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Microscopic investigation of the proximity effect in a finite geometry
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The system of a finite superconductor Si in proximity with a weaker superconductor S, is considered.

The order parameter is assumed to vary in space as h, cos[q(z —D)] (0& z & D) in S„and as

hzcosh[K(z + L)J (—L & z & 0) in S,. The Bogoliubov-deGennes equations were solved for the two regions:

z (0. The transition temperature T,„, of the system is evaluated for the case where S2 is a thick normal

layer. The dependence of T,„s on the thickness D is in agreement with experimental results.

I. INTRODUCTION II. SOLUTION OF THE BdG EQUATIONS

The Bogoliubov-deGennes' (BdG) equations for
the two-component wave functions (U, V) of the ex-
citations in an inhomogeneous superconductor
were extensively treated in the last few years. In
the absence of a magnetic field, a procedure was
devised for an analytic solution of these equa-
tions. ' This method was used to calculate the
wave functions for order parameters of the form
tanhaz' and of the form 6, —h, e .' These forms
for the order parameter (or pair-potential) may
describe the behavior of a semi-infinite supercon-
ductor. For a finite superconductor the boundary
condition of the free interface is

d4
free interf ace

%e consider here a system of a superconductor
S,(0 & z & D) in contact with a weaker superconduc-
tor S,(-L & z & 0). Near the transition temperature
of the system, T i 2 the linearized Qinsburg-
Landau equation provides us with. the behavior of
the order parameter.

The BdQ equations in the absence of a magnetic
field are

(E+E„)u=(h'/2rrt) V'u+ i',
(E —EF)v=(Ir'/2m)V'v+ d, v

(2 1)

where E is the energy of the excitati, on relative to
the Fermi energy, EF, @ is the Planck constant
over 2m, and m is the electronic effective mass.
Substituting (u, v) =(u, It) exp(ikv r) and neglecting
terms of the order of d/EF (Andreev or WKBJ
approximation) these equations become

dQEu=-ih VFP + Av
dz

d8Ev=i O'VFP
d

+ hu,
dg

(2.2)

f„=univ (2.3)

obey'

where Vr is the Fermi velocity and P= Vs,/VF. The
functions

h(z) = b,, cos[q(z —D)]e(z)

+ g cosh[A(z, +L)]e(-z),

where

e(z}=O(1) for z&O(z) O).

The order parameter of Eq. (1.2} is chosen for the
present investigation. In Sec. II the BdQ equations
are solved within the Andreev' approximation
(or WKBJ approximation). In Sec. III we consider
the case where S, is a thick normal layer (6, =0).
%e construct the wave functions which match
smoothly at z =0 and vanish at the free interfaces.
The eigenenergies then follow. In Sec. IV the tran-
sition temperature of the S —N system is calcu-
lated.

df, = -d dVj P + d) f, ,
d

dEf =-i AVFp -b f .2 dz 1

These equations were decoupled to give'

E' ft = -(@VFP)', +&'
l= x,2

-(-1) @VFP fts dZ
48

%'e realize that the substitution

d, =exP(df V
dz d

FP

(2.4)

(2.5)

(2.6)
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where g, obeys

E'g& = -(hvF p) +(-1)'2hh VFPd dz (2.7)

i pqz ~ l inq(z-D) i pqzIg, —e ~ Oe e (2.8)

may be helpful especially for E«4max.
For the order parameter of Eq. (1.2) in the re-

gion z ~ 0 we expand the solution in a Fourier
series:

The characteristic parameter p is determined so
that the infinite determinant of coefficients van-
ishes. The evaluation of p may be done by the
technique used for solving Matieu functions. Near
Tcs s ~ andw f d

&' —p' —=1 —25p2/(2p2+2c2 —1),

b', =(-I)'[(5p/(2p+1)]b.',

where
Here the coefficients are determined from the re-
currence relations p ~ +vl s1 —+1 +2 (2.10)

[(n +p)' —e']a„' + (-1)'i5[(p+ n+ 1)a„'„,

+(p+ n —1)a„',] = 0 (2.9)

5 = ~,/n VFpq and c = Z/riV, pq ..

In order to deal with real quantities we use
b„' =(i)"a„' determined by

[(n + p)' —e']b„' —(-1)'5[(p + n + 1}b„'„
—(p+ n —1)b.', ] = o (2 9')

For a given value of E,p, and -p are two inde-
pendent solutions (p v m —2). Substituting the so-
lutions back into Eq. (2.4) we find

a,'/a,' = sgn( pP). (2.11)

In the regions around e = m —2 (unstable regions),
p has an imaginary part. However, the halfwidth
of these regions is of order (-,'p)" (m &0) and are
very narrow near T„,.

CS pe
The wave functions for agivenE and p are four:

I u 2
N „»„f exp[a 5 sin[q(z —D)]/G, (abp)+ exp{-a5 sin[q(z —D)])62(abp)

yb
~

Nelq»qa
~

1 2

( v, ( -i exp{a 5 sin[q(z D)] fG, (abp)+ib exp{-a5 sin[q(z —D)]]G,(abp) j
(2.12)

eiPky ~ Cleitek(y+ iL)
Ps) n (2.13)

where the C„' and p are obtained from the set of eq-
uations

where N is a normalization constant, a = sgn(vrz),
b = 1(-1) corresponds to an electron (hole) like ex-
citations, and p is taken as the characteristic para-
meter with Hep ~ 0.

In the region -L & z & 0 the solutions are formally
obtained by the coordinate change z -y = iz, i.e. ,

and is occupied by a normal metal (N). The solu-
tions in the normal metal are

(3.1)

For simplicity it is assumed that the Fermi vel-
ocity and momentum of the electrons in the two re-
gions z~&0 are the same.

The linear combinations which satisfy the bound-
ary conditions at z=0, -L,D can be written

[(p+n)'+ z "]C„'

+5'[(p+n+ 1)C„'„+(p+n —1)C',]=0, (2.14)

where 5'=&2/}2v~kp and e'=E/8VFpk. For 5'-0
we find

/U N
elkp~'2 gg'( efa2F2(S+ L)

kvi

In the normal region (z ~ 0)

(3.2)

p2 ~ el2 25g2p2/(4p2+ I)

with a pure imaginary p.

III. EIGENSOLUTIONS FOR SN GEOMETRY.
STABLE 6 REGIONS

(2.15}

a

Aexp
@

z+L

Bexp
@

z+L
(3.3}

We continue our investigation for a simpler geo-
metry where the region -L & z & 0 is thick (L -~)

In the super conducting region

N (q+x e-qq&+ C q -xefqqD) (3 4)
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From E(l. (2.8) we find (c qt: m —2),

a „'/a,'= (a'„ja,')*. (3.5)

.t.q t CO ~) ittPCD .t..- 1/-S 4' } &zttzD-(3 8)
I, sintI) i (cosQ j

Therefore at z -D =0 we have in the stable regions
of a

of exponents

ii)„(e"o2""» ) (u(0) )'exp g„+ 2"
I I

=I
I

. (3.'f)
e

' tt»l& u» ) (Dttt )(o) +

Matching the solutions and their derivatives at z
=0, one can verify' that C= +1,8 =+A are real con-
stants, and that the respective eigenenergies are
determined by

where the upper + sign stands for 5 = +1, and p )0.
For T=T,e e (5-0)/=25@/(4e —1).

The coefficients can be chosen as C, = C„=C and
X,=e""N, where

1 y e-"20 E

(3.8)

e~(i[) +u, (D+L)]]=1.

For a thick normal layer it is useful to allow k~ a
slight P dependence [of order 1j(L+D)] so that we
can let y=0.

We write now the components of g;(e = 0) in terms

(4/N),' = e'i20 Sinhi)» /Z, (E),
where

(3 9)

Here the + sign corresponds to solutions with C .
=+1. The coefficients of the wave functions at the
normal region are given by

(1+e "20)/(1 we "»)
Z Ez=

cos'(pqD —(»)+[(1v e " )»j(1+e ~ )2]0' ins'(pqD —$„) ' (3.10)

In Appendix A it is shown that

e &Osinhg„=~=V Sp

vugg BC
(3.11)

The product Z, (E)Bp/()e, however, remains fin-
ite. (See Appendix 8).

IV. EIGENSOLUTIONS IN THE UNSTABLE REGION

N ~ Z~ E Be
(3.9'}

For L»g(T) it is convenient to rewrite E(l. (3.8)
in the form

i(q =EL/Ii DFP ——,'))» +50» (3.8'}

where

1 7-e
tt = arntan „ tan(nqtt —qt)

where v~, and v„, is the s component of the exci-
tation velocity in the superconductive and normal
metal, respectively.

Therefore,

In the unstable regions the characteristic ex-
ponent becomes complex

p =+(m--,'+ix), m=1, 2, . . . . (4 1)

(4 2)

where y =
I
e

I
—2.

The four solutions for a given E and IP I
are

As mentioned above the half width of these regions
are of the order of (-,'()}". Therefore, for the cal-
culations of the transition temperature of the sys-
tem only the first, unstable region is important.
In this region we find that when'5- 0,

~ =[(-'&)'- y'I"

The density of states for a given energy and Ip I is
given by dn/dE,

I

+ Z (E)— — " . (3.12)
()p D
Be SvFP Be

It is important to note that there is no divergence
in the density of states at E =6,. For 5«1 we find
that e "»q).5p/(4p' —1)and therefore Z, (E) = 1. Only
when p-m- —,', does e "20-1, and as a result
Z, (E)-0.

~~

cos [-,'q(z -D) —y,]
e-zz(z-D) + 0(())i sm [-,'q(e —D) —y,]

i sin[-, q(z D) + P,]-~ ~ 1 (4.3)

cos[zq(~ -D)+(t.l

isin[-,'q(e -D) —-y,]
-zq(z- D) +0 (())cos[-', q(z -D) —y,]

~

~(4 4}
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where

e' o=2(x-iy)/5 .

At z =D the wave functions constructed from the
solutions are

(4.5)

near T~NS

(UV*)„,= [25~/(4~' 1)]fcosq(z —D}

+ Refe""'[- cos(qD)

+i sin(qD)/2e]]]+ O(6')

(5.6)

The contribution of the excitations in the stable
regions is then calculated to be (See Appendix B
for the details of the summation procedure)

The linear combinations

g,"=(g,'+g, )e" ' (4.6)

are of the form given in Eq. (3.6) (for z =D) at
least in the present approximation. The calcula-
tion of the density of states and the linear combi-
nations which satisfy the boundary conditions can
be done on the same lines as in the former section.

"&)«r
= N(0)g4~ dp ((T

o ~ 4lo&ol + IVFqp

—2 I (o„ I z sinqDx cosq(z —D) + e " cosqD—
FP 2l co„l

(5.7)

where

V, CONTRIBUTION OF "STABLE REGIONS" TO 6 &d„=i zkzT(2n+1), n=1, 2, ... .

The self-consistency condition for the order
parameter is

b, =g6'—=g Q U„V„*tanh
n B

(5.1)

[g(l) ~2 ~ ~g&2) [2] (5.2)

where the + sign refers to the sign of the coeffi-
cient C, and g"'" are those with a=b=1. Using
Eq. (3.8} we find

. 1+8 "»
2i PqD 2e2iggo 1

1T- e ~»

-1
x tan 2 1$QhVP

(5.3}

Since we assume L» f(T), the tangent function
oscillates very rapidly. Averaging over these
oscillations by integrating over e =EI./hV+P -',)7»-
from 0 to 2w assuming all other quantities as con-
stants one finds'

(e"'v)' =ve2((M "2o=+v+(0)/u(0): +(R. —

Therefore

(5.4)

The contribution of the stable states [q is not in the
region m ——,'+(-,'5} ] is

(U~)+ = Jm (g&& &g&»w) y Re (e»~~Dg&»g&»

+ —,
' cos2k~P (I.+ z)

[1m[(g(l) g(2) )e2(Pq]

VI. CONTRIBUTION OF UNSTABLE REGIONS

As mentioned in Sec. Df. only the contribution of
the first unstable region is important. The con-
tribution from states of this region in q has the
same form as that of the stable regions provided
that the primed wave functions of Eq. (4.6} are
used. %e find

Img'(»g'"& = sin2&t&, cosq(z —D)

= (2y/5) cosq(z —D),

iR = v' (0)/u'(0) = tan &Po

= -y/[-,'6+ (-,'P+ y')"']+ O(6),

g'"'g'"' = cosq(z —D)+ O(5)

where

(6.1)

(,6.2)

(6.3}

VII. DETERMINATION OF q AND T~ Ns

The first term in the recalculated order param-
eter (5.7) has the same z dependence as the "input"
order parameter (1.2). We demand that the other
contributions are vanish "on the average. " This
demand yields

g'""= (u'+ iv'};.
Both Img'~'g'& and gg' 'g' ' are odd functions

of y and vanish under summation. %e therefore
conclude that the contribution of the unstable states
is at most of the order 5'.

(UV+)+ =1m [g(&.&g(2)*+Rg&a&g(2&] (5.5) q tanqD =1/f&(T), (7 1)

Expanding the functions g" " in a power series of where the extrapolation length b is calculated in
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Appendix C. The transition temperature is then
fixed by the requirement that the coefficient of the
cosq(e -D) term in Eq. (5.7) would be equal to
[N(0)g] '. Performing the integration over p and
us pig

I-T, /T„=(vhV„/8Du, T, „,)', (7.3)

where we use the value q = v/2D obtained in Appen-
dix C for T, Ns T s The behavior of T s T, Ns
oc D ' for large values of g) has been verified ex-
perimentally. '

On the other extreme, where T,„s 0, the argu-
ment of the function is large in absolute value and
we can use Sterling's formula to get

c NS C 47t'kB T~ NSD

5 4makB Tc NS

24 0.825KVF
+ e Ns

(7.4)

where c = exp[-g( —,') —1] = 2.62 ... , and we use
q =0.825/D (Appendix C).

There is a minimum value of D for which the
system turns super conductive,

D„=0.8258V&/c4mk~T, ~ . (7.5)

Near this thickness D )D, the transition temper-
. ature increases with increasing D as

(T,„,/T, ~)'=—(24/5c')(1-D /D) . (7.6)

[X(0)g]-' = ln
kB Tcg

1.14 (gyln
' = (n+-,') ',

B n=o

the transition temperature is fixed according to

ln '"'= t -' ~, — ~, y-'
(7.2)

=y 'Im InZ'(-,' —iy) +q(-,'),
where T,~ is the transition temperature of the bulk
superconductor, I'(z +1) =z!, g(z) = s Inl (z)/eg,
and y =hVF q/4zk~T, ~. For large values of D, T, Ns

is close to T,s and approximately ln(T, „S/T,~) = 1
—T, N,/T, ~. In this limit we can approximate the
arctangent by the first two terms of its Taylor
series, getting

APPENDIX A

To calculate the quantity

"»sinhn„= I~(0)
I I.-(o)

we first show that

I~(z) I' —Iv(z) I'= (const).

(A1)

(A2)

This is a general property of wave functions in an
inhomogeneous superconductor. To prove Eq. (A2),
we multiply Eq. (2.2a) by u* and Eq. (2.2b) by v*.
Taking the imaginary part of both sides of the
equations then leads to

8VFP = Imb, u "v,&!u(s)!
ag (ASa)

NV~P — = Im4u*v,
~ l~(~)!

az

and Eq. (A2} follows. The quantity

(ASb)

(A4)

zs the velocity of the excitation in the s direction.
To show this we consider an electron from the

normal region incident at the SN interface (z =0}.
It is partially reflected as a hole' and partially
transmitted as a quasielectron. The corresponding
wave functions are

superconductor in proximity with semi-infinite
normal metal. This investigation is valid in the
clean limit. The eigenfunctions and eigenenergies
were calculated. It is shown that there is not di-
vergence in the density of states at E =b, „in con-
trary to the case of homogeneous and semi-infinite
inhomogeneous superconductor. The quantity 5

=g(T)/RV„q is found to be a convenient expansion
parameter, near the transition temperature of the
system. The transition temperature of the system,
T,», as a function of D is calculated from the self-
consistent condition. It is found that T,» =0 for
thicknesses less than D =),=hV„/2nk~T, ~. The
dependence of T, „son D for relatively thick super-
conducting layer is in agreement with experimental
results.

The result b = 7v(3) O'
VP/ wS'T (D-~) obtained

here is in agreement with the result obtained for
a semi-infinite superconductor in contact with
semi-infinite normal metal. '

VIII. SUMMARY AND CONCLUSIONS

The system of two superconductors in proximity
is investigated.

A solutiog is found for the Bogoliubov-deaennes
equations with the order parameter of Eq. (1.2).
We then turn to investigate the system of a finite

(~(~)l
&tran = t

&v(~)i

(0) .~ is
(exp ek ~ '5 — e).

(Ij
(A5)
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(0)/n(0)

T =(Vg,/Vt)(, ) it i=(vs, /Vt)( ) 1/M(0)
i

.
Here V„,= V~p. The conservation law

(A6)

(A7)

The reflection and transmission coefficients are 8p yb'-(-'«]" '

where

S =
I e

I

- a - 25

At the same time, a,/ao- 1, and we find

(B4)

then leads to Eq. (A4).
For the wave functions under investigation,

Vs. 1 8Z ~ p
Vgg V~p ep

(AB)

Equation (3.9') is then proved by combining E(ls.
(A1), (A4), (A8), and (3.9).

APPENDIX 8

'-""=
nvmSVFP ~ 8g

(=-w')'=1/~a v,p.

(M)

(»)

To estimate -"N' near the transition temperature
we calculate e "2() =

i
V(0)/u(0) i

to find in leading
terms

e~20= a,e " +a,e" a, (Bs)

where the a's are the coefficients appearing in the
expansion of the wave-function component g

For most of ihe stable region (a„/ao) cc 5 and
e ""«1. Therefore Z, (E) = 1+0(5). In this re-
gion of e, Bp/Be = 1 +0(6'), and therefore ("N')'
= I/mAVF P is constant. Only very close to the
stable regions edges do the above considerations
not hold. Near the first unstable region one finds

The normalization of the wave functions is fixed
by f-'i(

I
II I'+

I
V ') —= 4(A2L+N'D) =1 or

N' = .' [D+ (A/N}'L—]-'

Using the value of (A/N)2 [E(I. (3.9}]neglecting
B)I»/BE and B$»/Be compared to (L+D)/gvrp,
we find

As Z, (E) =0 for e "»= 1, we deduce that

Z, (E)- [y'- (-'5)']"/y

(B5)

PdP "-N ... dE

-=~(()) f'4) f"4z(. . .), ())7)
p p

with a correction of at most of order 6.

APPENDIX C

The order parameter gF, calculated from Eq.
(5.7}, contains terms with spatial behavior differ-
ent from that of the "input" order parameter (1.2).
Therefore, we can require only self-consistency
on the average,

J
D

(gF —6) dz =0.
0

(C1)

Integrating over & and requiring that the sum of
the last two terms on the right-hand side of Eq.
(5.7) vanish, we find

qtan(qD) = I/&(T),

where

(C2)

The product Z, (E)Bp/Be remains of order 1 also
in the vicinity of the stable region edge. 'Ihe same
result can be found form &1. We therefore con-
clude that near the transition temperature (RV'),
can be taken as constant.

%he summation procedure is then

N (J„V„"tanh "
)

(Cs)
IV f'p'dpi'„, (I —e 4'ri"+'t')D)/((n+-') [( 'n)'+(k +V q/4vk T)'])

4&Tk fl pdpQ (I e~)(T(n-&/2)&)/[(n+ 1)2+(k V q/4&Tk )2]

To obtain E(I. (CS) we have performed the integration over energy by closing the path of integration to a
semicircle in the upper half of the complex E plane.

For thick superconducting layers T, „s is close to T„. In this case q(o(D ) is small. Hence we can ne-
glect h Vqq/4vk~T compared to (n+ —,)', and e "~"" ' compared to 1.

Vfe then obtain

f(T.„)= — g (n+ ,')-' g (n+--,')-'=7g(3)nV, /Sr'k, T,
2 SVF

r B no no
where g(3) =1.2 ~

(C4)
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This result is in agreement with a previous calculation for b, for infinite system.
In the other limit, when T, N~ =0 and D is finite in Eg. (5.1), we put tan(E/2ksT) =1. The energy integra-

tion now yields

where

y +1n(qD) —[cos(qD) C i(qD) + sin(qD) Si(qD) ]
sin(qD) Ci(qD) —cos(qD) Si(qD)

(C5)

I" sinty=0.5VV21, Si(x) =
Jl dt, Ci(x) =-

0

"cost
d

In the first limit, D» b(T„) of Eq. (C4) we find from (C2) that

q = n/2D,

while in the other limit, T, Ns -0, we find by inserting (C5) into (C2) that

q = 0.825/D.

(C6)

(C&)
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