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The energy of a Boltzmann quantum solid is calculated using the Kirkwood-Monroe liquid

ansatz for the solid pair correlation function. Approximate liquid pair correlation functions gen-

erated from the Born-Bogoliubov-Green-Kirkwood-Yvon, Kirkwood-superposition-

approximation (BBGKY-KSA) equation and from the hypernetted-chain (HNC) equation are
used to calculate the energy of solids with t2/m ea2- q of 0.1815 (4He) and 0.200. The calcula-

0
3tions are done over the physical density range (0.024 ~ p ~0.035 part. /A3). The energy of the

liquid is also calculated. Results are obtained for solid and liquid energies which depend critical-

ly on the choice of liquid correlation function and on q. For g -0.1815 and the BBGKY-KSA
pair correlation function the system has a liquid solid liquid phase transition, whereas for

q -0.1815 and the HNC pair correlation function the system can exist as a zero-pressure solid.

I. INTRODUCTION

The solids formed by the helium isotopes, ' molec-
ular hydrogen, ~ and perhaps spin-aligned atomic hy-
drogen' are known as quantum solids because their
small mass and weak attraction allows large zero-
point excursions about the lattice sites. Nosanow and
co-workers pointed out that because of this motion
one must take care to treat properly the short-range
correlations which appear because of the strong inter-
particle repulsion in order to achieve reasonable
agreement between calculated and measured energies.
Two basic approaches to the liquid-solid phase transi-
tion have emerged. First is the variational method
which utilizes products of one- and two-body trial
wave functions (usually) explicitly parametrized and
determined by minimizing the expectation value of
the Hamiltonian. The application of Monte Carlo
methods' to this technique is the most consistent cal-
culational scheme available since the same approxima-
tion is used in both the liquid and solid phases. The
second approach is perturbation-theoretic, wherein
one solves an appropriate Bethe-Goldstone equation
for the correlated wave function. In this paper we
shall study an approach to the quantum solid ground
state which uses ideas based on the variational tech-
nique.

In their work on the liquid-to-solid phase transition
in a classical system Kirkwood and Monroe7 intro-
duced the idea that one might be able to approximate
the short-range correlations in a solid by those in a
(metastable or fictitious) liquid having the number
density of the solid. Such an assumption may be
justified by noting that since the basic Hamiltonian is
invariant under translations and rotations one only
needs an angle-averaged two-particle distribution

function in order to calculate the energy. This object
closely resembles, in form, the liquid radial-
distribution function for which numerous calculation-
al techniques are available. Thus Kirkwood and
Monroe suggested that one try to take advantage of
the extensive knowledge of the liquid problem in the
treatment of the solid problem. In a series of papers
Lowy and Woos (LW) have generalized the
Kirkwood-Monroe approach, by choosing the liquid
radial-distribution function which minimizes the en-
ergy rather than that function corresponding to the
"liquid" at that particular density, and applied their
method to various quantum solids. They have stu-
died the liquid-solid phase transition and find reason-
able agreement between their results and those of
Monte Carlo calculations. In addition to the general-
ized Kirkwood-Monroe procedure, LW also intro-
duced a properly symmetrized Bose trial wave func-
tion for their solid. The use of this trial wave func-
tion, although correct in principle, yields a set of
equations which tend to obscure somewhat the physi-
cal content of the Kirkwood-Monroe approximation.
That is, the energy due to accounting properly for the
statistics, the "exchange" energy9 and the energies
due to multiply occupied sites are typically much
smaller than the "direct" energies and thus can hardly
play a significant role in a variational calculation.

In this paper we investigate the Kirkwood-Monroe
approximation for an unsymmetrized ("Boltzmann")
solid. We show that the energy can be written in a
simple form consisting of one-fold configuration space
integrals summed over "shells. " The advantage of
this procedure is the simplicity of the expression for
the energy since it allows for a very accurate numeri-
cal evaluation. In Sec. II we derive the equations for
the Boltzmann-solid energy and show explicitly that
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they contain a liquidlike solution. In Sec. III we com-
pare our results in detail with LW. Our basic result is
that the Kirkwood-Monroe ansatz for the solid corre-
lation function can, depending on the details, give
any of a variety of results, a liquid-solid transition, a
liquid-solid-liquid transition, a zero-pressure
solid, . and is therefore an unreliable approach to
the ab initio determination of a liquid-to-solid phase
transition.

II. THEORY

Consider a system of N particles in a box of
volume 0 which are described by a trial wave func-
tion Q of the form

N

& = II &((r ) rl /(r») ~

i-1 i &j

where the i subscript on the single-particle functions
denotes the lattice site for particle i. %'e assume that
the two-particle functions f depend only on the scalar
distance between those two particles and so in the
liquid state P;(r;) const and we have the usual pro-
duct pair functions description of a Bose liquid. The
Hamiltonian H for the N particles is given by

g2 N

H =— X V('+ X v(r(J),
2m i 1 i&j

where v(r) is the two-particle potential which for the
numerical work shall be chosen to be in Lennard-
Jones form

v (r) =4e [((r/r)" —((r/r)']

Then calculating the expectation values of H we have

t2 h2
E =Jl (1(' — — XV('t((r;) + X v(r») — V(2u(r») dr (IN)

Sm 4m

N
——X J '0( (1(' V(t;(r() + ——X'V'(u(r») dr (In) '

4m, .
1 2

'
2

(4)

where we have introduced the notation

t,.(r,.)/2

(6)

E, =— X n((r()0;t;(r() ds;
Sm,

+ X'.Jl lf n&(r;, r~)
i,j

and the prime on the summation in Eq. (4) indicates
that the i =j term is to be excluded. Now let us
de6ne m-particle distribution functions for a system
of m distinguishable particles

n(2 (r(, r2, . . . , r )

(i( dr +& dr(v(I(v) . (8)

Thus, using (8) in (4), we find

x 0(u (r») d s; d rJ .

The m-particle and (m +1)-particle distribution func-
tions are related by a set of identities known as the
Born-Bogoliubov-Green-Kirkwood- Yvon (BBGKY)
relations. They are generated by applying the gra-
dient operator to Eq. (8) and for the case of m =1,
the erst BBGKY equation, we find

N

E=— X J n, (r,)V(2t;(r() dr(
Sm,

+ X I Vtu(r»)
j A1

x n(J(r( ~ fJ) d rJ (12)

+ X Jf n»(r;, rt)
i (j

x v(r»)dr(drJ +E(

where we have de6ned

v(r) - v(r) —(g'/4m) V'u(r)

and E, is a surface integral

(10)

Thus, using the first BBGKY equation in Eq. (11),
we 6nd

E, = — $ V n ( ()(rd(s(
Sm,-

Since n((r, ) is a short-ranged function (about lattice
site R,) this integral clearly vanishes on a surface at
in6nity. The integral in fact vanishes identically if
n, (r() = n (r, —R().

Now substituting (12) into (9) yields
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-f2
E = X V'/n/(r/) V /Inn/( r/) d r/

Sm

2

+ X J n//(r/, rj) v(r/j) — 0/inn/(r/) v//u(r/j) d r, d rj
4m

(14)

We see that, formally, we have eliminated the t's and
hence the single-particle functions Q, from the ener-
gy. Next in an approach similar to that used in the
study of the surface of liquid He, ' we shall intro-
duce an explicit functional form for the one-particle
distribution function. We choose a Gaussian form so
that

-~(r -R )2
ni(ri) = (A /lr) e (15)

n/j(r/ rj) —n/(r/) rlj(rj)g/j(r//) (16)

where the g» are a measure of the short-range corre-
lations between particles i and j, and here are as-
sumed to depend only on the relative position vector.
In general, the g» will also depend on the center-of-
mass vector of i and j. Then using (15) and (16) in
(14) and performing the center-of-mass integrations
we find

Thus, for a given two-particle distribution function
n//(r/, rj) and u(r), Eq. (12) determines the t/(r/)

necessary to generate the Gaussian one-particle distri-
bution functions of Eq. (15). From the Monte Carlo
studies5 of solid He we expect that the approximation
of Eq. (15) should be entirely reasonable. Now we
define auxiliary functions g//(r&),

n"'(ri) = Xn, (ri), (21)

n (ri, rq) = X'n//(ri, r2)
i,j

(22)

Then we immediately have

J n"'(r) dr=N,

J nisi(ri, rq) dr/re=N(N —1)

(23)

(24)

Using (22) in (24) with the decomposition (16) for
n» we find

1/2

[g,(r) -1](e '""""
2 m g d"o

where we have defined

p/q+ (r) = v (r) + ( g2/2m) [u'/r + A u '(r + d) ] . (20)

The d's in Eq. (19) are distances to shells of lattice
points from any given lattice point and n~ is the
number of lattice points in that particular shell.

Next we derive the normalization, sequential rela-
tion and liquid (A 0) limit for these results. We
introduce one- and two-particle distribution functions
corresponding to any single or pair of particles

E 3f AN+ A

4m 2m

3/2
t' —. (a /2) (r —77»)

2

le
i (J-

xg/j(r)p///(r) dr, (17)
In the A 0 limit (25) becomes

e
—(A/4)(r+d) )r dr 0

(25)

where we have introduced an e6'ective two-particle
interaction co».'

h oo

4mpp J [g(r) —1]r2dr =—1
0

(26)

p//j(r) = v(r) —(ti/4m)Au'(r)(r —r" Z//), (18)

where b, » is a relative lattice vector, r" is a unit vector,
and the prime in Eq. (18) stands for differentiation.
To proceed further we now assume that the two-
particle correlations depend only on the scalar dis-
tance between particles and d, the magnitude of the
distance between lattice sites. Then additional in-
tegrations over angles can be performed to yield

' 1/2
E 3A'A +1 A

4m 2 2m

nq —(A/2)(r -d)2( ) [ -( /2)( -d) —
( )

d 40

e &" /'&&" +"&'p/d+(r)]f dr—-
(19)

, where

pp
=—N/II (27)

g (r) =—Xgg(r)
1

N
(28)

In order to obtain (1&) from (25) we let
(A/2n)' ' I/II when A 0, as determined by
(23). Then using this limit and Eq. (28) we find

/

E h oo

lim —=2mp g(r) v(r)r dr~-o N
(29)

which is the energy of the liquid phase.
If we now take the g's to be independent of d

and the liquid radial-distribution function is obtained
from
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[gd(r) g(r)] then they can be considered to be
generated by u (r) only (i.e., they are the solution of
an associated liquid problem). We parametrize u (r)
in the usual form'

u(r) = (bo—/r)', (30)

g (ra) [e
—(d'/2)(r' —d') —a(ra)

d. d

0)e (d'/2)(r'—+d') s+(ra)]

x r" dr", (31)

(ed+ "(r")= v"(r) ——,' v)['7'u (r") y u'/r "

+ A "u'(r' + d")]

and we have defined

'r) = Ir /rr( ~(r

(32)

(33)

for He, g=0.1815 and 'He, g=0.2409.
Using the methods of Ref. 11 we calculate a set of

g (r)'s corresponding to various values of b. We then
minimize E' with respect to b and A ' at a particular
density p' to obtain the equations of state. '

The solid energies in Eq. (31) were calculated by
summing over thirty-five shells of an assumed face-
centered cubic lattice which yields a maximum shell
size d', „=7.45. A cutoff correction is then applied

where b is determined by minimizing the energy. We
use g(r)'s which are solutions of the BBGKY-
Kirkwood-superposition-approximation (KSA) and
hypernetted-chain (HNC) approximate integral equa-
tions. For a discussion of these integral equations
and their application to liquid He see Ref. 11.

We have examined the possibility of permitting
shell dependence in the g(r)'s [i.e. , g(r) gd(r)]
One can then determine the gd(r) from an approxi-
mate self-consistent Euler-Lagrange equation. This
results in a differential equation for the gd(r) which
is very similar in appearance to the T-matrix types of
Bethe-Goldstone equation for the pair wave function.
We have not attempted to solve this equation be-
cause we felt that, although it is pedagogically in-

teresting that contact has been made between the T
matrix and variational approaches, the various ap-
proximations necessitate the loss of the variational
principle and thus if one prefers a differentia1 equa-
tion approach the usual T-matrix method should be
used.

We now introduce a set of reduced units, "denoted
by an asterisk, where energies are measured in units
of e and lengths in units of o. Thus, Eqs. (19) and
(20) become

by approximating the contribution of the omitted
shells as an integral and interchanging this integration
with the integration over r" (this procedure is
described in detail in Appendix A). The numerical
error introduced in truncating the sum over shells is
complementary to that introduced by approximating
the remainder by an integral in the sense that the
sum converges quickly in the A' ~ limit while the
integral is exact in the A' 0 (liquid) limit. There is
a region of A ' where the combined inaccuracy is
worst and this is approximately given by
A' —1/d"', „=O(10 ') which is an unimportant re-
gion for this calculation. Our calculation should thus
yield very accurate energies over a large range of A'
values. There are two obvious tests. First, in the
A' 0 limit we compare the present results [which
we emphasize are obtained solely from the cutoff
correction, the lattice sum being 0(1/N) in this lim-
it], with previous results for the liquid" and we find
agreement to within small numerical errors. Second,
we calculate the energy and pressure for solid Ne
(g =0.008 842) at p" =0.9579 and obtain
E' =—5.986, P' =—0.03 in excellent agreement with
Mullin' and Nosanow. ' These tests give us
confidence in our cut'off corrections and lattice sums
(since the Ne result is basically a single-particle Har-
tree calculation) .

III. RESULTS AND DISCUSSION

In Tables I and II and Figs. 1 and 2 we show the
results of calculations of the liquid and solid energies
using the BBGKY-KSA and HNC g (r) 's, respective-
ly.

We first consider the BBGKY-KSA results shown
in Fig. 1. For "He (q =0.1815) the solid-energy
curve crosses the liquid curve twice affording the op-
portunity for two Maxwell constructions and a
liquid solid liquid phase diagram (see Fig. 3).
On the other hand, at g =0.20 the solid energy is al-
ways greater than that of the liquid and no liquid-
solid equilibrium is possible. This latter result is in
conflict with experiment (a liquid-solid transition of
course occurs in 'He, g =0.2409 at 30 atm) and with
the Monte Carlo results of Nosanow, Parish, and Pin-
ski. '2 (In fact, since one does not expect a pressure-
q space critical point there should be liquid-solid
transitions for all g.) Our calculations at g =0.1815
should be compared directly with those of Lowy and
Woo who found liquid-solid coexistence between
V" =1.93 and V" =2.07. We see that their liquid-
solid transition seems to correspond to neither of the
Maxwell constructions on Fig. 1.

The HNC results are shown in Fig. 2. For 4He

(q =0.1815) the solid is at higher energy than the
liquid at large V'and vice versa at small V'. A
Maxwell construction at below zero pressure is possi-
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TABLE I. Energy E'as a function of volume V'at

q=0.1815 (4He) for the BBGKY-KSA data, For energies in
0

K multiply by e and for volumes in A multiply by cr . Solid

energies are in the top half of the table; liquid energies in the

bottom half.

-0.2

-0.3—

I6

I I
I

BBGKY —KSA

0.400
0.425

0.450
0.475
0.500
0.525

0.550
0.58S

2.50
2.35
2.22

2.11

2.00
1.91
1.82

1.71

—0.580
—0.606
—0.629
—0.645
—0,652
—0.649
—0.634
—0.589

7

8

10
11
12

14
15

18

1.112
1.122

1.101

1.110
1.105

1.101
1.109
1.098

C9
K
hJ

LU

-0.5—

0.400
0.425

0.450
0.475
0.500
0.525

0.550
0.585

2.50
2.35
2.22

2.11
2.00
1.91
1.82

1.71

—0.682
—0.6SS
—0.682
—0.674
—0.662
—0.647,
—0.629
—0.6078

1.176
1.181
1.186
1.190
1.194
1.197
1.200
1.215

-0.6—

-0.7
l.6

I

l.8
I & I

2.0 2.2
VOI UME V

7.8~
= 0. 18 I 5
('He)

2.4

'This energy is lower than that of LW by more than 1 K. We

are unable to explain this discrepancy.

TABLE II. Energy E'as a function of volume V'at

q =0.1815 (4He) for the HNC data. For energies in K multi-
0

ply by e and for volumes in A multiply by o. . Solid ener-

gies are in the top half of the table; liquid energies in the bot-

tom half.

FIG. 1. Reduced energy E'as a function of the reduced

volume V'for q =0.1815 (4He) and q =0.20, calculated

with the BBGKY-KSA g(r)'s. The solid lines are the liquid
(A' =0.0) energies and the dashed lines are the solid ener-

gies (where the associated numbers give the values of A').
This figure sho~s a liquid-solid-liquid transition'at q =0.1815
and no transition at g =0.20. For energies in K multiply by

0
~ and for volumes in A multiply by o. .

0.31
0.33
0.35
0.37

0.39
0.41

0.43
0.45

0.47

0.49

0.25

0.27

0.29
0.31
0.33
0.35
0.37
0.39
0.41

3.23

3.03
2.86

2.70
2.56
2.44

2.33
2.22

2.13

2.04

4.00
3.70
3.45

3.23

3.03
2.86
2.70
2.56
2.44

E'

—0.407
—0.429
—0.450
—0.469
—0.485
—0.498
—0.508
—0.509
—0.510
-0.501

—0.484
—0.495
—0.499
—0.494
—0.480
—0.455
—0.420
—0.371
—0.309

4.5
5.5
6.0
7.0
S.S
9.5

10.5
12.0
13.0
14.0

1.132
1.129
1,126
1.124
1.121

1.124

1.117
1.101

1.114
1.126

1.155
1.1.59
1,163
1.166
1.170
1.173
1.176
1.179
1.182

ble. Thus 4He ~ould be predicted to form a zero-
pressure solid. At q 0.20 we obtain quite plausible
results.

The very diferent results obtained in the BBGKY-
KSA and HNC calculations show the extreme sensi-
tivity of the liquid and solid energies to the treatment
of short-range correlations. The importance of the
short-range correlations for the solid can be gleaned
from Tables I and II where b —1.11 (similar to the
liquid value) and only slowly decreases with increas-
ing density. Different choices of the g(r) to be em-
ployed with the Kirkwood-Monroe ansatz for the
two-particle distribution function n&(ri, r2), lead to
very diff'erent energies for the liquid and solid.
Therefore the situation for this ansatz is really no
diN'erent than from that of the truncated cluster ex-
pansion where one introduces the notion of a "res-
tricted" variation: meaning that one should use only
those wavefunctions which yield the "correct" answer.
Here one must use only that set of (g (r))'s which
yields the "correct" answer. Thus calculations with
the Kirkwood-Monroe ansatz may be capable of
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-O. I

-0.2—

HNC

0.40
UJ

CO
CO

LLI~ O. SO-
CL

o L'IIIJ

-0.5
C5
IX
Ld

ILI

-0.4

O
I-

—0.20
U

Cl

O
M

9.5
-0.5 -~

Io.s 1 = O. ISI5
(~He)

O. I 0

Cl
UJ
LL

O. I7 0. I 8 0. I9 0.20
-0.6

2.0
I

2,4
I

2.8 5.2
VOLUME V"

I

5.6

FIG. 2. Reduced energy E'as a function of the reduced
volume V'for q =0.1815 (4He) and g=0.20, calculated
with the HNC g(r)'s. The solid lines are the liquid
(3' =0.0) energies and the dahsed lines are the solid ener-
gies (where the associated numbers give the values of A").
This figure shows that q =0.1815 is a zero-pressure solid.

0
For energies in K multiply by ~ and for volumes in A3 mul-

tiply by 0.3.

confirming what is known by other means (e.g. , ex-
periment, Monte Carlo calculations, etc.) but they
cannot stand by themselves. The basic physical point
is that liquid correlations are not the same as solid
correlations (there is ample evidence in the literature6
for this) and approximating one by the other does
not make much sense. In addition, although lots of
nice equations for liquid correlation functions exit,
the liquid correlations are themselves poorly under-
stood by any reasonable standard (cf. the energy of
the liquid in Figs. 1 and 2). One is hard pressed to
find an argument for choosing one among several
liquid g(r)'s with which to approximate the solid
g(r)

Let us try to compare our results and conclusions
with those of Lowy-Woo. We note first that their
and our single-particle wave functions are in principle
dift'erent. LW chose a set of single-particle functions
which are both symmetric and delocalized

N iG r,.ff Q(ri) = +exp Xtoe
, G

FIG, 3. Reduced solidification pressure as a function of q
from this calculation (circles and triangles) compared with

the Kirkwood-Monroe result of Lowy and Woo (Ref. 8) and
the Monte Carlo results of Nosanow, Parish, and Pinski
(Ref. 12).

where the IGj are reciprocal-lattice vectors and to are
variational parameters. One can also construct LW-
like trial functions using the localized wave functions
of Eq. (5), viz,

(35)

The complexity of the wave functions in Eqs. (34)
and (35) is evident. They contain every possible way
of arranging N sites among the N particles. This in-
cludes all configurations with N particles on N sites,
1V particles on N —1 sites (doubie occupation), ...,
and the N possibilities for all N particles on one site.
Instead of the symmetrized wave function of LW we
have used the Boltzmann wave function of Eq. (5).
We expect the results of our calculation at
q =0.1815, using the BBGKY-KSA g(r), to be the
same as those of LW except for differences that arise
because of the two choices of single-particle wave
functions.

Our wave function can be properly symmetrized by
taking a permanent of wave functions based on Eq.
(5). Then, our wave function would be the appropri-
ate valence-band wave function for the N-particle sys-
tem, whereas the LW wave function is the appropri-
ate molecular-orbital wave function for the N-particle



KIRKWOOD-MONROE APPROXIMATION FOR QUANTUM SOLIDS 8195

system. We know from experimental investigations'
of solid 'He and from theoretical calculations of
double-occupation effects" that a valence-band wave
function is good, for purposes of calculating the ener-
gy, to one part in 10' or 104. the wave function of
Lowy-Woo admits double (multiple) occupation of
lattice sites and at least part of the work their g(r)
will have to do is to to correlate pairs of particles that
are sitting on top of one another. Our valence-band
wave function does not permit double occupation of a
lattice site so that our g (r) only needs to correlate
pairs of particles that are held by the crystal at
nonzero average distance from one another.

Another difference with the LW calculation is, as
mentioned above, our use of a Gaussian ni(ri) [Eq.
(15)],whereas LW use Eq. (34) with the nearest and
next-nearest neighbor to's as variational parameters.
Finally, we note that there is an unexplained
discrepancy in liquid energy values at high density
between the LW calculation and ours (see Table I).

Thus our calculation is in principle not exactly
equivalent to that of Lowy-Woo. However, we be-
lieve our results and conclusions should apply equally
well to similar calculations undertaken using the LW
molecular-orbital (MO) wave function. That is, we
feel that the use of the Kirkwood-Monroe ansatz by
LW would, if investigated more thoroughly, exhibit
the same problems as we have encountered in our
examination of the Boltzmadn-solid ground state.

some manner. The importance of this cutoff correc-
tion depends on the size of A relative to d,„(the
distance out to the farthest shell). In the limit as
Ad2, „&&1 the sum over shells converges very
quickly and the cut-off correction is unimportant
(thus it does not matter that in this limit it is also
least accurate). In the limit A 0 only the cut-off
correction makes appreciable contribution to the en-
ergy [since the contribution of the sum over shells is
O(l/A)].

We shall thus estimate the cut-off correction by as-
suming that for d & d,„the summation can be re-
placed by an integration

aJ 0
nz 4ep' x dx

max

(Al)

There are two types of sum which need to be
evaluated

I+ (r) X
~ e (A/2)(r +d)—i

d~d
(A2)

I,' (r) =-X —„' (l +Ar'+ Ard)
max

X A/2)(r + d)Xp (A3)

Then using Eq. (Al) we find

I,+(r) =4m p{e r /A —[r/(2A) '~2]I'(—' y+)), (A4)
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APPENDIX A: CUTOFF CORRECTION TO
THK SUM OVER SHELLS

I,& (r ) =4w p {er /A —[r /(2A ) '~ ]I'( 2,y ) )

Ii) (r) =4m p{e /A +[r/(2A)' ]

x 2g'i —I'(2,y ))]

Ii+—(r) =4mp(l/A + rd, „)e r

where we have defined

(AS)

(A6)

(A7)

The expression for the energy, Eq. (19) or (31), is
written as a sum over shells of neighboring particles.
As this energy is evaluated numerically the sum is
truncated after some finite number of shells (35 for
this work)'6 and the remainder must be estimated in

y+ =
2

A (dmax +—r) (AS)

the I's are incomplete gamma functions" and I~&
(I~&) is to be used for r & d,„(r)d,„).

Upon use of Eqs. (A4) —(A7) the cutoff correction
to the energy E can be written

'1/2 '

Eco 1 A ~ max

J g(r) v(r)[I~&(r) —Ii (r)) —~ [Ii (r) —Ii (r)]—r dr+ Q +
W 2 2 4 r

T

Q oo I

+ J g(r) v(r) [I» (r) —Ii+(r)) —~—"[I2 (r) —12+(r)] r dr
max 4 r
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