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The system of a finite superconductor S; in proximity with a weaker superconductor S, is considered.
The order parameter is assumed to vary in space as A cos[g(z—D)] 0<z < D) in §;, and as
A,cosh[K(z + L)] (—L < z <0) in S,. The Bogoliubov-deGennes equations were solved for the two regions:
z < 0. The transition temperature T, of the system is evaluated for the case where S, is a thick normal
layer. The dependence of T, ys on the thickness D is in agreement with experimental results.

I. INTRODUCTION

The Bogoliubov-deGennes' (BdG) equations for
the two-component wave functions (U, V) of the ex-
citations in an inhomogeneous superconductor
were extensively treated in the last few years. In
the absence of a magnetic field, a procedure was
devised for an analytic solution of these equa-
tions.? This method was used to calculate the
wave functions for order parameters of the form
tanhaz® and of the form A; - A,e”%3 These forms
for the order parameter (or pair-potential) may
describe the behavior of a semi-infinite supercon-
ductor. For a finite superconductor the boundary
condition of the free interface is

dA

Gz |gresintertace

=0 (1.1)

We consider here a system of a superconductor
S,(0 sz <D) in contact with a weaker superconduc-
tor S,(—~L sz <0). Near the transition temperature
of the system, T, ,,, the linearized Ginsburg-
Landau equation provides us with the behavior of
the order parameter.

A(2) = A, cos[q(z - D)]6(z)
+ A, cosh[K(z +L)]|6(~2), (1.2)
where
©(2)=0(1) for z<0(z>0).

The order parameter of Eq. (1.2) is chosen for the
present investigation. In Sec. II the BdG equations
are solved within the Andreev* approximation

(or WKBJ approximation). In Sec. III we consider
the case where S, is a thick normal layer (A, =0).
We construct the wave functions which match
smoothly at z=0 and vanish at the free interfaces.
The eigenenergies then follow. In Sec. IV the tran-
sition temperature of the S— N system is calcu-
lated.

II. SOLUTION OF THE BdG EQUATIONS

The BdG equations in the absence of a magnetic
field are

(E +Ep)u=(1*/2m)V?u+ b,
(E = Ep)v=(I?/2m)V3v + Av

(2.1)

where E is the energy of the excitation relative to
the Fermi energy, Ef, 7 is the Planck constant
over 2w, and m is the electronic effective mass.
Substituting («, v) =(%, 7) exp(¢Ky * T) and neglecting
terms of the order of A/Ey (Andreev or WKBJ
approximation) these equations become

Eﬁ:—ih’VFpZ—:+Aﬁ,
(2.2)
ar
Eﬁ:ih—VFPFZ"FAﬁ,

where Vg is the Fermi velocity and p=V,,/Vz. The
functions

fro=UxiT (2.3)

obey?®

. d
Efl == <ﬁVFP—a? + A)fz s

(2.4)
, d
Ef2=—l ﬁVFp?i-Z—-—A fl'
These equations were decoupled to give?
E? f, = | =(RVpp)? d’ A?
L[ e
da
—(-H'Wm(—d—z—)]f,. (2.5)

We realize that the substitution
A
fi2= exp(i f WVh ) dz> &2y (2.6)
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where g, obeys

2

d d
E2g1=<-—(ﬁVF‘b)2 dzz +(—1)12AHVFP -d;—) g1 (2.7)

may be helpful especially for E << Amax.

For the order parameter of Eq. (1.2) in the re-
gion z =0 we expand the solution in a Fourier
series:

w
_ ,ipez 1 ingz-D) _ _ipaz
g;=e Z a,e =e'PG,

n= =

(2.8)

Here the coefficients are determined from the re-

currence relations

€lal +(-1)'d[(p+n+1)a,,,
+(p+n=-1)al ]=0 (2.9)

[(7 +p)* -

where

8=A,/iiVypq and €=E/nVepq.
In order to deal with real quantities we use
bi=(i)"al determined by

]bl_( 1)15[(p+n+1)b"+1
-(p+n-1)b,,]1=0 (2.9

S—

[(n+p)? -

where N is a normalization constant, a =sgn(V;z),
b=1(-1) corresponds to an electron (hole) like ex-
citations, and p is taken as the characteristic para-
meter with Rep = 0.

In the region —L < z < 0 the solutions are formally
obtained by the coordinate change z -y=1iz, i.e.,

g, = et Z Clginkty+il) | (2.13)
Nz =

where the C! and p are obtained from the set of eg-
uations

[(p +n)*+€?]C}
F6/[(p+n+1)CL, + (p+n—-1)CL ]=0, (2.14)

where 8’ =A4,/7V kp and €’ = E/nVypk. For 6’0
we find

pP+e’2=25"%/(4p%+ 1),

with a pure imaginary p.

(2.15)

III. EIGENSOLUTIONS FOR SN GEOMETRY.
STABLE ¢ REGIONS

We continue our investigation for a simpler geo-
metry where the region —L <2z < 0 is thick (L - «)
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The characteristic parameter p is determined so
that the infinite determinant of coefficients van-
ishes. The evaluation of p may be done by the
technique used for solving Matieu functions. Near
Tcs,s,» 00, and we find

€ —p2=1-20p2/(2p%+2€2=1),
0L, =(~1)"[(6p/(2p 1)]og,

where

p#5+m, m=x1,42, - (2.10)

For a given value of E,p, and —p are two inde-
pendent solutions (p+#m - 3). Substituting the so-
lutions back into Eq. (2.4) we find

a}/ag=sgn(pp). (2.11)

In the regions around € =m — % (unstable regions),
p has an imaginary part. However, the halfwidth
of these regions is of order (30)” (m >0) and are
very narrow near Tcsls

The wave functions for agiven E and [ P I are four:

5o = (ﬁ> ’ - Nefavwar ( expla 8 sin[g(z - D)]}G, (abp) + exp{~ab sing(z — D)]}G,(abp) ) , (2.12)
. —iexp{a b sin[g(z - D)1} G,(abp)+ b exp { - ad sin[q(z - D)]}G,(abp)

and is occupied by a normal metal (N). The solu-
tions in the normal metal are

sy [1+b iab E I
Vg <l—b) eXP<WFp>(Z+ ).

For simplicity it is assumed that the Fermi vel-
ocity and momentum of the electrons in the two re-
gions z$ 0 are the same.

"The linear combinations which satisfy the bound-
ary conditions at z=0, —L,D can be written

U S . N
= e“‘Ff“Z a\Itaeiaka(m-L) .

V a=%

(3.1)

(3.2)

In the normal region (z < 0)

Aexp(ﬁ P> (z+L)
Bexp(n p)(z+L)

In the superconducting region

U, =N, (@2 e+ C ) ;le?*eP). (3.4)
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From Eq. (2.8) we find (€ #m - 3),
al/al=(aZ/a2)*. (3.5)

Therefore at z — D=0 we have in the stable regions
of € '

e =(COS¢> eiaqu; o= i'l(Sin¢ ) e | (3.6)

sin¢ cos¢

where the upper * sign stands for b =+1, and p>0.
For T=T,s s, (6~0)¢=20¢/(4€*-1).

The coefficients can be chosen as C,=C_=C and
N,=¢e*"N, where

explily+kx(D+L)]}=1.

For a thick normal layer it is useful to allow % a
slight p dependence [of order 1/(L +D)] so that we
can let y=0.

We write now the components of #(z =0) in terms

Z,(E)= (1Fe~"20)/(1 + e~ "20)

of exponents

i eM20/ 2+ #¢10 70\ *
eXp[§2°+» "17'2‘1—())]( ) =<u( )) . (8.7
e-nzolz-lho 5 .

*
V(o)

Matching the solutions and their derivatives at z
=0, one can verify® that C=+1,B=+A are real con-
stants, and that the respective eigenenergies are
determined by

1xe™"20 E 1 _
tan (pgD - £10) + T3 o7 tan(,WFp L—-z-nm> =0.

(3.8)

Here the + sign corresponds to solutions with C .
=x1. The coefficients of the wave functions at the
normal region are given by

(A/N)2 = €20 Sinhn,/Z, (E), (3.9)

where

In Appendix A it is shown that

-1
e5205inh'r)2°=y-s-‘=(a—p> , (3.11)

Uy \ O€
where vg, and vy, is the 2 component of the exci-
tation velocity in the superconductive and normal
metal, respectively. )

Therefore,

( A_y 1 <a_e>
N/, Z,(E) \oe
For L>¢(T) it is convenient to rewrite Eq. (3.8)
in the form

(3.99)

T =EL/Mvgh =550 +80s » (3.8")
where
15”20
8o, =arctan ( EP tan(pgD — £)> .

The density of states for a given energy and |p| is
given by dn/dE,

- A (L _adn
:‘*(E’p)_'rr[<h'v,~p 2d_Em>
o0 ( D
+2(E) 2 (—mp Lo )] (3.12)

It is important to note that there is no divergence
in the density of states at E=A,. For <1 we find
that e~"20a6p/(4p? - 1) and therefore Z,(E) ~1. Only
when p—-m —3, does e""20—~1, and as a result
Z,(E)-~0.

cos® (pgD — £,9) +[(1F e~ ™)/ (1 £ ¢~ "2)F st (pgD — £,g)

I

(3.10)

The product Z, (E)8p/8€, however, remains fin-
ite. (See Appendix B).

IV. EIGENSOLUTIONS IN THE UNSTABLE REGION

In the unstable regions the characteristic ex-
ponent becomes complex

p=t(m=-3%+ix), m=1,2,.... (4.1)

As mentioned above the half width of these regions
are of the order of (36)". Therefore, for the cal-
culations of the transition temperature of the sys-
tem only the first, unstable region is important.
In this region we find that when'6~0 ,

x=[(36) -y, (4.2)

where y =|€e|-3. ,
The four solutions for a given E and |p| are

cos[3g(z - D) - ¢,

= g~¥a(z=D) < isin[%q(z _D)- ¢0]) +0(5),
M i +¢o]> (*.3)
$r=ere® cos[2atz=D) +¢,] / +O©)

cos[3g(z = D)+,

o ”Mﬁm( -isin[3q(z - D) +<1>o]> +0(0),
R —isin[3q(z - D) - ¢,]
¢pZ=ee=D) <cos[§q(z _D)=4y] ) +0(0),

(4.4)
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where
e =2(x-iy)/5 .

At z =D the wave functions constructed from the
solutions are

¢t e-i%o
?pa =<'17>a = <_z~ei¢0> ’
ei%o
7 = (ie“%) . (4.5)
The linear combinations
= s yg)e e (4.6)

are of the form given in Eq. (3.6) (for 2=D) at
least in the present approximation. The calcula-
tion of the density of states and the linear combi-
nations which satisfy the boundary conditions can
be done on the same lines as in the former section.

V. CONTRIBUTION OF “STABLE REGIONS” TO A

The self-consistency condition for the order
parameter is

a=gF=g S U,V¥tanh (253 ) (5.1)

The contribution of the stable states [¢ is not in the
region m — 3 £ (36)"] is
(Uv*)t =Im (g(l)g(z)*) + Re (ezioaDg(l)g(z)
+ 5 cos2kpp(L +2)
X [1m][( g(1)2 _ g(z)z)ezipa]
+ ‘gu)(z_'_!g(z)'Z] (52)

where the + sign refers to the sign of the coeffi-
cient C, and g™? are those with a=b=1. Using
Eq. (3.8) we find

. 1xeM0
‘T

-1
x tan(%— 3 ”m>] - 1} . (5.3)
Since we assume L > £(T), the tangent function
oscillates very rapidly. Averaging over these
oscillations by integrating over © = EL /liVp P - 3o
from 0 to 27 assuming all other quantities as con-
stants one finds®

eziqu= 232“10%[1 _

(ez""")gsc =Fe2it107m20 =57%(0)/%(0) =FiR . (5.4)
Therefore

(UV*)* _Im[g(l)g(Z) +Rg‘“ (z)] (5.5)

osc

Expanding the functions g‘*2?’ in a power series of

O near T, yg

(UV*)o50 = [20€/(4€* = 1)] [cosg (2 - D)

+Re{e*****[- cos(¢D)
+i sin(gD)/2¢ ]} + 0(5?),
(5.6)

The contribution of the excitations in the stable
regions is then calculated to be (See Appendix B
for the details of the summation procedure)

F=N(0)g f dp f dE<UV*>oscta“h<2k T>

wp/TT 2|w|

2 TTo, P+ (Ve qd”

-2lw,lz smqDﬂ
wrp (cosaD- 37t ) |

(6.7

=N(0)ga, jo- dpnT

X [cosq(z ~D)+e

where
w,=itkyT(2n+1), n=1,2,....

VI. CONTRIBUTION OF UNSTABLE REGIONS

As mentioned in Sec. IV. only the contribution of
the first unstable region is important. The con-
tribution from states of this region in ¢ has the
same form as that of the stable regions provided
that the primed wave functions of Eq. (4.6) are
used. We find

Img"”g"z’ =sin2¢, cosq(z — D)

=(2y/5) cosq(z - D), (6.1)
iR=7"%(0)/7'(0)=tang,

=—y/[56+(36%+ y°)*/?]+ 0(3) , (6.2)

g'Pg’® =cosq(z - D)+ O(5) (6.3)

where
gl(1,2) = (ul + iU'):.

Both Im g’ ®g’®* and Rg'®'g’® are odd functions
of y and vanish under summation. We therefore
conclude that the contribution of the unstable states
is at most of the order 6.

VII. DETERMINATION OF q AND T,

The first term in the recalculated order param-
eter (5.7) has the same z dependence as the “input”
order parameter (1.2). We demand that the other
contributions are vanish “on the average.” This
demand yields

qtangD =1/b(T), (7.1)

where the extrapolation length » is calculated in
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Appendix C. The transition temperature is then
fixed by the requirement that the coefficient of the
cosq(z — D) term in Eq. (5.7) would be equal to
[N(0)g]~*. Performing the integration over p and
using

[N(O)g]"l =1n_}_°_1_gﬂl s
kBTcs

1.1 wp/T
mitee = S 6y,
B n=0
the transition temperature is fixed according to

_Tﬂ)z‘” -1(3» )___y_ .
ln< TcS nz=(; [tan n +é— n +% ]y (7.2)

=y~ ImInr (3 - iy) +9(%),

where T, is the transition temperature of the bulk
superconductor, I'(z +1) =z1, ¥(z) =8 InI'(z)/0z,
and y =l Vpq/4wk, T, ns. For large values of D, T, s
is close to T,g and approximately In(T,ys/T.s) =1
—Tons/Tes- In this limit we can approximate the
arctangent by the first two terms of its Taylor
series, getting

1T, ns/Tos~@iVe/8 Dk T, ns)?, (7.3)

where we use the value ¢ =m/2D obtained in Appen-
dix C for T,ys— T.s. The behavior of T,5 — T, xs
o« D~2 for large values of D has been verified ex-
perimentally.®

On the other extreme, where T, ys—0, the argu-
ment of the function is large in absolute value and
we can use Sterling’s formula to get

Tens ) _ . (c4nkgT:nsD )
1“( Tos ‘1“( 0.8257%V,

5_(A4mDksTens \* ) ms
24 (0.825m/,, ) +0(Tens) 5

(7.4)

where ¢ =exp[-¢(3) ~1]=2.62 ..., and we use
q=0.825/D (Appendix C).

There is a minimum value of D for which the
system turns superconductive,

D,,=0.8257Vy /cdnky T, - (7.5)

Near this thickness D =zD,,, the transition temper-
. ature increases with increasing D as

(Tc NS/Tcs)zg (24/502)(1 _Dm/D) . (7.6)

VIII. SUMMARY AND CONCLUSIONS

The system of two superconductors in proximity
is investigated. )

A solution is found for the Bogoliubov-deGennes
equations with the order parameter of Eq. (1.2).
We then turn to investigate the system of a finite

superconductor in proximity with semi-infinite
normal metal. This investigation is valid in the
clean limit. The eigenfunctions and eigenenergies
were calculated. It is shown that there is not di- -
vergence in the density of states at E =A_,, in con-
trary to the case of homogeneous and semi-infinite
inhomogeneous superconductor. The quantity 6
=A(T) /% Vzq is found to be a convenient expansion
parameter, near the transition temperature of the
system. The transition temperature of the system,
T.nss as a function of D is calculated from the self-
consistent condition. It is found that T,y =0 for
thicknesses less than D,=&,=iVy/21kyT,s. The
dependence of T, yson D for relatively thick super-
conducting layer is in agreement with experimental
results.

The result b =T (3)Z Vg /31T (D—) obtained
here is in agreement with the result obtained for
a semi-~infinite superconductor in contact with
semi-infinite normal metal.”

APPENDIX A

To calculate the quantity

€% sinhn,, = |#(0) |2 - |7(0)|® ' (A1)
we first show that ,
|@(2)|? - |5(2) |? = (const). (A2)

This is a general property of wave functions in an
inhomogeneous superconductor. To prove Eq. (A2),
we multiply Eq. (2.2a) by #* and Eq. (2.2b) by v*.
Taking the imaginary part of both sides of the
equations then leads to

8 17(2) .
nV b ————':‘S)' =ImAT*T, (A32)
917 2
nVeb 'gf” = ImAT*D, (A3D)
and Eq. (A2) follows. The quantity
Vet(|7|2- |7]?)=V,, (A4)

is the velocity of the excitation in the z direction.

To show this we consider an electron from the
normal region incident at the SN interface (z =0).
It is partially reflected as a hole* and partially
transmitted as a quasielectron. The corresponding
wave functions are

A 1 . - . E
Pin = o exp sz°r+zh_—VF—pz ,

v(z)
a 0 e tE
¢ref=7<1)exp<sz-'f— WF—P z) . (A5)
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The reflection and transmission coefficients are

=|7r|2= |9(0)/7(0) |3,

T=(Vso/Vua) |12]= (Vsu/ Vi) [L/2O) 2. (A6)
Here Vy,=Vzp. The conservation law
R+T=1 (A7)

then leads to Eq. (A4).
For the wave functions under investigation,
Vs, 1 0E <E)p>'1

V_Nz Vb 9p

Equation (3.9’) is then proved by combining Eqgs.
(A1), (A4), (A8), and (3.9).

(A8)

APPENDIX B

Thg normalization of the wave functions is fixed
by [, (|U|2+|V|?)=4(A%L +N2D) =1 or

=z [D+(A/NYL]". (B1)

Using the value of (A/N)? [Eq. (3.9)] neglecting
8m,,/9E and 8&,,/8¢ compared to (L +D)/hVgp,
we find

1 ap

zZ

EN2): = -
(=N7) ThVep ** de

(B2)
and (B2)
(EA2:=1/TRV P

To estimate ZN?2 near the transition temperature
we calculate e™0=|7(0)/7(0)| to find in leading
terms

em20=|a,e ' 1 a_e'? | /|a,| (B3)

where the a’s are the coefficients appearing in the
expansion of the wave-function component gusn,
For most of the stable region (a,,/a,) <6 and
e™ ™0« 1, Therefore Z,(E)=1+0(5), In this re-
gion of €, 8p/de =1+0(8%), and therefore (EN?3)*
=1/77%V, p is constant. Only very close to the
stable regions edges do the above considerations
not hold. Near the first unstable region one finds

g

b(T) =

Ve  Jo p2dplom (1 —e=tTTme1/2)0) /iy 4 1y [(n +4)? +(7’ZVFq/417kBT)2]}

9p y
£ T B4
€ :[yz_(zi 6)2]172' ’ ] (B4)
where

y=lel-3>38.

At the same time, a_,/a,~ 1, and we find

om0 =1~ [y - (§0)°1/2/y. (85)
As Z ,(E)=0 for e""20=1, we deduce that
Z (B)x [y - (38)2]%2/y . (BS6)

The product Z,(E)dp/8€ remains of order 1 also
in the vicinity of the stable region edge. The same
result can be found for m >1. We therefore con-
clude that near the transition temperature (EN?),
can be taken as constant.

The summation procedure is then

E,
2y vx*
E N(VtanthT>

=f:pdp _[uDENZ(.. )dE

= N(0) foldp fowaE(...), (B7)

with a correction of at most of order o.

APPENDIX C

The order parameter g&F, calculated from Eq.
(5.7), contains terms with spatial behavior differ-
ent from that of the “input” order parameter (1.2).
Therefore, we can require only self-consistency
on the average,

fD(gsr-A)dFo, ' (C1)

Integrating over 2 and requiring that the sum of
the last two terms on the right-hand side of Eq.
(5.7) vanish, we find

qtan(¢gD) =1/b(T), (C2)

where

4nTky JEpap T n-o(1 - et TC12D) [[(n+3)° + (B Viq /AT Thp) |

(C3)

To obtain Eq. (C3) we have performed the integration over energy by closing the path of integration to a

semicircle in the upper half of the complex E plane.

For thick superconducting layers T, ys is close to T.
-4mT(n+1/2)D

glect 7 Vyq/4mky T compared to (n+3)?, and e
We then obtain

2 A%
(T, ns) = £

where £(3)=1.2- - -

In this case q(aD™?) is small. Hence we can ne-
compared to 1.

3 4mk,T Z‘”*Z) /Z (m+2)2 =T Ve /37°k5T, (Cc4)
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This result is in agreement with a previous calculation for b, for infinite system.”
In the other limit, when 7, ys=0 and D is finite in Eq. (5.1), we put tan(E/2kzT) =1. The energy integra-
tion now yields

¥ +In(¢D) - [cos(gD) Ci(gD) +sin(¢D) Si(¢D)]

b(0)= T2 . . 5
75(0) sin(¢D) Ci(¢D) - cos(gD) Si(¢D) (C5)
where
* sint * cost
y=0.57721 -, Si(x)=J' sinl g, Ci(x)=—f OSL .
ot ¢ ¢
In the first limit, D> b(T,,) of Eq. (C4) we find from (C2) that
q=7w/2D, (C6)
while in the other limit, T, ys =0, we find by inserting (C5) into (C2) that
q=0.825/D. (cmn
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