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Phonon heat transport and Knudsen's minimum in liquid helium at low temperatures
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The flow of heat in liquid He at temperatures below 0.6 K is considered. Calculations are carried out for
the specific cases of heat flow along a tube and flow down the channel between two parallel plates. It is
assumed that the mean free path A~~ for small-anglq collisions between phonons is much less than the tube
diameter or the spacing between the plates, but the calculati ns are valid for arbitrary values of the mean
free path A~ for large-angle collisions. For small AI the res ts are equivalent to the predictions of the
Navier-Stokes equation with corrections for first- and second-order slip yt the boundaries. For' large A~ the
heat flow is close to the value given by Casimir s formula. At intermediate values of Aj an effect similar to
Kpudsen s minimum is predicted by the theory. The calculations are compared briefly with the experimental
results of Whitworth.

I. INTRODUCTION

At temperatures below about 0.6'K the excita-
tions in superfluid helium are almost exclusively
ldng-wavelength phonons. 'These excitations form
a low-density nearly ideal gas, which is the nor-
mal fluid of the I andau-Tisza two-fluid model. '
The number density of this gas is the phonon num-
ber density, which varies as T' (T is the absolute
temperature); the mass density, or normal-fluid
density, varies as T4. The phonons in the gas
have a finite mean free path because of anharmonic
interactions with other phonons and may also be
scattered at the boundaries of the liquid. The gas
has interesting hydrodynamic properties' that
come about in the following way. It can be shown
that because energy and momentum must be con-
served in collisions between phonons nearly all
collisions are of small angle (typically 5' or 10').
The effective large-angle scattering rate arises
principally from repeated small-angle scattering
processes. It is found that the large-angle scat-
tering time v, is typically 10 times the small-
angle scattering time v„. This means that after the
gas has been disturbed from equilibrium, phonons
with momenta in any given direction will rapidly
come to equilibrium with each other, whereas
groups of phonons with widely differing propaga-
tion directions will take a long time to equilibrate.
Hence, for many problems which involve time
scales long compared to r„( roequivalently length
scales long compared to the mean phonon velocity
(e) times r„), one may describe the phonon gas by
a local temperature T(r,p) that depends on posi-
tion r in real space and on the direction P in pho-
non momentum space.

It is possible to derive hydrodynamic equations
that govern the rate of change of T(r,p). The so-
lution of these. equations has been obtained in sev-

eral cases of interest, and we mention two of
these. (i) It has been shown' that, in addition to
ordinary second sound, there are several other
waves that can propagate through the gas, with
more complicated oscillations of the phonon dis-
tribution function. (ii) Saslow~ has found that when
heat flows out from a solid boundary into super-
fluid helium a temperature gradient should be set
up in the liquid layer near the solid. This gradient
should decay roughly exponentially with distance
from the surface and should be significant out to a
distance of the order of the large-angle scattering
mean free path

A, =(e)v, .
We will define A~ more precisely later on. As far
as we know, there are. no experiments to date that
provide definite confirmation of these hydrodynam-
ic effects.

In this paper. we make some further calculations
based on the hydrodynamic equations. The par-
ticular problem that we consider is the flow of the
phonon gas along a tube or between two plates
when the driving force is a temperature gradient.
This is an interesting problem because the experi-
ments required to compare with the theory are
considerably simpler than the experiments needed
to verify the two predictions mentioned above. In
addition some experimental data taken by Whit-
worth' are already available with which to make
comparisons.

As a preliminary to carrying out detailed calcu-
lations of the heat flow, we consider the flow of
heat along a tube of radius R in two limiting cases.
(a) Let R be so small that

R«A„,
where A„ is the small-angle collision mean free
path. The problem is then exactly the same as
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the boundary-scattering-limited heat flow in a di-
electric solid. The heat flow along the tube must
therefore be given by Casimir's formula, ' i.e. ,

y = 3RS'T /16qC(v) . (12)

We now choose to define the large-angle phonon
mean free path A~by'

cfT
Q = ~R'+c (3) q= 5 p„(v)A, , (13)

where dT/dx is the temperature gradient along the
tube, whose axis is taken to be parallel to the x
direction, and

where p„ is the normal-fluid density. For a pho-
non gas in which all phonons have the same velo-
city it is true that

Xc~, „=3 C(v) 2R . (4)
S'T/p„(v ) C = ~ .

A ~~ =2R.

(b) Let R be such that

(5)

C is the specific heat of the phonons and Eq (4).
is really just the kinetic formula with an effective
mean free path

Thus

y = 5R/16' (15)

for R» A~. Hence, the limiting values of y are as
shown schematically by the solid lines in Fig. 1.

An interesting feature of Whitworth's results is
that a shallow minimum in y is found at around

R/A~= 0.44+ 0.07 . (16)
In this case the phonons behave like a gas with
viscosity g (the normal-fluid viscosity). The gas
is driven through the tube by the gradient in foun-
tain pressure. ' This is given by

dI' dT-S (7)

where S is the entropy per unit volume. The vol-
ume of phonon gas flowing through the tube per
unit time is then given by Poiseuille's formula

mR' dP
8g dx

' (8)

The entropy flow rate S is SV and so the heat flow
1s

wR4S2T dT
8q dx

For a tube with radius R such that

Q = —,'wR'C(v)A, ~i —, (10)

there exists no simple theory of the heat flow. The
full hydrodynamic equations for the phonon gas
must then be used. Using the notation of Whit-
worth' we can express the problem in the following
form. Equation (3) can be written

This is shown quantitatively by the dashed line in
Fig. 1. 'The value of y at the minimum is slightly
less than 1. The same effect has been observed
in the flow or ordinary gases through tubes by
Knudsen in 1909, who found for several different
gases at room temperature a minimum at

R/Ai= 0.12 to 0.13. (17)

No simple explanation of Knudsen's minimum has
been given. Thus it is interesting to ask whether
the difference in the positions of the Knudsen min-
imum in superfluid helium and in gases is a con-
sequence of the peculiar hydrodynamics of helium.
We will be able to show that this is indeed the
case. Our calculation, however, gives a minimum
at R/A, = 0.20, intermediate between (16) and (17).
While this is not in agreement with Whitworth's
conclusions, neither is it inconsistent with his ex-
perimental data; we shall discuss this question in
Sec. V.

Whitworth's data have been previously analyzed
theoretically by Simons, ' who was able to show
that a flow minimum in a phonon system could be
deduced from a Boltzmann equation approach. In
Simon's approach all phonon-phonon scattering is
represented by a single mean free path. As men-
tioned in our introductory discussion, it is -now

believed that a single mean free path theory is

where- we have replaced 2R by the mean free path
A,«. Whitworth uses this equation to define A,«
in all situations regardless of the tube diameter.
He then defines a quantity

y =A,«/2R .
For R«A„, y is equal to 1, and in the opposite
limit of R» A~, it follows from Eq. (9) that RADIUS

FIG. 1. Qualitative depend-
ence of y upon tube radius R.
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not an adequate quantitative description of the hy-
drodynamics of phonons in liquid helium.

In addition it has been shown that the effective
large-angle mean free path A~, related to the pho-
non viscosity by Eq. (13), is simply

II. GENERAL CONSIDERATIONS REGARDING
HEAT FLOW A, =(v)r, . (21)

For a review of the hydrodynamics of phonons
in superfluid 'He, see Hefs. 1 and 2. We shall
treat heat flow along a tube or down the channel
between two parallel plates under the conditions
A„«R (in the plane-geometry case R is the spac-
ing between plates). The relevant lengths in the
problem are then R and A~, and on the scale of
either of these there are many small-angle col-
lisions. The distribution function N(r, p) for pho-
nons in the liquid may then be specified by a tem-
perature T(r,p) as described above, and we as-
sume

X(r, p) = 1/fexp[e, /u, r(r, p )] —I], (18)

where &~ is the energy of a phonon of momentum

p. A kinetic equation for T(r,p) may be derived
from the linearized phqnon Boltzmann equation;
in the general case of a time dependence of T this
equation is

—+ v ' V ~T(r, l,p) = —p—Y, (p) (Y,„,T) . ', 19}(
1

lm

Here v=(v}p with (v) a thermal average of the pho-
non group velocity, the F, are spherical harmon-
ics in the angular variables 8~, (p~ of p, and

()
g

T): ff cdos&yddp)~ (d)T(F ( (()

The times 7', are the relaxation times for the vari-
ous l components in the angular variation of T in

P space. The relaxation occurs because of colli-
sions between phonons. If T is independent of di-
rection in p space (l=0, m=0}, one has complete
(local} thermal equilibrium and collisions can
cause no change in the distribution. Thus I/r,
must be zero. Similarly the l = 1, m = 0 compon-
nent of T represents a simple drift of the phonon
gas in the polar direction, and this too is unaffect-
ed by collisions, which conserve phonon momen-
tum. Hence 1/r, is also zero. A simple expres-
sion for the remaining relaxation times can only
be given if the collision angle is very small. In
this case it can be shown that""

In the heat-flow problems we shall treat we take
the flow to be in the x direction, along the axis
of a cylindrical tube or parallel to the walls down
the channel between two infinite parallel plates.
We then seek time-independent solutions of (19)
in which the walls provide a constant temperature
gradient dT/dx. Thus we put

~(r,P) = ~.+ [x -X(p,p)] d, (22)

where p is a two-dimensional vector denoting po-
sition in the cross-sectional plane perpendicular
to the flow, and T, is the wall temperature at x
= 0. Equation (19) than becomes

p, '&;X(P,p)= —Q A Yg (p)(Y),X)+p„,
fry g

(23)

where p~ is the component of the unit vector P in
the cross-sectional plane, and A. , =(v)r, . [We
shall henceforth write A, instead of A,—cf. Eq.
(21}.] Equation (23) is to be solved for X, subject
to a boundary condition expressing how phonons
scatter from the walls. We shall treat only the
model of purely diffuse boundary scattering, in
which phonons returning after being scattered at
the wall have a distribution identical to that rad-
iated by a black body. For those phonons, the ef-
fective temperature is thus independent of propa-
gation direction and is equal to the local wall tem-
perature T,+x(dT/dx). Thus

X(p',p) = 0 for p 'n'& 0 (24)

holds for each point p' on the walls, with n' the in-
ward normal to the wall at p'.

Our procedure shall be to solve Eq. (23) with (24)
for the two geometries to evaluate the energy flux
in the x direction, q„(p) at the point j in the cross
section. . This is

d.(d) („d) fd'd=, ~P(. ();,
using Eqs. (18) and (22) this works out to linear
order in dT/dx to be

1/7', = (l —1)l(l + 1)(l+ 2) (1/24m, ) . (20) q„g) = --.' e(v&A.„g)~, (25a)

Equation (20) in fact becomes inaccurate for large
l; it is a reasonable approximation only if ln «1,
where a is the mean angle between colliding pho-
nons. We shall later consider the effect on our
results of using a more accurate expression for
7

S

with

d.„(d)=—ffd cosedd yii, X(P,((). (25b)

Integrating q„(p) over the cross section, the total
heat flow may be written in the form of Eq. (10)
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above [with the cross-sectional area A replacing
mR' in (10)] and with the heat flow mean free path
in Eq. (10) given by the average

TABLE I. Decay constants &; for some of the low-
order modes. The actual values are the numbers given
in the table multiplied by A2 .

eft ~~ Iff ~ (25c}
m=1

Before turning to specific solutions it is useful
to list some features common to our methods of
solution in both geometries. The inhomogeneous
term P„ in Eq. (23) is odd under reflection of p in
the cross-sectional plane. Since both of the other
operators in Eq. (23) conserve the parity of X(p,p)
under this reflection, X must be an odd function
of p„, as is consistent with the boundary condition
(24).

In both geometries to be considered one can find
particular solutions to the inhomogeneous Eq. (23)
without difficulty; these shall be presented later.
The complementary solution of the homogeneous
version of (23) will be constructed in the following
way. We first seek elementary "planar" solutions
$(p,P), each of which depends upon a single Car-
tesian component of the cross-sectional position
coordinate p. We call this Cartesian component
the z direction. These solutions are required to
satisfy

P",8, 4(~,P)= —g ~ I') (P)(y(,0)' (26)

~P( ~ (cos 8p) cos(mf~), m = 1, 3, 5, . . .
%'e thus look for odd-m solutions, in the form

„~2l+1 (1-m}t
2 (l+m)f

x P, ,( co8s~)cos(mg~).

Substituting (2V) into (26) and using

l+1-m l+m
2l+ 1 +$+g fft+ 2l+ 1+$

one obtains the set of conditions

(27)

(l+ 1 —m}D)„~+(l+ m)D), „- D, „=0,2l+ 1

1

(28)

which holds for l~ m, with D, =-0. Thus, for
each m, there is a spectrum of allowed values of

We use a coordinate system for p with polar axis
along the z direction. Then p, = cos8~, so different
m values are not coupled in (26) and solutions of
definite helicity m exist. As discussed above
though, we need solutions that are odd functions of
P„=sin8~cosg~. This requires that spherical har-
monics appear in the solution in the combinations

16.6
92.4

301
746

1560

23.5
106
324
780

1610

145
384
866

1720

497
1020
1930

1270
2250

0'(~,j)-p„,
0"(~ f )=~f. &,E.P. . -

(28)

(30)

The first solution describes a simple uniform flow
of the phonon gas in the x direction, and the second
a shear flow in the x direction, with a constant
flow-velocity gradient in the s direction.

For heat flow between parallel plates each of
these solutions has the desired planar symmetry

k, which is to be found by equating the determin-
ant of the coefficients of the D,

' in (28}with zero.
.This is, strictly, an infinite tridiagonal determin-
ant. However, because the terms along the prin-
cipal diagonal contain 1/A, and these increase
rapidly with increasing l, one can obtain a good
approximation to those solutions for k which are
fairly small by truncating the determinant at some
maximum value of l. Alternately one can reeurse
(28) upwards in I and set D„, „=0for some max-
imum l; this is an entirely equivalent procedure,
since the determinant is tridiagonal. Results ob-
tained for the k's in this way are given in Table
I, where they are expressed in units of I/A, . It
is easily shown from (26) or (28) that roots for k
always occur in+ pairs; only the positive member

' of each pair is entered in Table I. We denote the
ith positive root by k „the associated D, „coef-
ficients by D, „„and the solution P (p,p) by
g &(p,P). We arbitrarily choose D, equal to 1 for
all i.

We note in passing that Eqs. (2V) and (28) also
apply to the even-m solutions of (26), including the
m = 0 case given preliminary consideration by Sa-
slow. 4

Because of energy and momentum conservation,
there are additional solutions of Eq. (26) which
are not of the exponential form (27). One can
easily verify that because 1/Ao and 1/A, are zero,
the determinant of coefficients of the D, in Eq.
(28) has a twofold degenerate root k = 0 in both the
m = 0 @nd m = 1 cases, and in no others; thus there
are four nonexponential solutions, two m = 0 and
two m = 1. The two m = 1 solutions of interest here
are
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if the s direction is the normal to the plates. 'The

problem reduces to choosing a suitable linear
combination of these solutions to satisfy the bound-
ary conditions. For flow along a tube it is first
necessary to generate solutions of cylindrical
symmetry from the elementary planar solutions.
This will be performed in Sec. III.

„X

«Z
r

IH. FLOW IN A TUBE

We now consider phonon flow along a tube of
radius R. For this problem it is most convenient
to describe the phonon distribution function by an-
gle variables 8~ and Q~ which use the tube axis x
as the polar axis. A particular solution of Eq. (23)
can then be shown to be

Xy~~ = — (p -R )P~o (cos ep)
2

+ ,' pP» (c—os8~}cos(p,' —8)+A, P„(cos8~),

(31)

where p is the magnitude of the vector p and the
origin of p has been chosen to be at the axis of the
tube. 8 is the angle between p and the y axis as
shown in Fig. 2. This particular solution has been
chosen to give the. full heat flow in the Poiseuille
flow limit discussed in Sec. I." This will be shown
explicitly in Sec. V.

To construct the complementary solutions we
begin with a planar solution of the form of Eg. (27).
This solution is then rotated by an angle a around
the x axis, as shown in Fig. 2. Let the new solu-
tion be g~(n). We now form a linear combination
of such solutions by integrating over n to get

(32)

g„, ,„,can be expressed as a sum of spherical
harmonics of 8~I and Q~ by using the Wigner rota-
tion coefficients. The result of the integral in
Eq. (32) can then be written

B,„,,(p)P, , (cose~) cosm'(g» —8 )

F/G. 2. Coordinate systems used to form cylindrical
symmetry solutions from planar solutions.

c.» cos' (36)

This solution is independent of position in real
space and represents a homogeneous drift of the
phonon gas in the direction along the tube. The
other special solution g" given by Eg. (30) van-
ishes when rotated through all angles.

We believe these are the only complementary
solutions that have cylindrical symmetry and are
free of sources. Solutions also exist that contain
the modified Bessel functions E, but these are
singular at p=0 and thus not source free.

The probelm now -is to construct a linear com-
bination of the particular solution with the com-
plementary solutions such that the boundary con-
dition Eq. (24) at the tube wall is satisfied. In the
new coordinate system this boundary condition is

q(ft, e, e,', y,')=0 (37)

I, is the modified Bessel function. The sum over
,

's in Eg. (35}is over all integer values such that the
arguments of all of the factorials are non-negate. ve.
The solution (33) has cylindrical symmetry since
it is clearly invariant with respect to rotation
about the x axis. Thus, for example, the distribu-
tion depends on (Q~ —8), but not on P& and 8 sep-
arately. A complementary solution can also be
constructed from the solution (29} in the same
manner. This gives

(33)

where

(2l+ 1) (l —m) ((l —m'))
2 (1+m))(1+m') ~

x li+ (-1)" ]Dg,d', I,(k,p), (34)

p (-I)'[(l+ m)((l —m)((l+ m') I (l —m')! ]' '
(l —m' —s) f (l+ m —s) I (s+ m' —m) t s(

(35)

m~6,

k, & 2700/A, .
(38)

which describes phonons leaving the wall of the
tube.

We have solved this problem numerically by the
following method. We first selected 15 of the com-
plementary solutions. These 15 included the solu-
tion (36), together with the 14 solutions produced
by rotation of all plane waves that satisfied the
conditions
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We then formed the solution

4

y~t+ Ao~eys+ Ae (39)

where the rotated plane solutions are denoted by
+e then constructed the quantity

0-
t-
O0
uJ RlA, =i

1 3~/2
E= d cos8~ dp~x'(R, 0, 8~, Q~) .

«/2
(40) 0

0

If the boundary condition were satisfied exactly,
F would be zero. The coefficients A were ad-
justed to minimize E. A measure of the success
achieved in meeting the boundary condition is pro-
vided by the ratio

(41)

0-
I-
D0
UJ)

04 I

R/A2=0 2

where E, is the same integral as E but with the

Q~ integration extended from 0 to 2m. P was gen-
erally between 0.01 and 0.02.

In Fig. 3 we show the results of the calculation
for a range of values of the quantity R/A, . Figure
4 shows results for the flow velocity of the phonon
gas as a function of position in the tube. We shall
discuss the interpretation of these results in de-
tail in Sec. V.

These results change only slightly when more
complementary solutions are included. For exam-
ple, we have investigated the result obtained by
including all of the 20 complementary solutions
with m ~ 9 and k„,( 2700/A, . This leads to a re-
duction in P by about a factor of 2, but changes
A,«by less than 0.2%%ug. The calculations become

0
0 I STANC E FROM AXIS

FIG. 4. Flow velocity {solid curves) of the phonon gas
as a function of distance from the tube axis for two tubes
of different radius. The dashed curves show the velocity
as calculated from the Navier-Stokes equation with a
slip correction. The units of velocity are arbitrary, but
correspond to the same temperature gradient for each
tube.

difficult numerically when R/A, is small since
the amplitude of the various complementary so-
lutions become large, and the minimization of F
leads to an expression for the A. that involves a
nearly singular matrix. Thus we are unable to ob-
tain accurate results for R/A, less than about 0.02.

The effect on these results of using a more ac-
curate expression for 7' , (see, fo.r example, Ref.
3) was found to be very small.

10

094-

092-

0 90
001

I

2

Rlh&

Ol

Rl A2

IV. FLOW BETWEEN PLANE WALLS

Our motivation for studying heat flow between
parallel plates is primarily theoretical. For plane
geometry the solution of Eqs. (23) and (24) can be
carried farther analytically than in cylindrical
geometry, with the boundary conditions treated
in a different manner than the variational approach
of Sec. III. Moreover, in one respect our plane
calculation serves as a direct check on the accu-
racy of the results for cylinders —this is in the
value of a first-order slip coefficient, to be dis-
cussed in Sec. V, which should be independent of
geometry, and for which the two calculations are
in fact in good agreement.

FIG. 3. Results of calculations of the effective mean
free path &off for heat flow along a tube of radius R.
The results are expressed in terms of the dimensionless
quantity y= jeff /2R.

A. Particular solution

We employ the notation of Sec. II and consider
heat flow in the x direction along a channel of
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width W. 'The two infinite plane walls are at z = 0
and z= 8'. As discussed in Sec. II, we need con-
sider only azimuthal variations in the temperature
distribution g(z, p) which vary like cos(mP~) with

m odd; in fact only m = 1 is involved since the in-
homogeneous term in Eq. (23) is
P„=sin8~ cosP~.

A particular solution of Kq. (23) is

)„,(g, )))=~ z(W-z)P„(cos8, )+—,'(z ,'W )P„--(cos8 )~--*,A+„(cos 8)) ease, . (42)

As with the particular solution in cylindrical geo-
metry, Eq. (31), here too the above particular
solution has been chosen to give the full heat flow
in the Poiseuille Qow limit. 'This will be discussed
explicitly in Sec. V. To this must be added a com-
plementary solution }(,(z,P) of the homogeneous
equation, which, in view of the boundary condition
Eq. (24), must satisfy

y,(0,p) = [,' WP»—(cos8~)+ ,'Ag»—(cos8,)]cosP,

for cos8~&0,

}(,(W, P}=[ ', WP»=(cos8~)+

IAAF»

(cos8~)]cos()))~

for cos 6& & 0 ~

Our method for determining y, involves two funda-
mental approximations which allow reduction to a
half-space problem, and subsequent truncation of
an expansion in the elementary solutions.

B. Half-space approximation

The complementary solution X, can, of course,
be expanded in the elementary solutions P(z,p)
discussed in Sec. II. All but two of these elemen-
tary solutions decay or grow exponentially in z,
like e'~". Thus each +k pair of exponential ele-
mentary solutions contributes a spatial transient

to X„which is important only in a layer near each
boundary of thickness -I/k. As seen from Table
I, each 1/0 is small compared to the wide-angle
mean free path A„so even when the spacing be-
tween walls is comparable to A, the spatial trans-
ients do not extend out very far from either wall
into the flow channel. This circumstance allows
us to approximate the complementary solution X,
obeying parallel-plate boundary conditions by
superposing two solutions obeying boundary condi-
tions on a half-space. %e shall proceed as follows.
Suppose we can find a function 4'(z, p} satisfying
Eq. (26) on a half-space 0 & z (~, with the same
boundary condition as X, at z = 0, i.e. ,

+(O,p) = (—,
' WP»+ —,'Ag») cosp~, cos 8~& 0

and with bounded asymptotic value 4'(~,p) as z -~.
Since 4 is bounded, it is a superposition of only
the exponentially decaying elementary solutions,
plus the uniform solution g', Eq. (29). 4 thus con-
sists of spatial transients in a boundary layer near
z = 0, plus an asymptotic part. As argued above,
the transients will be exponentially small at z = W,
even for W-A, . The asymptotic part 4(~,P),
which is the )))' term in the superposition, is an
even function of cosa~. Then the parallel-plates
complementary solution, for 0&z & W, is

X,(z, cos8~, cos(())~) = +(z, cos8~, cosP~)+)1)(W-z, —cos8~, cosQ, ) -)I (~, cos8~, cos(())~)+ O(e '" ) . (43)

The first term on the right-hand side by itself sat-
isfies the correct boundary condition at z = 0, and
the sum of the second and third terms is exponen-
tially small there. A similar situation holds at
z = S'. In what follows we. shall approximate X, by
the first three terms on the right-hand side of Eq.
(44), which should be valid even in the region W
-A, where the Knudsen flow minimum occurs.

C. Expansion in elementary solutions

To compute 4(z,p) we shall make use of some
orthogonality properties of the elementary solu-
tions g(z, p) when integrated over the angular vari-
ables p at z =0. In the inner-product notation of
Eq. (19), these properties are

(a) (())„,cos8~, $„,,)=0 for (m, i)W(m', i'),

(b) (g, cos8„$')= (cos8+„„g')= 0,
(c) (P' cos 8~, g') = (cos 8~$",g")= 0,
(d) ()))'cos8~, $")= =,', vA, ,

with all P's at z = 0. These may be proven in the
usual manner from Eq. (26) or by direct integra-
tion. Relation (a) applies to any two solutions
whose decay constants k are not the same, includ-
ing the two members of a +k pair. Relations (c}
and (d), which assert that P' and P" are orthogonal
to themselves but not to each other, are the only
unusual consequences of the non-positive-definite
weight function cos 8~.

These orthogonality relations allow one to deter-
mine expansion coefficients. If a function f(z,P)
has the expansion
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f= gA, g„,+ A'(l('+A "P",
mi

(44)

then the coefficients are related to the boundary
value f(0,p)= f,(-p) as follows:

A„,= (g, cos 8~,f,)/(P„, cos 8P, P, ),
A' = (P"cos 8~,f,)/(P" cos 8~, P),
A"= (P' cos 8~,f,)/(g' cos 8~, g"),

(45a)

(45b)

(45c)

with all P's at z = 0. In Eqs. 45(b) and 45(c), which

projections determine which expansion coefficient
is just the reverse of what one would normally ex-
pect, as a consequence of the "backwards" ortho-
gonality relations (c) and (d) above.

The solution 4(z,P) of the half-space. problem
above involves a superposition of m= 1 exponential-
ly decaying elementary solutions P„, and g':

+(+ P(= /+I('U(~ i)++''('(* P( (46(

At the boundary z =0 we may also write

ll [—,
' WP»(cosH~)+ —

A3, P»(cosH~)]cosp~, cos8~& 0,
w(0, 7)-=w.(5)=

&

ji B,P„(0,p)+8'g'(0, p), cos8~&0.

(47a)

(47b)

2M]].B], 6 5'a]+ 3A p), (48a}

with

12
n» =— Dr, &(-l)'Z

5
(48b)

24 1r (48c)

and

&»Di «( I)' ~« k-
g

~

(48d)

1

d(cos8)P„(cosH}P, , , (cos8) cos8. (48e)
dp

The B, are coefficients in the expansion, over half
the angular range, of just the incoming part of P,
describing phonons incident on the wall at z = 0.
They are the same as the A, in the full-angular-
range expansion (46) if all the modes g„are re-
tained, but only in that case, since in general it
requires all the modes in the A, expansion to ex-
actly reproduce (47a) for the outgoing distribution.
~n what follows we shall truncate both the A, and

B, expansions after a finite number of modes.
Then (47b} is an approximation to the actual in-
coming distribution, and (46) a further approxima-
tion of the full-range expansion representing (47a)
and the truncated (47b). In that case the A, and 8,
are not identical. A physical justification for this
truncation will be given shortly.

The B, are determined by requiring that 4, given
by (47) be orthogonal, in the sense of Eqs. (45),
to all exponentially growing solutions, and also to
g', because of Eq. (45c). This results in the fol-
lowing set of inhomogeneous equations determin-
ing the 8's:

These equations also determine the coefficient 8'
of the uniform flow mode if we extend the indices
to include i,i'= 0 and define B'=—8, and Dgyp 35g
so that (l(' in Eq. (29) may be written in the form
of Eq. (27).

In actual practice we shall truncate this set after
a finite number of modes'with the smallest few k
values. In a given approximation, the number of
modes retained, their k values, and the coeffic-
ients D», in their expansion Eq. (27) are all deter-
mined as in Sec. II, by truncating the m=1 deter-
minant for the k's at a given maximum l.

This procedure may be thought of simply as a
way of par'ametrizing a sequence of approxima-
tions to the incoming distribution at the boundary,

o for cos 8~ & 0. The truncation scheme is based
on this idea: whatever the particular mixture
of exponentially decaying modes with large k's
necessary to guarantee that the outgoing distribu-
tion is given by Eq. (47a). Nevertheless for large
enough k these rapidly decaying modes represent
negligible disturbances in the phonon population
in incoming directions cos8~& 0, and thus do not
contribute to (47b). Qualitatively one might expect
this, on the following grounds. Modes which are
rapidly attenuated in space must represent some
combination of two features. These are (i) strong
relaxation effects due to small-angle scattering,
characterized by short mean free paths, and (ii)
effects of wide-angle scattering on phonons moving
nearly parallel to the boundary plane z = 0, which
thus do not get very far away from the plane before
they relax via wide-angle scattering. The first
effect requires rapid angular oscillations in the
distribution function, so that scattering through
just a small angle can have a surplus phonon fill
in a deficit. For a disturbance which attenuates
as one moves outuicrd from the boundary, the
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A, =
i

—, Wa, + ,A,b, + Q I.i, .B,—.

) /N, ,
(, 6

with

12

(49)

24
+ltd Jls ~

g

2)+ 1 1
2l(l+1) k A

ii~+r j.~ — J»' ~ for i 40,
H

and for i = 0 with

l2. y
CEO 5 cT22 p

&0= '7' J23

No= 3,

oscillations must be in outgoing directions only.
The second effect requires that surplus phonons
traveling nearly parallel to the boundary be cou-
pled by wide-angle scattering to deficits more
nearly perpendicular to the boundary. These def-
icits must be in outgoing near-perpendicular di-
rections, in order that they too be rapidly atten-
uated in z, due to coupling via small-angle scatter-
ing to a nearby surplus of phonons, as in the first
effect. Thus for either of features (i) or (ii) to be
present, the distribution function should deviate
from equilibrium primarily just for phonons going
outward from the boundary plane. 'This line of
reasoning seems fairly well confirmed in practice.
For example, Fig. 5 shows the cos8~ dependence
of the mode P„ for the fifth smallest k value for
m = 1,k, = 1558/A, . There are rapid oscillations
for cos8&&0, a large peak of surplus phonons for
directions roughly parallel to the boundary plane,
and only a small disturbance over much of the in-
coming hemisphere cosa~& 0. Thus, neglecting
the contribution to the incoming distribution from
this mode and others with similar behavior should
make little difference.

The boundary distribution 4, is thus given by
Eq. (47a) and the series of (47b), truncated in a
given approximation. Equations (45a) and (45b),
with this 40 in the inner products, then give the
coefficients A., in the full-range expansion Eq.
(46); as discussed above, these are not exactly
the same as the B, since the half-range expansion
for the incoming distribution has been truncated.
With A.0=A', we obtain

FIG. 5. Dependence of the function g&~ on cos8& for
the mode with k= &558lA2.

In actual practice we shall retain only A, coef-
ficients for the same modes as appearing in the B,
expansion in a given approximation; that is, the
full-range expansion Eq. (46) will also be trunca, -
ted. With this expansion substituted into Eq. (43)
for the complementary solution y, (6,p) and the ef-
fective mean free path for heat flow evaluated as
in Eq. (25), we find

12', ' 2„, a, W

It is convenient to rewrite Eq. (50) by noting each
B, amplitude and thus each', is the sum of a term
proportional to 8' and one proportional to A„ the
two lengths in the boundary conditions. This fact
may be seen from the form of Eqs. (48) and (49).
Thus we can write

A =—'S,W+ 5SQ, . (51)

(S, and S, will be identified later as slip coeffic-
ients). Equation (50) can then be rewritten

+2S,+5(S,+b)—'+c
~

'-~ +O(e ),

with

3 ~' 1 3 1
pg

A)=p; W+q]AS, z= 1,2, . . .
while for the amplitude Ao of the uniform flow
mode it is more convenient to insert some numer-
ical factors first:

!'+xLos' = Dt'xr, -1 + J2

As in Eqs. (48), D»6 =——,
' 5, ,

The b and e terms, along with the exponential re-
mainder, give the contributions from exponentially
attenuated modes forming the boundary layers of
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TABLE II. Results of various approximations used to calculate the slip coefficients S& and S2
andthe coefficients b and appearing in Eq. (52).

Maximum
l

No. of exponentially
decaying modes S2

4
6
8

10
12
14

1
2
3
4
5
6

0.595
0.597
0.594
0.595
0.595
0.595

0.196
0.197
0.196
0.196
0.196
0.196

-0.0325
-0.0316
-0.0328
-0.0325
-0.0324
-0.0324

-0.380
-0.371
-0.376
-0.375
-0.374
-0.374

the nonequilibrium phonon distribution. 'The b

term is of the same order in the mean free path
as the S, term from the uniform flow contribution,
but it turns out that the coefficient 5 is fairly
small compared to S„as we shall show now.

D. Numerical results

To examine the sequence of approximations dis-
cussed above, we first fix the maximum / value
and thus the number of elementary solutions re-
tained, solve Eg. (48) numerically for the 8's,
then evaluate the A's and A,« from Egs. (49)-(52).
Table II shows the results, in various approxima-
tions, for the parameters in Eq. (52). In Fig. 6
we show a plot of A,«/W analogous to Fig. 3 for
the cylindrical tube. A minimum occurs for W/A,
= 0.499, which is well within the range of values
of W/A, where exponential corrections to the half-
space approximate treatment are very small.

V. DISCUSSION

A. Slip coefficients for phonons

It is useful to compare our results to the predic-
tions of the Navier-Stokes equations of hydrody-
namics. In this way we can extract the values of

2.4-

2.3—

2.2-

2. I—

2.0—

1.9-

0 .2 .4 .6 .8 1.0 I.2 1.4 1.6 1.8
NIA2

FIG. 6. Results of calculations of the effective mean
free path A,g for heat flow between two parallel plates
of spacing K

velocity slip coefficients for phonons in the two
geometries. These coefficients give the hydrody-
namic viscous flow velocity of the phonon gas im-
mediately adjacent to a boundary. This flow velo-
city is not zero; in general, the phonon gas "slips"
at a boundary as it flows along a channel, rather
than sticking perfectly as is assumed in the Poi-
seuille flow formula [Eg. (9)].

There are two uses motivating our evaluation of
slip coefficients. First, they provide a quantita-
tive way to compare our rather dissimilar calcu-
lations in the two geometries, as will be discus-
ed. More importantly, they should be useful in the
experimental determination of the phonon viscosity
at low temperatures. The temperature dependence
of the phonon viscosity is an important experimen-
tal problem because it is such a sensitive and rel-
atively simple probe of the dispersion relation for
phonons in superfluid helium, "and it would be ex-
tremely useful to extend the presently available
measurements of Whitworth to lower tempera-
tures. In doing this one would wa.nt to know the
range of validity of the Poiseuille formula [Eq.
(9)] relating a measured heat flow to the viscosity,
and when and how to include the first low-temper-
ature corrections to the formula, which are just
those due to hydrodynamic slip. Thus it is impor-
tant to have reliable values of the slip coefficients
for phonons.

In extracting these slip coefficients, we shall
show that our calculations have the following fea-
tures in the hydrodynamic limit of small viscous
mean free path A,

(i) The asymptotic heat flow far from the bound-
ary walls is as given by hydrodynamics; that is,
it is described by a flow velocity field which satis-
fies the Navier-Stokes equations, with slip bound-
ary conditions, including second-order slip.

(ii) Near the boundary walls there is a deviation
from the hydrodynamic flow pattern which makes
an additional contribution to the heat flow. This
boundary-layer contribution is comparable to that
from second-order slip and reduces its effect but
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does not entirely eliminate it.
Regarding the first feature, it is well known in

kinetic theory that the Navier-Stokes equations, in
conjunction with appropriate boundary conditions,
correctly describe the asymptotic parts of solu-.

tions to the Boltzmann equation. The derivation
of boundary conditions for Navier-Stokes sot.utions
has been discussed by Grad" for the case of gases,
and we shall simply quote his result in notation
suitable for the phonon problem. The relevant
Navier-Stokes equation for the flow velocity u„(p)
is the momentum-balance equation

gV g„(p) =S—;dT

r) is the viscosity and S(dT/dx) the foundation pres-
sure gradient, Eq. (7). The boundary condition
given by Grad is equivalent to

u„= A, (S,n V)u„

—AaA, [S„(~ 0)'+S„V'+S„(V~ ~)(yg ~ V)]u„,

(54)

which holds at each point of the boundary, with n

the inward unit normal to the boundary. The S's are
dimensionless coefficients, independent of geom-
etry; S, is the first-order slip coefficient and the

S,'s second order (Grad also fi.nds additional sec-
ond-order slip terms for more complicated flows
or for geometries with varying cross section).

To verify that Eqs. (53) and (54) describe our
solutions and to obtain the slip coefficients, we

note that the asymptotic phonon distribution is a
superposition of the particular solution of the
Boltzmann equation and just the elementary solu--
tion representing uniform flow. This is because
the remainder is a linear combination of spatially
decaying solutions far from a boundary. Thus in
either geometry we have, asymptotically,

u„"'(p) = --—[4(&' —p')+ a Aa&0 '].
Equations (13) and (14) have been used in obtaining
these expressions from Eq. (25). One may easily
verify that these velocity fields satisfy the Navier-
Stokes equation (53) and boundary condition (54),
if

In Sec. IV we have already pointed out that A.,'~"
can be written in precisely this form. Thus Eq.
(51) and Table II from Sec. IV give slip coefficients

S, =0.595,

Alternately, the results of our cylindrical geom-
etry calculation for the amplitude Ao"' give

S1=0.592,

Sa" Sax+ 2S~~+ S~~ = 0.201 .
'Thus our two calculations, with quite different
ways of handling the boundary conditions on the
Boltzmann equation, agree to about —,'% for the
first-order slip S,. The second-order slips S~~'~'

and S,"' differ in definition by terms involving the
curvature of the boundary walls and need not be
the same.

'These results for phonons can be compared to
slip coefficients for dilute gases, which have been
calculated by Cercignani and co-workers, "Fer-
ziger, "and Sone and Yamamoto, "for the Bhat-
nagar-Gross-Krook model Boltzmann equation.
In this model all mean free paths are equal in the
sense that A, =A, =A„etc. This model is thus
an approximate representation of the kinetics in a
gas in which scattering processes of all angles
occur with equal probability. In our notation, "the
results for dilute gases are

with )|~„and g' given by Eqs. (31) and (36) for
cylindrical geometry and by (43) and (29) for plane
geometry. %e insert these asymptotic solutions
into Eqs. (25) to calculate for each geometry the
asymptotic part of the energy flux q„(p). With the
flow velocity u„(p) defined by

q„(p) = TSu, ( p)

with S the entropy density, we then find for the
asymptotic flow far from a boundary

Maar(&) [L&(~ &) + A ~ylaaa]S dT,
'g dÃ

for plane geometry, and for cylindrical geometry

S,= 0.4586,

S", ' = 0.1561, (gases)
S~» = 0.8278.

The striking feature about these numbers in com-
parison with those above for phonons is that the
second-order slip for dilute gases is very different
in plane and in cylincrical geometry, while for
phonons it is not. The near numerical equality of
S", ' and S;"' for phonons seems to be a peculiar-
ity of the spectrum of mean free paths A, obtained
from Eq. (20).

Near the boundary walls there is a layer where
the spatially decaying modes also contribute to the
phonon distribution function. 'These modes decay
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exponentially (plane case) or like modified Bessel
functions (cylindrical case); in both cases the
width of the boundary layer is of the order of 1/k„
where k, is the smallest decay constant. Within
the boundary layer the actual flow slows down be-
low the hydrodynamic flow and accomodates more
nearly to the stationary wall. This is shown by
the velocity profile for flow in a cylinder [Fig.
4(a)]. At the wall the phonon gas does slip, though
with less velocity than the hydrodynamic slip.
This actual wall slip flow is carried only by those
phonons headed into the boundary, since the pho-
nons returning after being scattered from the wall
have no net drift, for the diffuse boundary condi-
tion we use. Figure 4(b) shows the velocity pro-
file in a narrower tube, R/A, = 0.2. Flow in this
tube is rather far from the hydrodynamic limit in
that the "boundary layer" now occupies most of
the cross section and the actual flow velocity is
substantially less than the hydrodynamic velocity
over much of the tube.

The slowing down of the flow within the boundary
layer reduces the effective mean free path A,«.
This reduction first appears in the same order in
A, /R or &,/W as the increase due to second-order
slip flow. This may be explicitly seen in our
plane-geometry calculation leading to Eq. (52} and
Table II. The 5 term in Eq. (52) is the leading
boundary-layer contribution, and as seen from
Table II reduces the effect of second-order slip
by about 16%%uo. In a tube the cancellation is bigger,
equivalent to a 40%%uo reduction of the second-order
slip contribution. This competition between slip
effects and boundary-layer effects on the total
flow can be appreciated quite simply: the ampli-
tudes A., of the spatially decaying modes forming
the boundary layer are the same order as the amp-
litude A, of the uniform flow mode carrying the
hydrodynamic slip. This is true because a11 amp-
litudes are strongly coupled by the boundary con-
ditions. The heat flux carried by these decaying
modes is localized within a distance k ' of the
boundary walls and thus occupies only a fraction
(k ')/R or (k ')/W of the cross-sectional area.
Thus, integrated over the full cross section, the
total flow from the boundary-layer modes is a fac-
tor (k ')/R or (k-')/W smaller than the slip flow.
As these factors are proportional to A, /R or A, /
8', the leading boundary layer contribution to the
total flow is then a factor A, /R or A, /W smaller
than the leading (first-order) slip flow. Thus it is
competitive with the second-order slip.

B. Flow minimum

Both of our calculations display a minimum in
the heat-flow mean free path A,«when A, becomes

comparable to the cross-section dimension R or
The flow in the region A, &R or A, &8'is

quite complicated, and this region is really just
the beginning of a very involved and gradual trans-
ition from viscous flow to, eventually, ballistic
phonon propagation. Even for A, »R the flow can
still be far from ballistic and dominated by rapid
small-angle phonon-phonon scattering with a mean
free path A,

~
«R; indeed this is assumed in our

treatment. In this respect the situation is in con-
trast to the analogous case of mass flow in dilute
gases, where the transition from viscous flow to
free molecular streaming is much sharper.

For cylindrical tubes our calculations may be
compared to the measurements of Whitworth. '
First we shall discuss the depth of the flow mini-
mum. As shown in Fig. 3, our calculation gives
a minimum value A,«/2R of 0.91, i.e. , 9/0 below
the Casimir boundary-scattering value. Whitworth
suggested very tentatively a deeper minimum,
about 15/o, for diffuse boundary scattering. His
result depends somewhat on assumptions he made
about how to eliminate the influence on the mini-
mum depth of partially specular, rather than dif-
fuse, reflection of phonons from the boundary
walls. SpecuIar reflection was evident in some
degree in the region of the flow minimum in all
but one of Whitworth's tubes. We do not feel there
is any serious disagreement between calculation
and experiment for the minimum depth.

The position of the minimum in Fig. 3 we find
to be at R/A, = 0.20, which is almost twice the val-
ue for the Knudsen minimum in dilute gas flow.
Whitworth however concluded that the minimum
was even higher, at R/A, =0.44+0.07. This ap-
parent discrepancy between our calculation and
experiment may not be real, for there are two
major uncertainties in comparing with Whitworth's
data which can only be resolved by further work.
These uncertainties concern the temperature de-
pendence of A, and the effect of phonon dispersion
on other parameters than A„as we shall now dis-
cuss.

1. Effect of Pkonon disPersion. Whitworth con-
verted his measurements of heat flow and temper-
ature gradient into a temperature-dependent quan-
tity y(T) for each tube, defined by Eqs. (10) and

(ll) above, with the approximations that the speci-
fic heat C in (10}is the theoretical Ioebye T' value,
and the average thermal phonon velocity (v) = 239
m/sec, independent of temperature. These ap-
proximations assume no dispersion in the phonon
spectrum over the energy range being probed,
which at the time of Whitworth's work was believed
to be true. Inclusion of phonon dispersion effects
on C and (v) in Eq. (10) then raises the possibility
of a temperature-dependent correction to Whit-
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FIG. 7. Temperature of the Knudsen minimum as a
function of tube radius. 0 denotes Whitworth's data.
Solid lines are the temperature determined by the cri-
teria R/A2=0. 20 and R/A2=0. 44, as indicated.

worth's y(T) which could shift its minimum. We
have made a very preliminary investigation of
this question and find if the dispersion in the pho-
non energy &~ is of the yp'-type,

@~=co(p+yp'), y&0

then to first order in y the minimum of y(T) is
shifted down to a lower temperature, where A, (T)
is larger. This suggests that Whitworth has over-
estimated R/A, at the true minimum of A,«/2R.
We have not attempted to pursue this question,
however, because in Whitworth's experiments par-
tial specular reflection also influences the shape of
the minimum, and should probably be incorporat-
ed too.

temperature below 0.45'K, and his conclusion that
R/A, =0.44 at the minimum depends partly on an
assumed extension of the T "temperature depen-
dence for JI, down to about 0.3 K. Current theories
of A, (T), in good agreement with Whitworth's re-
sults above 0.45 K, predict an increase faster that
T ' at lower temperetures, so we have felt it
useful to reexamine Whitworth's data for the mini-
mum using a theoretical expression for A, (T). In

Fig. 7 are shown Whitworth's data for the tempera-
ture at the minimum of y(T) in five tubes. (These
data are taken from Fig. 5 of Ref. 5 without any
attempt to.correct the minimum position as discus-
sed above). Also drawn for comparison are the
two curves R/A, (T) = 0.20, our calculated minimum
position, and R/A, (T)=0.44, Whitworth's conclu-
sion, for a theoretical A, (T) computed using the
phonon dispersion relation D of Ref. 12(a). We
conclude from Fig. 7 only that R/A, = 0.20 is not
flatly, ruled out by the data.

Further experimental work would be very use-
ful. For the investigation of the minimum, the
ideal measurement would be of flow versus tube
radius at constant temperature, but this does, of
course, involve considerable work. It would be
valuable, though, to have measurements over a
wide enough range of tube radii so that some large-
radius tubes feature hydrodynamic Poiseuille, or
Poiseuille-plus-slip flow (thus permitting easy de-
termination of A, ) at the same temperature that
other smaller-radius tubes have flow minima.
This would allow a direct experimental determina-
tion of R/A, at the minimum.

2. Temperature dependence of Az(T). From
his data for tubes displaying a well-defined
Poiseuille flow region of the heat flow, Whitworth
determined that A, ~T 4' above 0.45 K. For al-
most all his tubes the flow minimum occurred at a
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The slip coefficients are defined by terms in the bound-
ary condition Eq. (54), which also involves in mepn
free path ~2. For purposes of comparison we haec de-
fined A& for a gas from the viscosity relation p= -' p5

&v& A2, with p the mass density and &v+ the mean
particle speed. This is not the definition of the mean
free path used in Refs. 14-16.


