
tions (2.9) and (2.13) were derived by Kosterlitz; the
notation here is the same as his. The other
renormalization-group equations (2.10)—(2.12) follow
in a completely straightforward way from his paper.
It is worth noting, however, that in obtaining
[(2.10)—(2.12)] integrals of the type

=2'�(r2 —r t)

are not zero in two dimensions. The above example,
with r denoting a two component vector, is related
(components have been reversed) to the total current
due to a vortex-antivortex pair at r~, r2.

The equations (2.9)—(2.12) are exact. In obtaining
(2.13), however, factors of (r'K,)' were ignored.
This includes contributions to v2E, from short-
ranged interactions among the vortices. A short-
ranged interaction of the form Dp;pj(l J) (X )0)'
will be governed by a renormalization-group equation
of the form

7 D, = XD, + 0 ((—r2E,)2)
dT

Thus it follows that, so long as r K, is small and P,
exceeds two, v'K, and short-ranged interactions will

approach zero with increasing v. We will, as is usual
in renormalization-group work, assume that local sta-
bility properties are global. That is, even when L~ is
not arbitrarily small, it is assumed that, in the large r
limit for Pv ) 2, the locally stable approximation,
.(2.13), will be approached. What is interesting from
the theorists point of view is that the Kosterlitz re-
normalization group is able to make statements about
even the local stability properties of a fixed point. In
most renormalization-group work one is forced to
resort to asymptotic expansions or uncontrolled ap-
proximations to find the fixed points of interest.

Define ~~ by

7iV, =1 (2.15)

P, =—2~(P,)'(r'K, )'I,(r V,),
T

(2.9) For r ((r~, we use the small x limit of I (x) to
rewrite the exact equations (2.9)—(2.12):

(r V,) =.V, -("K,)'4~P, I,(.V,),
dT

(K,r')'4vrP,—X,I,(r V,)

d It(r V,)J(.) =—2~p, (K,r')'i,
d~

(2.10)

(2.11)

(2.12)

A,, dP,' 1+0—
dr P, dr

V= ' I+0
dr '

P, dr

(2.16)

(2.17)

(r'K ) = (2 —P )(r'K ) + O ((~'K )') (2 13)
T

J(r) =pp
' '

2

' 1+0aV, 1 dP,
, (2.18)
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d „X,dP,
dr '

p, dr
(2.19)

For r » r i the large x limit of I (x) is approached
and (2.9)—(2.12) reduce to

city. Above the critical point Kosterlitz has shown
that similar results apply with ~~ P replaced
with exp [—ic(lnri) [(T—T,)/T, ]'~') provided ri is
small compared to the correlation length g:

dV, 2 1 dp,
dr r P, dr

(2.20)
1

C [(T T,)/—T,) '~'

dJ (r) Po". d P.
dr r(p )' dr

(2.21)

One does not carry the renormalization group out to
arbitrarily large r. For r & ro(v) there are no meta-
stable bound pairs. That is j„=poj(ro(v)). Combin-
ing (2.9)—(2.21) gives

For T & T, and ri » g, this renormalization group
is no longer strictly appropriate since v'K, is growing
with v.

From (2.17) V, = (P, /Pi) Vi, so, by (2.15) and

(2.26) ri = (pi/p, , Vi) =—1/4 v near the critical point

(where p..., = 2). For ri ( r ( ro(v):

2(Pi '
t ro(v)

+„' d7'
T]

' dP;
„po

rPiP, , dr
(2.22)

rp(v): 2p'(T)/Vi =4ri—

Hence

(2.28)

For v && ~~ we use the small x limit of I and
reduce (2.9) and (2.13) to the equations of Koster-
litz:

' =- p'
p, (.2K, ~)'~,'o(") d - v

J&i "p p d. pi i 1

p, =—(p,)'(2~r'K, )',d
d7

(2.23)
(2.29)

(r'K, ) =(2 —p,)r'K .
dv

(2.24) 2, e
]/2 J I@c

2 5
5 0

m & X. (2.30)

Let us denote the r ~ limit of p, for (2.23) and
(2.24) by p" (T), where T, the temperature deter-
mines the bare fugacity Ki, and coupling constant, pi
for a given coverage and substrate. Kosterlitz has
shown that, as the critical point is approached, p "(T)
approaches two with a square-root cusp (1.2). To
find p, at large r, observe that

4/p, +2 Inp, —(2rrr'K, )

is independent of r. (This generalizes an invariance
relation used by Kosterlitz near T,.) Hence to
second order in [P,—P "(T)]:

Equations (2.22), (2.26), (2.29), and the definition
for V~ imply that the vortex backflow is

j„=v(pp/Pi) [P [1 A (r'iK n') ] —P ) . (2.31)

Since the superfluid density is simply the total current
divided by v, p, v = pov +j„we obtain (1.1).

Although this renormalization group is not ap-
propriate above the critical point, it is worth noting
that these equations do give the expected result,
p, =0 for zero velocity films above T,. Above T,
(2.9)—(2.13) imply that the large r limiting behavior
is

[P"(T))'(2~"K )'=2[P "(T) -2) [P, —P "(T)]

+[P,—P"(T))' . (2.25)

v E Ev2

p, 4/(2rr)'K r4 .

(2.32)

(2.33)

r'K =f(T)r f'"/~(1 —r-' -'") (2.27)

Since the quadratic term is important only near T„
the critical point value of its coefficient has been
used. Applying (2.25) to (2.23) gives

P, =2+f(T) [(1+.-"'")/(1 —r;2ft"))

(2.26)

In addition

V, = Vi (P,/Pi),
l.=p./Pi .

~l VJ(r) = po(p, —Pi) = po(p, —Pi)—
2(p )' '

Pi

(2.34)

(2.35)

where f(T) =p'(T) —2. Equatio—ns (2.26) and
(2.27) give the large r behavior of p„K, for all sub-
critical temperatures, a fact that permits relating velo-
city exponents to the superfluid density at zero velo-

(2.36)

The last three results [(2.34)—(2.36)] depend on
those renormalization-group equations (2.9)—(2.12)
that are valid at all temperatures. The equation K„
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(2.13) was needed only to obtain the results lim p„
7 ~oo

7 V, =O above T,. Granted these then, in the v 0
limit, ro(v) = oo, P„(v) =0, and

where q is the unit of electric charge and the displace-
ment vector S points in the y direction. The polari-
zability is, by direct analogy to (2.31):

(XpIy;) lu
1

1 — [1 —A(riIt rI) ] I -i . (2.37)
4m pI TI Q

where p'(T) is given by (1.2) near the critical point
and, for the Coulomb gas problem

pt = q'/ks T (2.38)

Renormalization-group trajectories are such that
1 )p" (T)/p~. This means that the polarizability is
positive. Equations (2.37) and (2.38) imply that the
dielectric constant is given by

o=ptlp (T)=Po/P, (2.39)

in the zero S limit. Note that e is finite on and
below the critical point. Since e is equivalent to p,
the experimental evidence for a finite p, on and
below T, is also support for the prediction of a finite
~ in the two-dimensional Coulomb gas for T ~ T,.
Near the critical point (2.39) differs from the result
of Zittartz and Huberman. The discrepancy should
not be surprising, since their calculation was to first
order in the bare fugacity KI. Near the critical point
a fugacity expansion carries powers of JC&/(T, —T)
and is not expected to be appropriate; the dielectric
constant is nonanalytic on the critical point.
Equivalently, near the critical point the successive
powers of It ~/(T, —T) signal that multiple vortex in-
teractions are important and one must use the renor-
malization group.

III. TIME DEPENDENCE OF THE SUPERFLUID
VELOCITY

In this section we will enunciate the rather elemen-
tary considerations that lead from the

p, = po+ (1/v) J(~)
= Po + (ll v) Po(—p&) (v/pt) =o

above T„as one would expect.
The calculation of. p, is completely analogous to

finding the polarizability of the two-dimensional
Coulomb gas. The Hamiltonian for a two-
dimensional Coulomb gas with a uniform electric dis-
placement vector is

SC =q' Xp;p~ lnr;, —Xqp;my, ,

renormalization-group results of Sec. II to the rela-
tion (1.4) for time dependence of superfluid velocity.
Factors which are independent of velocity or tem-
perature and which ultimately feed into the substrate
dependent coefficient vo are of no importance here.

The rate at which thermal fluctuations produce des-
tabilized vortex pairs is porportional to the number of
pairs near the threshold of instability, at separations
comparable, that is, to ro(v). This, in turn, is simply
the square of the unscaled fugacity K,:

R —(IC)2r=v ' (3.1)

Next observe that an isolated vortex need not
remain that way indefinitely. If an isolated vortex
comes sufficiently close to another free vortex of op-
posite circulation they will rebind. This process is il-

lustrated in Fig. 1. It shows a system which initially
consists of two destabilized pairs superimposed on a
gas of metastable bound vortices. Under the
influence of substrate induced thermal fluctuations
the separation of the destabilized pairs will increase in
the direction normal to the flow of the fluid —this is
the motion that tends to minimize energy as seen in
the res& frame of the substrate. In the case illustrat-
ed, however, the positive and negative free vortices
in the center of Fig. 1 will pass sufficiently close to
bind. The result is that, in the case of Fig. 1, one
ends up with a single unbound pair of vortices in-
stead of the two that one started with. The meaning
of "sufficiently close to bind" will depend on the
dynamics of the system. For vortices in a two-
dimensional fluid the dynamical equations are first
order in time. Thus the rate at which the location r,
of a vortex changes is of the form d r/dt =F(r) +g,
where g is a random term. The question of whether
two vortices will coalesce into a metastable bound
state is determined by their locations. Roughly, if
they pass within ro(v) of each other, they will bind.
For the analogous two-dimensional Coulomb gas
problem of charges moving in a uniform electric
field, the dynamics are a bit different. The charges
are accelerated by the electric field. The difference
between the second-order differential equation that
governs the Coulomb gas dynamics and the first-
order differential equation of vortex motion in a fluid
is, of course, that an isolated charge in the Coulomb
gas can acquire sufficient kinetic energy to avoid be-
ing trapped when it passes close to an opposite
charge. Because of this complication, electric current
in the two-dimensional Coulomb gas (this is the ana-
log of free vortex motion in helium) will not be dis-
cussed in this paper.

[P"( T) —2]2 v2&'tr&

'0 "~ 2~ 2iP'(T) —21)2m g1 —v

R will be used here to denote the rate per unit area at
which destabilized vortex pairs are produced
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FIG. 1. (a) Motion (due to thermal fluctuations) of two destabilized vortex pairs

flow is from right to left, thermally induced drift of the free vortices is up and down,
The free vortices approaching the center of the figure will pass close enough to bind.
vortex in the center drop into a metastable bound configuration.

in a moving two-dimensional fluid. Film

depending on the sign of the vorticity.

(b) Motion after the positive and negative

k/T VD (3.2)

In addition, the product of the mean free path A. and
the binding radius ro(v) is equal to the inverse of the
mean number of destabilized pairs per unit area. But
the mean number of destabilized pairs per unit area
is simply the rate per area at which they are being
produced, R, multiplied by the time they endure to..

Let us use to to denote the mean time that a desta-
bilized vortex pair spends moving apart before one
member of the pair comes within ro(v) of a vortex
from another destabilized pair. The mean distance
traveled before rebinding occurs will be denoted by A..
A. and to are related by the rate vD at which thermal
fluctuations cause a destabilized pair to move apart dr

dt
(3.4)

where V'E(r) denotes the spatial gradient of the en-
ergy at separation r and g(r) is a random term with
appropriate autocorrelation. For purposes of this sec-
tion, there is no significant difference between the
bare energy of an isolated pair, with parameters Pi
and Vi, and the dressed energy, with parameters P,

(3.3)

from (2.27), rp(v) I/v. Given vD one may use
(3.2), (3.3), and (3.4) to find h. . But thermal fluctua-
tions cause the separation r of a vortex pair to evolve
with time according to
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and V„ that one obtains after integrating out the en-
semble of metastable bound vortices. In either case
one obtains

(1/ks T) '7E ( r ) —vy" (3.5)

VD V (3.6)

This means that the mean distance, ), that a free
vortex travels before it rebinds with some isolated
vortex of opposite vorticity is [from (3.1)—(3.4), and
(3.6)]:

X —(vvD/R ) '~'

or

for r » ro(v) y" i.s a unit vector perpendicular to
the direction of flow.

The coefficient fo in (3.4) may, in general, vary
with time and r; here we will assume it to be uni-
form. Equation (3.4) may be derived in standard
ways (see, for example, Ref. 4) from thermal fluctua-
tion theory. One needs no more than detailed bal-
ance and the assumption that thermal fluctuations
cause r to change through a series of small hops.
Given (3.4) and (3.5) it follows that the rate at which
a destabilized pair moves apart is:

the Kosterlitz renormalization-group approach, these
results are sound, if the vortex nucleation theory is
sound. Preliminary comparisons with experiment are
quite satisfactory, with near critical anomalies under-
standable as finite velocity effects. It would be in-
teresting to attempt to extend this work to three-
dimensional helium. Some preliminary thoughts as
to how to treat this problem were discussed in Banks,
Myerson, and Kogut. ' One difFicult feature is that
the three-dimensional renormalization-group fixed
point is believed to be a "soft spin" fixed point rather
than the "stiff spin" fixed point of two dimensions.
Perhaps the most efFicient way to deal with the
three-dimensional problem is through careful work
with the dimensional expansion (e expansion) about
four dimensions, in the manner of Rudnick and
Jasnow. ' As a preliminary guess, it seems reasonable
to predict that, at nonzero velocities, strong scaling
theory will hold, with T, —T scaling in the usual way.

and v scaling as the inverse of distance. In particular

p, for bulk helium at finite velocity should be con-
sistent with the Josephson scaling relation

p, —f ~+', with the correlation length g being the
lesser of (T, —T) " and 1/v roughly

g
' —v+(T, —T)".

li —v/K, (3.7)

From (3.7) it is a straightforward matter to obtain
the quantity of interest, the rate (1.4) of decay of the
superfluid velocity. The rate at which the film's velo-
city diminishes with time is given by the product of
2m/L and the rate at which isolated vortices are pro-
duced. (L here refers to the length of the film in the
direction of flow. ) The net rate at which free vortices
are produced is R, the rate per area at which pairs
destabilize, multiplied by L A. . This gives

dv 1———RLZ
dt L

or (1.4):

IV. SUGGESTIONS FOR FUTURE RESEARCH

The basic results of this paper, reviewed in Sec. I
have been derived. Because of the virtual rigor of

Supplementary note

Since preparing the original draft of this paper the
author has learned of the excellent work of Am-
begaokar et al. 2 on dis!sipation in an Andronikash-
villi experiment at high frequencies. The criterion
for high-frequency effects becoming important is
4D/co & 1/v, where D is the vortex diffusivity and
4D jru is the characteristic distance travelled by a
diffusing vortex in one period of oscillation of the
substrate. Bishop and Reppy have fitted their low
drive strength (low v) data to the high-frequency
theory. As drive strength (and therefore v) is in-
creased, however, the temperature range of the ob-
served dissipation peak broadens. This is not ac-
counted for by the high-frequency theory, but cer-
tainly would be expected in the low-frequency limit
discussed in this paper. Work is currently in progress
on the crossover from the high to low f'requency
versus drive strength regimes.
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