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Planar and linear solitons in superfluid He
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A means of classifying the planar and linear topological textures in superfluid phases of He by taking into
account the effects of both magnetic field and boundary conditions is described. The method of the
conventional homotopic groups is applied. The structure and stability of various solitons is. considered in
detail. This method may be applied to the description of topologically stable solitons in other ordered
systems.

I. INTRODUCTION

In our previous works" the singularities in the
'He order-parameter fields (vortices, dysgyra-
tions, disclinations, hedgehogs, and so on) were
investigated. ' It was shown that all the singularit-
ies may be divided into different classes with
macroscopically large energy barriers for the
transition between the classes. On the other hand,
singularities may be continuously transformed in-
to other singularities of the same class either
without any energy barrier or with a small one
caused by the change in gradient energy during
the transformation. Every class of singularities
is characterized by the element of the homotopy
group of the order-parameter space (this space is
named "the range of the degeneration parameter
variation" in Ref. 2 and "the manifold of internal
states" in Ref. 4). In the case of superfluid 'He
all the homotopic groups are Abelian. This means
that every class of singularities may be character-
ized by one or several integers (topological in-
variants). When two singularities collapse form-
ing another singularity the invariants are summed
up (in case of linear singularities in He-A a
summation over modulus 4 takes place, e.g. ,
3+3 =2).

Spin-orbit coupling, the magnetic field, and
boundary conditions change the structure of the
order parameter and the topology of its space.
There are several different scales of length: the
coherence length $, the characteristic length of
the dipole-dipole interaction $stv, the magnetic
length $ ~, and the size of the vessel. Every
scale of length has its own topology of the order-
parameter space and therefore its own homotopic
groups and classes of singularities. Moreover
there may exist textures with the mapping of the
inner region of the texture into another order-
parameter space.

One of the examples of such textures is the Maki

planar soliton (domain wall) in 'He-A. ' Far from
this soliton the order parameter space is re-
stricted by the spin-orbit dipole-dipole interac-
tion, but there is no such restriction inside the
wall.

Another example of such a texture is the linear
soliton in a nematic liquid crystal in a magnetic
field [Fig. 1(a)]. Inside this soliton the order
parameter space is S'/Z, while outside the soliton
the magnetic field reduces the order parameter
space to one point dl~H. This soliton as well as
in A-phase have no singularities in order pa-
rameter field. Nevertheless both of them are
described by topological invariants. Actually
the Maki wall may terminate on the singular line'.
and the linear soliton in nematics may terminate
on the hedgehog in vector d field [Fig. 1(b)].
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FIG. 1. (a) Distribution of the field lines of the direc-
tor vector d(r) for the linear soliton texture in the
nematic liquid crystal in the magnetic field. (b) The
demonstration of the edge point of the same linear soli-
ton—the hedgehog in the field of the director vector
d(F) . .
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Therefore, the soliton may be characterized by
the same topological invariant as that of the
singularity on which the soliton terminates.

However, in many cases it is more convenient
to classify the solitons in a direct way without
the investigations of the singularities. To classify
them the so-called "conventional homotopic group
method" is used. This method may be also applied
to other ordered systems. In Sec. II the planar
solitons in 'He-A and 'He-B are described. In
Sec. III the linear solitons are considered. The
particlelike solitons (point solitons) were in-
vestigated in Ref. 6. In Sec. III, the classifica-
tion of the nonuniform states in a, cylindrical ves-
sel, taking into a,ccount the boundary conditions,
is also described.

I" ~ =-nA, ~A,*~ + P(fourth-order terms),

E~y (Bphase) =—,'g~ (cos8+ 2 cos'8),

Z~ (A phase) = --,'g, (1V)',

+2

E (B phase) - -g (p/6)2, ((gg)',

E ~(A phase) -y„(H V)'.

The different scales of length are

5 - (r/o)'~', gd;p
- (y&'/g~)"~',

(2.2)

scales of length is to be known. The free-energy
density of superfluid 'He is as follows'

II. PLANAR TEXTURES

The order parameter for the A and B phases are
g2 1 i/2

& ~(A) - H2, . 5 „„(&)-wads,

'(2.3)

A„=a(T)V, (a,'+in. ,"),
A„=a(T)e'~R(, ((u', 8) . (2.1)

First we consider the planar textures in R,.~ field
in magnetic field. R,.~ is supposed to depend on
one coordinate z. Far from the soliton the dipole-
dipole interaction fixes the angle of the rotation
8= 8, =arccos(- ~) and the magnetic field fixes
the axis rotation ~ -=. +h (h =H/H). 'The problems
are do there exist topologically stable textures
in the R,~(z) field with these conditions at ~z ~- ~,
what is the way of classifying them, what is the
value of the barrier for the transition from one
class into another, what is the way of destroying
of these textures, what is the result of the col-
lapsing of two planar textures.

To answer these questions the topological struc-
ture of the order-parameter space for different

with the following relations between them

t«5~ «(~(&);
(A), H & 50G

pm~(A) & $~p, H& 50G.

(2.4)

In Table I it is shown the topological structure of
the order-parameter space and its homotopic
groups for every scale of length.

In case of the 'He-B one ha, s far from the soliton
the space R ~ = Z, (we do not consider the phase P
variation), consisting only of two points &o =eh,
0 Op Inside the soliton, the order -parameter
space may be extended up to the Rs= S' (spherical
surface with radius 8 = 8,) or up to the Rz = SO,
(the solid sphere of the radius 8= v, every point
o. = co& of this solid sphere describes the rotation
around the axis ~ by an angle 8, every point on

TABLE I. Topological structure of the order-parameter space and its homotopic groups for
every scale length.

Scale of length Scale of energy
Order-parameter

space Vl p

B phase

A phase

(«yg$d, .

~dip . ~magn

&m~n «&

kdip + ~magn

~magn + ~dip

(dip & $magn

Egrad ++cond

+cond grad +dip

&grad &&magn

magn ' grad

+dip +grad ++magn

+magn grad + dip

+magn ' dip +grad

Ris

Rg=$0 x$
=. $ xS~

R~=Z x$'
R~=($03 xS )/Z2

Rg = SO3

R~ = ($03 x S )/Z2

R =S~ x$

0 0

0 Z+Z2 0

0 Z

Z2 Z

0 Z4

0 S2 0

0 Z+Z2 0

0 Z+Z 0
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FIG. 2. Order parameter spaces for the g phase:
R&=$03,.R&=S, the spherical surface of the radius go
=&04", Rz =Z2, two points on this surface.

a spherical surface n =cow, describing the rotation
around & by angle m, has its equivalent point. a
=-a&v-=&on, see Fig. 2).

To find the classes of topologicaQy stable planar
textures one must find the classes of mapping of
line -~ &z &+~ into S' or $0, with the infinite
points -~ and +~ being mapped into Z,. All the
classes of such a mapping are shown in Fig. 3
(the wave line is the image of the line -~ &z &+~).
It may be easily seen, that the contours (wave
lines) drawn in Fig. 3 cannot be continuously
transformed into one another. So we have eight
classes of different domain walls. Each class is
denoted by signs(+) or (-) and by the index N
which takes values 0 and 1. The first sign shows
the image of -~ [&o(-~) =+h or -h], the second
sign shows the image of +~. The index N is the
same as the one which describes the singular
lines in 'He-B. Two indices are summed up over
modulo 2 (1+1=0). Note that these classes do
not form a group. In fact for example the soliton
(+ -1) and the soliton (+ -0) cannot be combined
together. This is the result of the nonconnectivity

8= 2arctan ~5 tanh, &o =eh sgn z. (2.5)
dip

The size of this soliton -$~, and the energy per
unit area E/S -gn$~ . This soliton realizes the
mapping drawn on Fig. 4(a). There is another
solution in these classes with the essentially
smaller energy:

8 = 8„u= h cos P(z) + h &g sinP(z), h J g

p(g) = 2 arctan Pxp (+ z/g, )] .
This soliton with the size -$~„(B)and the energy
E/S-F' ~$ ~-gpss ($~~ /$ ~) «g~$d&~ realizes
the mapping drawn on Fig. 4(b). Thus the soliton
(2.5) may be continuously transformed into (2.6),
the energy of the soliton being decreased.

(+ —1); (- + 1). One of the solutions was ob-
tained by Maki and Kumar (5):

(2.6)

8=2arctan ~3 coth, , e =+hsgnz.
k d&p

(2.7)

The size of this soliton is -$~ and the energy
-gD)d& . If there is another solution with smaller
energy, it also has a size -$~ and energy -gD$~ .dip '
It may be seen from the following consideration.
Given the size of the soliton being equal to R, then
in the region of the order of 8 angle 8 change from
80 to 77 therefore the dipole energy is of the order
of E/S -g~ R and the gradient energy -y(b, '/R')R.
Minimizing the total energy

of the space Rg=Z, p, (Rgg) =Z,].
Now let us write down some solutions of Ginz-

burg-Landau equation for each class of the planar
solitons.

(+ + 0); (- —0). The solution with minimal en-
ergy in these classes is the uniform distribution
8 80 op = h or 8' 80, & = -h. Any planar soliton of
these two classes may be continuously transformed
into uniform state.

(+ —0); (- + 0). One of the solutions of the
Ginzburg-Landau (GL) equation for the solitons
of these classes was obtained by Maki and Kumar'

o) (++0) b) (—o)

-a =a —a =-a

g) (++t) h) (--i) (b)

FIG. 3. Eight different classes of contours in $03
which correspond to eight classes of domain walls in
B phase.

FIG. 4. (a) Solution by Maki and Kumar for the soliton
(- + 0) as the path in $'03. (b) Solution with the smaller
energy for the soliton of the same class {-+ 0).
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one may find that in equilibrium R-gz .
(+ + 1); (- —1). The solution in the class

(+ + 1) may be constructed for example from the
solutions (+ —1) and (—+ 0), or (+ —0) + (—+ 1).'
Now let us discuss a means of destroying the soli-
tons. To destroy solitons with different signs:
(+ —0},(+ —1),'(- + 0), (- + 1), one must change
the direction of cg in one of the half spaces and
therefore expend the macroscopically large energy
-VE ~ (Vis the volume of the half space}. Thus
these solitons may be eliminated only on the
boundary of the vessel, or by turning off the mag-
netic field, ', or by collapsing two solitons. The
existence of such a large barrier for destroying
solitons of this type is a consequence of the non-
connectivity of the space Rg [m, (Rss) =. Z,].

The solitons of the type (+ + 1), (- —1) have dif-
ferent level of stability. As it was shown in Ref. 2
these solitons may terminate on a singular line
with N= 1. Therefore to destroy this solution the
closed singular line (ring) with the radius R-$~
must be created. After the creation the radius of
the ring begins to increase because if R & (N~ the
energy of the singular core of the singular' line
-E,~ ('Rin(R/g) is compensated by the surface
energy of soliton gags R'. The value of the
barrier for destroying the soliton is equal to the
energy of the created ring -gag z In(ps~ /g). The
existence of the solitons of this type is the con-
sequence of the fact that v, (SO,) = Z, .

Vfe have enumerated all the types of the planar
solitons in 'He-B in magnetic field. As was noted
these classes of solitons do not form a group due
to the nonconnectivity of the space R~ =Z,.

In the A. phase, the order-parameter space is
connected for all scales of length [there is a mis-
take in our previous work' concerning the defini-
tion of R„, in fact R'„=SO,

,

and w, (R„)= 0].' In
case of the planar solitons in the A phase in a
magnetic field (with the following relations between
the scales of length: g «g@,«$ }the solitons
are described by the classes of mappings of a

//II LX Il 1

0

FIG. 5. Distribution of fields l@) and &g) on the
line intersecting the Maki domain wall in' phase. This
line is mapped into the order parameter space.

FIG. 6. Space p=$~x $, torus; thesubspace Q=S~P,
the small circumference on the torus. I'0 and I"& are
the contours which begin at point A. eQ and finish at
point B e Q. I"0 belongs to the class of contours which
corresponds to zero element of the group xg(p, Q),
I'& belongs to the element +=1 of the same group.

line -~&z &+~ into R„and R„with the ends of
this line being mapped into R„(R„"c R„&R„)
(see Fig. 5).

Two different mappings are of the same class if
they may be obtained from each other by contin-
uous transformation. The classes of mappings of
the line into some space P with the ends of the
line being mapped into one point AH P form the
fundamental group' r, (P, A) = m, (P). In the case of
mapping of the ends of the line into some con-
nected subspace Qc P the classes of such mappings
form the so called "conventional homotopic group"
n, (P, Q). Let us for example consider P =S'x S'
(torus) and Q = S'c P [the small circumference on
the torus (see Fig. 6)]. It may be seen that there
are such classes of mapping: (a) The line maps
into the contour F, which may be deformed into
the point. (b) 'Ibe line maps into the contour
which N times encircles the large circumference
of the torus. This contour cannot be contracted
into the point. These classes of mapping form a
group

w, (P, Q) =Z.

Unlike the fundamental group w, (P) =Z xZ which
contains the contours embracing the large and
small circumference on the torus, this group
does not contain the contours which encircle the
small circumference of the torus, because one
may contract these contours into the point by mov-
ing the ends A and B along the subspace Q.

Generalizing the procedure of the calculation of
the conventional homotopjc group 1T~(P, Q), we may
state that to find m, (P, Q) one must find v, (P) and
then exclude from m, (P) the elements which cor
responds to w, (Q). From a mathematical point of
view one must find the factor group of v, (P) by its
subgroup, this subgroup being the image of the
homomorphism
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Z2

1

Z2 0

w, (R„,R „")=Z,/Z, = 0,
w, (R„,R „")=Z,/Z, =Z, .

(2.11)

Applying this procedure for the plane solitons in
'He-A one obtains [compare (2.10)]

a-

FIG. 7. Qlustration of the application of the exact
sequence of homomorphisms to the calculation of the
homotopic group x «(Rz, R&)

«(R&) x «(R&) m «(R&R&) 0

II II II

Z2 — Z4 — Z2

0. is the nontrivial element of the group ~ «(g„)
=Z2 (G. ~ n= 1), it describes the vortices-with one quan-
tum of circulation or disgyrations; P is the element of
the group x«(R&)=Z4 (p =1);y is the nontrivial ele-
ment of the group x «(R&,R&) =Z2, it describes the
Maki soliton.

that is

It means that there are only two classes of planar
solitons in A phase. The solution of the GL equa-
tion for the soliton of the nontrivial class was
given by Maki and Kumar. ' When two Maki's soli-
tons collapse the uniform state is formed due to
the summation of indices N (N takes values only 0
and 1) by modulo 2. To destroy this soliton a
disclination loop in vector t/' field with the radius

must be created. Therefore the energy bar-
rier for destroying the soliton -gag@& in(gz /$).

III. LINEAR SOLITONS

Let us consider nonuniform distributions of the
order parameter fields depending on two coordin-
ates (x, y). In the case of 'He-B the linear soli-
tons are described by the classes of mappings of
the plane crossing the soliton (see Fig. 8) into
the space R& and A~ with the boundary of the plane
being mapped into R g (R gc Rs ~ Rs). The classes
of such mappings form the conventional homotopy
groups w, (Rs, R s) and w, (R~, R ~). In the simple
case of Q being one point A

w, (P, Q) = w, (P)/Im[w, (Q) - w, (P)].
In the case of P = S' xS' and Q = B'

lml, (q)- w, (P)]=,(q) =Z

(2.8) w, (P, A) =w, (P).
In general case, the group w, (P, Q c P) consists of
the elements of the factor group[as inthe case of
w, (P, q)]

w, (q)- w, (P)-w, (P, Q)-O.
As is known the exact sequence of the homor-
phisms of the groups A, B,C, D

~ ~ ~ -A- B-C- D-

(2.9)

because all the contours of the group w, (q) =Z form
the same group in the space P, thus

wi(P, Q) =Z xZ/Z =Z,

On the other hand the Eq. (2.8) is the abbrevia-
tion of the exact sequence of homomorphisms'

w, (P)/im[w, (q) - w, (P)]

and besides these elements the group also con-

o
0

w, (R„,R„)=Z,/Z, =Z, . (2.1o)

is such a sequence of groups that an image of any
given homomorphism, for example A- B (i.e., the
set of the elements of the group B into which the
elements of the group A are transformed) is simul-
taneously the kernel of the next homomorphism
B- C (the set of the elements of B which are
transformed into zero element of C). For ex-
ample of P = RA, Q = R„and w, (P) = Z4, w, (Q) = Z,
the Eq. (2.9) is shown on Fig. 7. From this Fig. 7
we have

FIG. 8. Mapping of the plane intersecting the linear
soliton into the order parameter space P with its boundary
being mapped into the subspace Q C:P (here P =R~, Q
=R~~).
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tains those elements of m, (q) (classes of contours)
which may be contracted into a point in the space
P. It may be seen also from the exact sequence
of homomorphisms

w, (q) - ~, (P)- v, (P, q)- 7i, (q). (3.1)

1 BQ) (d I

dxdy Q) x
4n .'

Bx Byj' (3.2)

where the integration is over the cross section of
the soliton. The soliton with ¹1is drawn in

Fig. 1(a). The solutions of G.i . equations for
arbitrary N may be found. " The size R of the
soliton is defined by minimizing of the gradient
and magnetic energy per unit length of soliton

If P is a topologically trivial space [w, (P) = v, (P)
=0] then

.(pq) =,(q).
In the case of the B phase

v, (R„R,")=v, (R,) =Z, ~,(R„R,")=0.
So we have N classes of linear solitons in the vec-
tor e(x, y) field, where N takes the values from
-~ to +~ and has the same analytical expression
as in the case of point singularities in + field

7I2 (RASI}

NI
2n'+I n=. ... l 0 I

II

7I2(RAs} (IIN2)= [o,o( lo, }l lo, 2l /I, o ] /I, I/ l},zl /z, o) /2, Il la, zl

I I I

7'(R, S)NI= I ol [ I I ~& ) & f l'l I l
5 j [6I

FIG. 9. Map of the homomorphisms.

by the integer n. These elements describe the
superf low along the boundary only with odd (2n+ 1)
Iluanta of the superfluid velocity v' circulation
around the vessel. (Even quanta of circulation re-
sult in the singular vortex line in the vessel with
the space R" in a core.)

v, (R„,S') =Z+ Z.
The elements of this group are characterized by
two integers (n, Na), n is the same as in (3.5) and

N, is the topological invariant of the type (3.2) des-
cribing the linear solitons in vector V(x, y) field

dxdy V,

The next group

&IL r~'(I + 5'o/R') + +m~n R ' . v (R",S')=v, (S')=Z (3.7)

v, (R"„,S') = 0,

v, (R„,S') = Z.

(3.4)

(3.5)

The elements of the last group are characterized

Here we take into consideration the fourth-order
terms in gradient energy, because the second-or-
der terms do not depend on size R. So we have

(3 3)

A linear soliton with a topological invariant N
may terminate on a hedgehog with the same N (3.2)
where the integration now is around the hedgehog
[see Fig. 1(b) for the case of N= 1].

N=
I

d&dd(ia, x ).
Now let us consider the way of classifying the

possible topologically stable nonuniform states in
a cylindrical vessel with 'He-A. The radius of
the vessel for example R» $ ~» $«, » g. On the
boundary of the vessel l ~(v (v is the normal vec-
tor of the surface of the vessel). The order para-
meter space on the boundary is S'—the range of
the condensate phase variation (the phase &f& is
well defined on the boundary). " We must consider
the mapping of the vessel into spaces R„,R„,R„,R'
with the boundary of the vessel being mapped in
S'. We have

describes the superf low along the boundary with
any integer quantum of circulation of the super-
fluid velocity.

One may see that some elements of one group
[for example m, (R„,S')] are simultaneously the
elements of the other groups [v,(R„,S'), v2(R", S')].
It means that there are such mappings described
by the elements of v, (R„,S') in which the space R„
may be continuously contracted into the subspace
R„. To make the classification in a nonambiguous
way one must exclude the elements of the group
v, (R„,S') from the elements of w, (R„,S') and so
on. For this purpose one must consider the homo-
morphisms v, (R„,S') -7i,(R„,S')- v, (R",S') which
take place when the space A„extends up to the
space R„and then up to the R". The map of these
homomorphisms is constructed in Fig. 9.

All possible topologically stable states in cylin-
drical vessel taking into account the boundary
conditions are described by the elements in heavy
rectangles. Why is it necessary to leave the ele-
ments only in heavy rectanglesf The case is
that the sequence of the order parameter subspaces

S'cR~cg„cR„cR"
corresponds to the sequence of decreasing scales
of length

R~4~~&« ~& ~
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Every soliton described by the given class of
mappings tends to enlarge its size in order to
diminish the gradient energy (in some cases one
must take into consideration the fourth order terms
in gradient energy). For the soliton described by
the element in thin rectangles the topology allows
to deform its mapping into the next smaller sub-
space and therefore to enlarge its size and dimin-
ish its energy. But the topology does not allow
this for the elements in heavy rectangles.

Let us enumerate all the textures and their
size. The element n of the first line describes
the state-4n a vessel with n coreless vortices (the
size of the core ™t ). This state takes place in
the rotating 'He-A. . The value of n depends on
the angular velocity &o of the rotation

n = 4m ~S/ff,

S is the area of the cross section of the vessel"
n may be written

dx dy el el2g+1= l, — x2r a~ eZ

The elements of the second line (0.1), (0.2), .. . ,
(0, N, ) describe the states in the vessel with the
solitons in vector field V, the radius of soliton
being equal ($g«,)'~'. The other elements of this
line in the heavy rectangles (n, lV, ), n40, E,&0,
are the composition of the n coreless vortices and
the solitons with the total topological invariant
E2.

The elements in heavy rectangles of the third

line describe states in the vessel with an even
number of quanta of circulation of the super-
Quid velocity around the boundary of the vessel.
In this case there must be at least one vortex
line with a singular core (the radius of the core
-(}inside the vessel.

The classification of the states in a cylindrical
vessel with other relations between the scales of
length (for example R» $«,» $ ~ or $ ~» R
» («,}or in the vessel of the form of the torus"
may be done. in analogical way. In the case of the
torus one must find the mapping of the space in-
side the torus into B~»B„,R»R" with the boundary
of the torus being mapped into S'.
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