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Born-von Karman (BvK) lattice-dynamical calculations were performed for the rhombohedral Chevrel-
phase superconductors such as PbMo6S, . The dynamical matrix was obtained using Lennard-Jones (LJ)
potentials, which describe interactions between Mo-Mo, Mo-S, S-S, and Pb-S pairs of atoms. The
parameters for these potentials were adjusted using the comparison of the moments of the phonon spectrum
F(co) with their values obtained from heat-capacity data. Dispersion curves along the threefold axis show a
splitting of the three Pb-atom-dominated modes into a low-lying transverse doublet and a longitudinal singlet.
These branches hybridize with the acoustic branches. F(co) is calculated for binary and ternary Chevrel-
phase sulfides and selenides by making appropriate mass changes. Moments and site-dependent projections of
F(co) are calculated and their associated Debye temperatures are tabulated. Torsional character is found for
certain modes in agreement with previous identifications made using the molecular-crystal model. The heat
capacity, entropy, inelastic neutron-scattering spectra, Mossbauer recoil-free fraction for "Sn,
anharmonicity, the apparent T resistivity below 40 K for sputtered films, and the form of the
superconducting tunneling spectrum a'F are discussed. The applicability of the BvK approach using LJ
potentials indicates that short-range interactions are important. Hence, the previously introduced molecular-
crystal model is a reasonable, though not rigorous, simplification of the lattice dynamics of this important
class of superconductors.

I. INTRODUCTION

The ternary compounds of the form XMo,S, or
XMo,Se, which form the Chevrel-phase' structure
are a highly interesting group of materials which
have received considerable attention in the last
few years. ' ' In these materials the X site can be
occupied by any one of a large class of metal
atoms ranging from Cu, Fe, Pb, Sn, . . . to the rare-
earth metals. " Al.so, Mo,Se, is known" to form
the same crystal structure, with the X site being
unoccupied. Some of the properties of interest of
this group of materials are their generally high
superconducting transition temperatures T„"
high critical fields, ""and in the case where X
is a rare-earth metal, an apparent occurrence
of both magnetic ordering and superconductivity
as the temperature is lowered either consecutively
or simultaneously. '

There has been progress recently in understand-
ing the electronic band structure of these com-
pounds, "'"but a rigorous microscopic theory of
the electron-phonon interaction in these materials
is very hard to achieve at the present time. In
this work, we have constructed a phenomenological
model of the lattice dynamics of this group of
compounds, in an attempt to elucidate the basic
structure of the phonon spectrum in a manner.
consistent with recent heat-capacity, '""neu-
tron scattering, ""and Mossbauer"'" measure-
ments. In addition, such a model might prove
useful as a basis for a microscopic understanding
of the superconducting properties of these ma-

te rial.s.
Figure 1 shows schematically the crystal

structure of the Chevrel-phase compounds. ' It
consists basically of Mo,S, or Mo,Se, octahedra
as the basic units arranged in a quasicubic struc-
ture (with a rhombohedral distortion), with the X
site occupying the interstitial sites of the rhombo-
hedral lattice. The lattice constants and rhombo-
hedral angles for the various compounds appear
in Ref. 1. The X atom occupies a relativel. y large
volume between the octahedra and its nearest
neighbors are the S or Se atoms on the corners
of the octahedra adjacent to the X site. Physical-
ly, this implies rather weak coupling or overlap
between the electrons associated with orbitals
localized on the X atom and the bonding electrons
of the Mo and S (Se) atoms. In particular, if one
associated the superconductivity as being pri-
marily associated with the d electrons on the Mo
atoms, it is possible to understand qualitatively
why rare-earth f electron spins on the X sites are
not catastrophic from the point of view of destroy-
ing Cooper pairs in the superconducting phase.
An additional feature which has been observed in
CuMo, S, (Ref. 23) is that for this compound at
least, the Cu atom sits not at the X site but on
any one of six possible sites arranged in a ring
about the X site, with frequent jumping between
such sites. Similar phenomena have been ob-
served in other cases when X is from the third
row of the Periodic Table. " Quite frequently it
is also observed"" that these compounds do not
form stoichiometrically but with an excess of

18 3082 1978 The American Physical Society



LATTICE-DYNAMICAL CALCULATIONS FOR CHEVRKL-PHASE. . .

octahedra coupl. ed to the translational degrees of
freedom of the X atoms as in a cr'ystal with two
atoms per cell. In this model, couplings between
these different modes are neglected. We discuss
l.ater the validity of this model in view of the
present calcul. ations.

II. DESCRIPTION OP THE CALCULATION

FIG. 1. Illustration of the crystal structure of
Chevrel-phase compounds (after Ref. 9). Four Mo688
(or Mo&Se8) units are shown occupying the four front
corners and an.X atom garge solid circle) the body-

-centered position of an imagined cube. Rhombohedral
directions are indicated by arrows.

A standard Born-von Kkrmln (BvK) approach
was used, rather than the molecular-crystal for-
mulation of the lattice dynamics. By using a
BvK approach all degrees of freedom are treated
together, hence couplings between internal and
external modes are automatically taken into
account. The vibrational frequencies e, (q),
where j denotes a branch index (j=I, . . ., 3n),
and n is the number of atoms in the unit cell,
are obtained by solving the secular equations

about 20/0 of X atoms. The results" for CuMo, S,
imply that there is enough space in the region
around the X site to'accommodate occasionally
more than a single X atom on these sites. Two
conclusions may be drawn from this. One is that
the potential experienced by the X atom is not
likely to be a deep quasiharmonic-type potential
well, but may have subsidiary minima around
the central minimum, or at least be relatively
anharmonic. The second is that quite often a
situation exists in which two X atoms may be
sitting around an X site as an interstitial dumb-
bell pair, with consequent effects on the lattice
dynamics in terms of resonant modes, etc. While
these are important effects which undoubtedly
have to be investigated further, we have in the
present work restricted ourselves to the purely
stoichiometric compounds and worked in the
harmonic approximation in order to provide a
basis on which further refinements such as the
above can be made. We note that the Axgonne
neutron scattering measurements"' with which
the present calculations are compared were per-
formed on PbMo688 an ~"M 6Ss samp s whic
were actually stoichiometric.

In interpreting the heat-capacity"'" and neu-
tron scattering data, "'"use was made of a
molecular-crystal model. which arises naturally
from a consideration of the crystal structure
(I ig. I). In this model, we decompose the lattice
dynamics into external and internal modes of the
octahedra, the external. modes being associated
with torsional oscillations of the octahedra and
with translational degrees of freedom of these

D(q), the dynamical matrix at wave vector q, is a
3n x 3n matrix whose elements D~~ were evalu-
ated using the expression

(2)

where M„ is the mass of the Nh atom in the unit
cell. and r& is the vector from the origin to the
unit cell /. The force constant p" z (OE) is the
negative of the force exerted in the o. direction
on atom ~ located in unit cell 1=0 at the origin,
due to a unit displacement in the P direction of
atom z' in the lth unit cell. The interactions be-
tween atoms were taken to be of the pair-potentiaI.
form, and the force constants were evaluated
using the following

rarg=X5oy + F r
where-

V=. V"""(r) —V'"" (r)/r.
The potentials V"" (r) were taken to be of the
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TABLE I. Lennard-Jones parameters used in lattice-
dynam ical calculations.

KK A~' (erg) O.K K (A)

Mo- Mo
8-S
Mo-8
Pb-S

3.9 x10 &2

1.8 x10 &3

2.0 x10 &2

2.15x10 ~2

2 4
3.7
2.2
2.65

Lennard-Jones (LJ) form:

38 3
(&u', (q =0)) = Q [&u, (q =0)]',

2= 1

8,",(m = 2) = (I/k~)[-,'(aP, (q))] '~',

3+ 3

x.)~=o)= ll~, )a=o)"" ")
(3)

and

3' 3
—= xxp g 1xtx,.(X = 0)),

f-"1

8q, (I=0) =(k/ks)e''(u~.

For the calculation, the lattice constant (6.551 A),
rhombohedral angle (89.33'), and the atomic
positions were taken from the x-ray crystallogra-

where A"" and &"" were adjustable parameters.
V'"" (r) and V"""(r) denote the first and second
derivatives of V"" (y), respectively. Four dif-
ferent potentials were used for V"" (r) for
PbMo, S„which describe interactions between
two Mo atoms, two S atoms, an Mo atom and
a S atom, and a Pb atom and a S atom. These
potentials are denoted V"'"', V",V '~ and V

Associated with these four potentials are eight
parameters whose values are tabulated in Table I.
The eight parameters were initially guessed using
the intuitive expectation that the 0"" values are
closely related to average atomic spacings and the
A."" values are of the order of k~, the Boltzmann
constant, times the melting point of related ma-
terials, such as Mo metal, n-S, MoS„and PbS.
The initial guess was used to calculate frequen-
cies [Eq. (l)] a". the I' point (q = 0), where the
three acoustical branches are at zero frequency.
The remaining 42 solutions were used to compute
a Debye temperature associated with the second
moment of the q = 0 spectrum, and one associated
with the geometric mean frequency u~, or log-
arithmic moment of the q=0 spectrum. The
moments and associated Debye temperatures are
denoted as follows:

phy study by Marezio et al. The transformation
matrix from rhombohedral to Cartesian coordina-
tes was constructed from the appropriate metric
tensors. The sum over f in Eq. (2) included the
origin cell and one layer of adjacent cells, or
3' =27 cells total. (To check that 27 cells was
adequate, the sum was increased to 5'=125 cells,
or two layers surrounding the origin cell and the
Debye temperatures associated with the resultant
moments changed a mere 0.02/0. ) Note also that
the second sum on the right-hand side in Eq. (2)
is for the evaluation of self-terms of the form
@")t(00). The sum rule that requires that at equi-
librium the net force is zero, indicates that
Q"))(00) is the negative of the sum of the forces
acting at site ~ in cell. /=0 from interactions with
all other atoms.

The calculated values of 8;,(m) for m =0 and 2
were compared to values reported in the literature
for 8(m) obtained from an analysis of the high-
temperature heat capacity of PbMo, ,S,."'"The
heat capacity 8(m) of course is not bmited to
q =0, so a small correction was introduced to
eliminate the effect of the acoustic branches on
8(m) obtained from the heat capacity. Otherwise,
for the present purposes the phonon branches
were expected to be quite nondispersive and such
a comparison is not unreasonable, as will be
shown. The eight parameters were then adjusted
and the calculation iterated until reasonable agree-
ment was obtained with the heat-capacity values.
The final parameters for A.

""were within a factor
of 5 on the average of the initial guesses, while
the values of o"" were within 8% on the average
of the initially guessed values.

III. RESULTS AND DISCUSSION

A. Dispersion curves

Dispersion curves were examined along the
high-symmetry threefold axis A, using the values
of the parameters in Table I, which were obtained
above from the q = 0 comparison with heat-capacity
results. For clarity and insight results for
computer-simulated binary Mo,S, also were ob-
tained by setting the A parameter of Table I
equal to zero (see Fig. 2). The longitudinal-acous-
tic (LA) branch is a singlet, while the transverse-
acoustic (TA) branch is a doublet in Fig. 2. The
dispersion curves of Fig. 2 are quite ordinary
in shape and it is important to note that they cut
off in the 10-meV region. An acoustical cutoff
frequency of -10 meV was identified previously
in the inelastic-neutron-scattering (INS) deter-
mination of the phonon density of states of poly-
crystalline PbMo, S„utilizing the molecular-
crystal. model. ' This agreement with experiment
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FIG. 2. Acoustical-branch dispersion curves cal-
culated along the threefold axis for computer-simulated
Mo6S8. LA and TA denote the longitudinal-acoustic
singlet and the transverse-acoustic doublet, res'pective-
ly.

provides confidence in the reasonableness of the
parameter values in Table I. A. was then
restored to its original value and Fig. 3 shows
for the ternary the three acoustical branches and
three optical branches that at q = 0 are associated
primarily with Pb-atom displacements. The
acoustical branches of this ternary do not possess
the simple shape found in Fig. 2 for the binary.
However, it is quite clear that the unusual shape
of the acoustical branches of the ternary is as-
sociated with hybridization of these branches with
those of the Pb-atom-dominated optical modes.
The TA doublet is repelled by the transverse-
optic (TO) doublet due to symmetry-dictated non-
crossing rules. The eigenvectors indicate that
while displacements of the Pb atom dominate the
TO branch near I', they dominate the TA branch
near the point Z. The Pb-atom displacements are
always l.arge in the 5-meV region between I' and
Z. Hence, the experimental identification via
INS' ' that the Einstein-like feature at -5 meV
is due to displacements of the Pb atom is con-
firmed and clarified via the present calculations.

In Fig. 3 it can also be seen that the LA and LO
branches repel, and in a manner often seen for
molecular crystals. The dip in the LA branch
near (—'„—'„a), hence, is a striking feature of the

q ALONG A

FIG. 3. Dispersion curves calculated along the three-
fold axis for PbMo688 showing the hybridization of the
acoustical and Pb-atom-dominated optical branches.
The symbols & and ~) denote the transverse doublet and
longitudinal singlet, respectively.

geometric arrangement for such ternary Chevrel-
phase supereonductors. This is in contrast to
the celebrated dips in the acoustical-branch dis-
persion curves found experimentally" for super-
conductors such as Nb, "or NbC." In these latter
cases the dips have been attributed to selective
phonon softening due to the q dependence of the
electron-phonon interaction" and/or peaks in

)((q), the generalized susceptibility. " We note that
the dispersion curves in Fig. 3 are predictions
based on our model and await experimental con-
firmation, which would require appropriate quality
single crystals unavailable to date. In particular,
it would be of interest also to see if the splitting
of the TO and LO modes at q =0 is as large as
we obtain. Qualitatively, a splitting is expected
due to the rhombohedral. distortion of the sulfur
cube surrounding the Pb atom. The two sulfur
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FlG. 4. Complete set of dispersion curves calculated
along the threefold axis for PbMoeSs.

atoms al.ong the [111]direction are closer to the
Pb than the other six' (2.79 vs 3.12 A), which
results in stronger bonding and a higher vibrational
frequency along the [ill] than in the transverse
direction. Figure 4 shows the dispersion curves
a ng A for a l. 45branc"es f the PbM 6 8 spec
trum. Note the relatively dispersionless charac-
ter of most of the modes.

B. Phonon density of states

The phonon density of states E(~), where

E(~) = g ~4 - ~J (a)),
%ed

is obtained by uniformly sampling q values over
the irreducible section of the first Brillouin zone
(BZ) which is —,', the volume of the first BZ. This
irreducible section mas constructed from the
fundamental primitive unit cell of the reciprocal
lattice, rather than from the Wigner-Seitz uriit
cell. Only for trigonal R space groups is there
no clear advantage of one method of construction
over the other. " Results are shown in Fig. 5 for
Mo,Se„PbMo,S„SnMo,S, and Mo,S„where the
histogram bin width is 0.5 meV and 30 q values
were sampled each time. The parameter values
of Table I mere used for each of the four spectra
in Fig. 5, except that for the binary compounds

was set equal. to zero, as before. Appro-

FIG. 5. I'(&) calculated for the indicated compounds.
The results for the binaries and the Sn ternary were
based on the parameters for PbMo&S8 except for appro-
priate mass changes and/or the switching off of the
Pb-S interaction. Thirty q values were sampled in the
irreducible zone and a histogram bin width of 0.5 meV
was used.

priate mass changes also were made to simulate
E(&u) for SnMo, S, and Mo,Se,. The rhombohedral
lattice constant and angle for PbMo, S, was re-
tained throughout. A comparison of the spectra
of Mo,Se, and PbMo, S, indicates two clear dif-
ferences that mere identified in the INS experi-
ments' previously. First, the ternary sulfide
has a prominent 5-meV "Einstein-like" feature,
due to the Pb-atom displacements, which is ab-
sent in the binary selenide. Second, the ternary
sulfide has significant spectral weight in the
40-50-meV region, while the binary selenide
does not. This mas correctly attributed to the
mass difference between Se and S, previously. '
Comparison of E(&u) for SnMo, S, in Fig. 5 to the
INS experimental results"" indicates that the
calculated Sn-dominated Einstein-like mode is at
too high an energy (-7 vs -5 meV), but that A~ 8

mould yield satisfactory. agreement.
Convergence tests will. be discussed when the

moments are calculated, but it can be seen in
Fig. 6 that upon increase of the number of q
values sampled to 650, the character of the spec-
trum for PbMo, S, remains the same as found in
Fig. 5. The major difference between the PbMo, S,
spectra of Figs. 5 and 6 is that the higher-density
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FIG. 6. I'(u) calculated for PbMo6S8 as in Fig. 5 ex-
cept that 650 q values were sampled in the irreducible
zone. The envelope of the histogram is drawn and
shaded in.
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q sampl. ing of Fig. 6 inct.udes enough smal. l-q
values that the expectation that E(&o) = aP as &u-0
starts to become apparent. Also, gaps can be
seen clearly in Fig. 6 straddling the 20-meV re-
gion. In the molecular-crystal model" a gap is
expected in this region, which would separate the
internal and external modes. (The gap just below
60 meV, however, may be an artifact of the cal-
cul.ation, but this need not be of concern for the
present purposes).

C. Eigenvector-weighted phonon density of states

The eigenvector-weighted phonon density of
states E;(~) uses the eigenvectors e„((l,j) assoc-
iated with atomic species i to project out of E((d)
the vibrational spectrum of i:

)",(~) = g g (), ,e„(t(,() e. (L())()(~- ~~(t()),
Q, j ic

where

e„*((l,j) e„((l,j)= g e„* ((l,j)e„ ((l,j).
[The eigenvectors are contained in the matrix that
diagonalized D(q) and, hence, were generated in
the course of the computations. ] Figure l shows
the vibrational spectra E, (e) for i =Mo, S, and
Pb individually. Each E(((()) was normalized to
unity, so

E(~) =E„(~)+8E .(~)+8Es(&) ~

This representation of the dynamics again shows
that the low-energy Einstein-like feature is as-
sociated with the displacements of the Pb atom,
while the high-energy region of the spectra is
dominated by the S atomic displacements. Re-
placements of S for Se would remove spectral
weight from the high-energy 40-50-meV region
since approximately ~~M ' as stated before.

D. Torsional character of mode near 12 meV

The experimental INS results' exhibited a peak
at -12 meV which was attributed to torsional or

0.2—
Fpb (co)

0 20
4 ~ (meV)

I

40 60

FIG. 7. E;((d) calculated for PbMo688, where i= Pb,
Mo, and S.

FIG. 8. Schematic of
displacement vectors asso-
ciated with a Moe octahe-
dron in PbMo6S8 for a q
=0 mode at 12;1 meV.
Note that the in-plane Mo
atoms exhibit predomin-
antly torsional character,
as emphasized by the
curved arrow about the
axis, while the out-of-plane
Mo atoms exhibit predom-
inantly breathing motion.
The S atoms are not shown.

"rocking" motion of Mo,S, quasirigid units using
the molecular-crystal model. Figure 8 shows the
directions of the eigenvectors associated with a
Mo, octahedron for a (1=0 mode at 12.1 meV (the
sulfur atoms are not shown). The Mo atoms
dominate the motion associated with this mode,
while the Pb atom does not significantly partici-
pate at all. The displacements of the in-plane Mo
atoms in Fig. 8 are predominantly torsional, as
is schematically emphasized by the curved arrow
about the axis perpendicular to the plane. How-
ever, the Mo atoms above and below the plane
appear to exhibit predominantl. y a "breathing"
motion. This type of mixed torsional-breathing
mode can be understood within the molecular-
crystal context as a hybridization arising from
internal-external mode coupling. In an ideal mo-
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lecular crystal there is an order-of-magnitude
type gap between the high-energy internal. modes
and the low-energy external modes, and purely
torsional motion can occur. As the gap closes
the molecular-crystal concept breaks down. The
internal and external modes interact, and purely
torsional motion may give way to hybridizations
such as we see in Fig. 8. From the spectra of
Fig. 6 it is clear that for PbMo, S, the "gaps"
straddling the 20-meV region of the spectra are
sma1. 1 and partially fill.ed in, hence, a molecular-
crystal approach cannot be rigorous. The use-
fulness of the mo1.ecular-crystal model is not in
its rigor, but in the insight it affords. Finally,
we note that torsional character in the 12-meV
region was examined only at q =0 where the eigen-
vectors are real. For q+ 0, the eigenvectors are
complex and not readily interpretable.

(~")= f x('(x(~)d~,

(ra"), = f x, (rex)dr@,

8~(n) = — (&u")
5 n+3
u~

and

n+38; (n) = — ((()"),
k~ n

,
]Jn

(5)'

(7)

. (8)

The lowest moment of physical significance is
for n =-3; its associated Debye temperature is,
by definition, that obtained ultrasonically or from
low-temperature heat-capacity measurements.

E. Moments and their associated Debye temperatures

Moments of E((()) and E;((()) are invaluable for
the evatuation of any of the standard expressions
which arise in a microscopic calculation of the
superconductivity properties. The second mo-
ment and zeroth or logarithmic moment already
have been introduced in Sec. II [Eqs. (3) and (4)].
We write the moments and their associated Debye
temperatures in integral form for n& -3, 10:

TABLE III. Debye temperatures associated with nth
moments of E(w) and E;() for PbMo&S8 as calculated
from the model.

Q(n)
(.K)

QHpb(n)

(K)
8M. (n)
(K)

Qs(n)
(.K)

~1
0
1
2
3

5
6

277
336
402
452
486
513
553
551
566

115
110
119
142
187
248
311
367
413

270
292
318
342
364
384
403
422
441

468
531
558
573
583
593
602
610
617

Equations (5)-(8) can be used in the limit as
n--3 or 0, but for n=0 we can also write

e =exp(((xv))=exp(J (lxw)E(v)dv)

=( 11 ~,(x))

8~(0) = (h/ks)e'~'e, , (10)

where 1V is the number of q values sampled.
The quantities (1nv)( and 8((0) are defined by

Eqs. (9) and (10) if E((u) is substituted for E((()),
as before. Table II contains values of O~(2) and

8D(0) calculated from the four spectra in Fig. 5.
Tables III and IV contain 8D(n) and 8((n) for
PbMo, S, and Mo,Se„respectively. Figure 9 is a plot
of 8,(n) vsnfor PbMo, S,. The values of 8() (2) and
8~(0) in Tables II-IV and Fig. 9 are essentially
independent of whether A = 30 or lV = 650 q values
in the irreducible zone were sampled to construct
E((()). This is because, as we have seen near the
end of Sec. GIB, for small-N values only the 1.ow-

TABLE IV. Debye temperatures associated with nth
moments of E(~) and &;(~) for Mo6Se8 as calculated from
the model.

Compound
QD (n =0)

( K)
Sg (n=2)

( K)

Mo6Se8
PbMo688
SnMo688
Mo, s,

330
402
410
428

359
486
488
484

TABLE II. Debye temperatures associated with loga-
rithmic and second moments of F'(~) for Chevrel-phase
compounds as calculated from the model. —2

~j
0
1
2
3

5
6

Q(n)
(.K)

266
302
330
347
359
369
377
383
388

QM. (n)
(K)

252
290
324
347-
363
376
385
392
398

Q (n)
('K)

277
312
334
347
356
363
370
376
380
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FIG. 9. Debye temperatures associated with nth
moments of I'; {+)calculated for PbMo6S8.

F. Lattice entropy and heat capacity

The lattice entropy Sz per gram-atom is

S (T)=3M„). J[xm, —h(e„+))]E(v)dtd,

frequency portion of the spectrum appears not to
be properly characterized. Only the lower mo-
ments (i.e. , as n- -3) are very sensitive to the
low-frequency portion of the spectrum. The
higher moments (i.e. , n&0) become successively
more sensitive to the high-frequency portion of
the spectrum, and for n = 0 each mode is weighted
equally in the geometric-mean sense. Hence,
convergence can be tested most sensitively by
comparison of the low-n 8D(n) values as a func-
tion of A. We find that for n =-1.5, the 8~(n)
values for N = 30 and 120 agree within -1%, but
that the agreement progressively degrades to
-3% for n =-2. Hence, the E((()) based on the
30-point sampling should be adequate, from a
convergence standpoint, to describe any quantities
of interest that are related to moments for which
n& -2.

where N„ is Avogadro's number, x =@cd/ksT, n„
is the Bose-Einstein distribution function
n„= (e" —1) ', and E(&u) is normalized to unity.
The heat capacity is CI,(T) =T(dS/dT). The values
of Cz, (T) and Sz, (T) were calculated and compared
to tabular Debye C& and Sl. functions to extract
8o(T) and 8o(T), the effective Debye temperature
associated with the heat capacity and entropy, re-
spectively. The results are shown for PbMo, S,
in Fig. 10 and Mo,Se, in Fig. 11. Experimental
determinations of GD and GD are also shown for
PbMo, ,S, and" SnMo, S, (in Fig. 10) and'" Mo, Se,
(in Fig. 11). The agreement between the experi-
ments and calculations is quite good. Of course,
the experimental values for PbMo, ,S, of OD and
8g at high temperatures [which define 8~(n =2)
and 8z&(n =0), respectivelyj were used as con-
straints in the adjustment of the eight LJ param-
eters of Table I; so agreement at high tempera-
tures is expected. But, note that at low tempera-
tures the approximate position and depth of the
minima in the experimental 0 curves for
PbMo, ,S, are reasonably approximated in the
calculation. Experimental results" for SnMo, S,
in Fig. 10 also agree quantitatively with the cal-
culated cur ves. This indicates that the def ect
structure of the Pb-ternary sample (or, more
precisely, the lack of use of stoichiometric quan-
tities of fabricating materials) appears not to
have invalidated the experimental data analysis.
The good agreement between experiment and cal-
culation may be partially fortuitous since, the
possible changes in force constants due to the
lattice constant and rhombohedral angle changes
have not been taken into account here.

G. Inelastic-neutron-scattering generalized phonon density

of states

G((()) is the weighted or generalized phonon den-
sity of states obtained in INS experiments for
polycrystalline samples. G((d) is similar to the
true phonon density of states E(&o) except that
there are three weighting factors:

The first factor o'„/I„ is the total thermal neutron
scattering cross section for atom v divided by the
mass of that atom, the second is the Debye-%aller
factor (DWF)'e ' & for the atom z, and the third
is the eigenvector factor. The o„/M„values are
tabulated in Table V. The DWF can be calculated
since

wg= ~x (u')„,
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FIG. 10. Debye temper-
atures associated with the
heat capacity (8 ) and en-
tropy (0 ~) as a function of
temperature. The upper
two curves drawn through
the circular symbols are
experimental results for
PbM 05 fS6 taken from Ref .
7. The lower two curves
were calculated for PbMo688
(present work). Note the
similarity in shape and
magnitude of the experi-
mental results for
PbMo& &S6 and that cal-
culated for PbMo6S8. The
circular symbols associated
with the lower set of curves
are experimental results for
SnMoeS8 (Ref. 31). The ex-
perimental results for the
stoichiometric Sn ternary
are in better agreement
with the calculations than
those for the nonstoichio-
metric Pb ternary. This
is because (a) the calcula-
tions assume a stoichiome-
tric sample, and (b) on the
scale plotted, the different
masses of the Pb and Sn
atoms do not affect a signi-
ficant fraction of the fre-
quencies which contribute at
these temperatures.

IOO
0

I

IO0
I

200
T('K)

I

500 4OO

where K is the neutron momentum transfer, and
(u')„ is the mean-square displacement of atom tc

summed over the three Cartesian components n.
K depends on the initial energy E„ the energy
gain E, and the scattering angle. For simplicity,
the scattering angl. e was taken to be 90' in the
calculation, "while experimentally a variety of
angles symmetric about 90' were also included
to improve counting statistics. Hence,

i Ki =0.69476(2Eo+E)'

where E is in A ' and E,=4.83 meV in the Argonne
INS experiments. ""The mean-square displace-
ments were calculated at T =300'K from

1 1 1
AM, ~ liwq(q) 2 exp[K+;(q)/k T] —1)

From these, the quantity (u'„)„, which corresponds
to the average mean-square displacement in any
particular direction, was calculated from (u„')„
= —,'((u~~) +2(u~)), where

~ ) and J. refer to the trigo-
nal axis (see Table VI). Each calculation of G(~)
required two cycles of diagonalizations of D(q).
In the first cycle the (u')„values were calculated
and stored, while in the second Eq. (11) was
evaluated. Results for G(&u) for PbMo, S, and
SnMo, S, are shown in Fig. 12 where 30 q values
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Fig. 13 appears to be real, and a shortcoming
of the present calculations. On the whole, how-
ever, the agreement is reasonable.

H. Mossbauer effect and anharmonicity
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FIG. 11. Debye temperatures associated with the
heat capacity (8 ) and entropy (0 ) for Mo6Se8. The
curves are calculated results (present work) and the
circles are measured results (Ref. 31). The agree-
ment between the calculations and experiment for Q
are within the 2% experimental uncertainty for the
latter above 150'K.

were sampled, the bin width is 0.5 meV and the
parameters of Table I were used as in the calcula-
tion of E(&o) of Fig. 5. Comparison of Figs. 12
and 5 indicates that G(a&) is very similar to E(nl).
Hence, the weighting factors do not significantly
obscure the true spectrum; the INS experi-
ments"'o may thus be regarded as quite realistic
approximations to E(~).

The calculated G(co) for PbMo, S, is compared to
the experimental' G(v) in Fig. 13, where both
results are normalized to unity. This is a more
stringent comparison of experiment to calculation
than the heat-capacity comparison of Fig. 10,
since the heat capacity averages over all the
modes, while this is a mode-for-mode compari-
son. The difference between the spectra of Fig. 13
is partially due to the fact that the calculation
used a constant 0.5-meV bin width to construct
the histogram, while the experimental resolution
varied from being significantly better than 0.5
meV at low energies to poorer than 0.5 meV at
high energies. Nevertheless, the disagreement
in the 20-meV region between the two spectra of

TABLE V. Thermal-neutron. -scattering cross section.
to mass ratios.

Kimball et al,." and Bolz et a3."have measured
the Mossbauer spectrum of "'Sn in SnMo, S,.
Both these groups found anomalous behavior of
the recoil-free fraction versus temperature in
the sense that below -100 K this quantity did not
follow a temperature dependence obtained from
a harmonic phonon-spectrum calculation which
was compatible with the higher-temperature data.
Kimball et al." attributed this to large anharmo-
nicity associated with the motion of the Sn atom,
resulting in a softening of the frequencies of the
modes associated with Sn displacements. Bolz
et aI,. ' attributed the anomalous behavior to a
softening of the librational modes of the Mo,S,
octahedra and to a subtle structural transforma-
tion associated with the tilt of these octahedra
with respect to the unit-cell axis. The INS data'
indicated that there is little softening of the fre-
quency of the peak in G(&o) associated with the
transverse Sn modes. However, we have seen
that these modes are hybridized with the external
modes so that a softening of the external modes
(e.g., the torsional modes) could result (via a
change in hybridization) in an anomalous tempera-
ture dependence of (u')a„. In order to investigate
this further, we studied the effect on (u') ~„of
softening all the force constants by 20% jexcept
the Sn-S force constant which determines the
Einstein-like peak in the G(u&) functionj. While
this does have an effect on (u')s„which makes it
approach mor'e closely the observed low-tempera-
ture behavior compared with (u')s„calculated from
the unsoftened force constants, the effect appeared
to be much too small to reproduce the actual
temperature dependence of the observed recoil-
free fraction.

In view of the arguments given in the Introduction
regarding the anharmonic nature of the Sn atomic
potential, it is likely that a quasiharmonic theory

TABLE VI. Boot- mean- square displacement component
(u2)~~2 calculated at 300'K.

Pb
Mo
S
Sn

~„/M,
l barn/amul

0.0560
0.0771
0.0375
0.0413

Pb
Mo

0.127
0.080
0.081

Value reported is average within unit cell for all
atoms of this type.
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of the temperature dependence of the recoil-free
fraction is not valid. Another possibility is that
there is a strong temperature-dependent elec-
tron-phonon renormalization of the longitudinal-
acoustic phonon modes, which would affect (u') s„
while leaving the position of the low-frequency
peak in G(&u) (which is due predominantly to the
transverse Sn modes) unchanged.

FIG. 12. G(co) spectra calculated for PbMo688 and
SnMo688. The envelopes of the 0.5-meV bin width
histograms are drawn. These G(+) spectra are similar
to the E(&) spectra calculated in Fig. 5.

1V(E) near the Fermi energy Ez is constant.
Equation (12) yields the usual T' law as T- 0, if
a Debye spectrum is assumed for E(&u) and n'„E.
First reports of experimental findings for sput-
tered films of PbMo, S, and the related system
Cu,Mo,S„where ~ =1, 1.8, and 2.5 indicate that
p —p~~T' for T, &T&40'K, where po is a con-
stant attributed to impurity scattering. ""This
same type of unexpected T' behavior also is
found for the classical high-T, A.-15 supercon-
ductors Nb, Sn (Ref. 36) and V3Si (Ref. 37), and
has been explained using Eq. (12) simply by sub-
stituting a realistic E(v) and cFE for the Debye
representation more typically used. "'" The idea
is that T, is outside the l.ow-temperature limit
for which the T' law would be observed. Figure 14
shows that this is also the case for PbMo, S,. The
circles plotted in Fig. 14 were calculated using
Eq. (12), where u&, is assumed constant and the
E(&o) from Fig. 5 is used for PbMo, S,. The
straight line drawn through the circles on the p
vs T' plot indicates that the calculation recovers
the temperature dependence observed experimen-
tally for the sputtered films. ""The negative
intercept of the straight line at T' =0 indicates

I. Resistivity and superconductivity

The temperature dependence of the electrical
resistivity p can be calculated using the Wilson
modeP' for phonon-assisted (s-d) interband scat-
tering. In its simplist form

0 jo . 20
0.25

0.20

30
I

40
I

50
.I

p(T ) ~ . , cP„(&u)E((o)d(o,sinh'y (12)

where y =h&o/2ksT, n'„(e) is a transport electron-
phonon coupling strength that weights E(&u), and
it is assumed that the electronic density of state

0, l5

o.lo
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FIG. 13. G(co) spectrum calculated for PbMo6S8 (his-
togram) as compared to the measured G(co) spectrum
taken from Ref. 6 (smooth curve).

FIG. 14. Resistivity of PbMoeS8 plotted as p vs T
as calculated assuming e E=E (circles}, e E=E-Ezb
(squares), and 0,' E=EM, (triangles). The straight lines
that fit the first two calculations below 40 K indicate
that these models for e E are not unreasonable. The
+ E=E» model does not yield an apparent T region
below 40 K and, hence, can be ruled out as implausible.
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that this apparent T' behavior is merely a limited
temperature-range empirical fit and not to be
regarded as signalling a "power-law"-type be-
havior. We mention in passing that in the high-
temperature limit (i.e., T & 8D) the simple pre-
diction of the Wilson model [Eq. (12)] that p ~ T
is not obeyed for these ternary sulfides"; instead,
p tends to a constant "saturation" value. This
type of high-temperature behavior has also been
reported for A.-15 supereonductors "'~ and
numerous other narrow-band metallic systems, 4'

and was attributed mainly to the breakdown of the
assumption that 1V(E) is constant near E~."'39
The high-temperature region, hence is beyond the
scope of the simple formul. ation of the Wilson
model [Eq. (12)] that we use, although adequa'te
discussion of the "saturation" effect appears else-
where. " ' '~ We can proceed with the lower-
temperature analysis because below -40 or 50'K
it is not unreasonable to assume N(E) is approx-
imately constant within a few k~T of E&, while
above eD this is not necessarily the case. A
second qualifying point in passing is that re-
sistivity measurements made on compacted
powders of PbMo, S, yielded different results"
be l.ow 40- 'K than those for sputter ed films, in that
p- pa~ T. This behavior is regarded as extrinsic,
perhaps associated in some manner with ill-
defined conduction paths within the sample, and
is not treated further in this discussion.

The temperature dependence of the resistivity
can be used to help determine which phonon modes
are most important for superconductivity. The
key is that at'„ is very closely related to aP„, the
superconductivity electron-phonon coupling
strength. ~ In turn, aP„ is used to define the
electron-phonon mass enhancement A, the prin-
ciple parameter of any of the T, equations:

A. =2 J dv,

where o. ==a„-o.t, . It was shown above that if
all the phonon modes are weighted equally (i.e.,
the n„ is constant assumption), that the
experimental T' behavior is recovered'below
40'R. This might suggest that all modes con-
tribute equal. ly in determining ~ and hence T,.
But such literal interpretations are unwarranted
since p(T) does not provide that strong a con-
straint on the uniqueness of n'E. Instead, we ask
what reasonable models can we use for n~, and
still retain the apparent T' resistivity behavior
below 40'K? Ef a model for a'„does not recover
the experimental p(T) below 40'K, then the mode
weighting specified by that model clearly can be
eliminated from further consideration. For
instance, the argument has been made that modes

associated with Pb-atom displacements should not
contribute significantly to X, since superconduc-
tivity persists when the Pb sites contain mag-
rietic rare-earth elements. The squares plotted
in Fig. 14 were based on the assumption that
cPE=6E„,+8Es E —E——p„(i.e., the Pb-atom dis-
placements do not contribute). The straight
line through the squares in Fig. 14 indicates that
such a model. is plausible and cannot be ruled out.
This is the sense in which we bel. ieve it is ap-
propriate to use p(T) as a constraint on the form
of aPE.

The argument has been made also that the super-
conductivity is associated with a strong electron-
phonon interaction at the Mo sites. Does this mean
that S-atom displacements are not important?
This is tested in Fig. 14 also. The triangl. es
plotted were calculated under the assumption that
n'E=E„,. The apparent T' behavior of p(T) is
not recovered, hence this model. for e'E ean
clearly be ruled out. In this regard recent iso-
tope-effect-coefficient measurements" on Mo,Se,
indicate that modes associated with displacements
of Se atoms, and not just Mo atoms, are impor-
tant in determining T,. The isotope-effect results
on Mo,Se, were also interpreted to indicate that
the higher-energy internal-type modes also con-
tribute to u'E The fol.lowing analysis of p(T) for
PbMo, S, supports this contention: use of a model.
n'E that contains only the (external-type) modes
below 18 meV yielded a p(T) which was found to
deviate negatively from an apparent T' behavior
above 30'K. Hence, such a model is not in ac-
cord with experiment. The gross form of APE
that is evolving is one that is related to E(u&) to
an extent similar to that found. for other super-
condueting systems. No strong 5-function-type
regions seem to be present in n'E and controlling
T,. This is in contrast to the early speculation'0
that T, may be governed by torsional and acousti-,
cal branches of E(&u). We have seen that torsional
motion is hybridized with internal-type modes
(Fig. 8) for PbMo, S,. This should be true to an
even greater extent for Mo,Se,. Hence, the degree
to which torsional modes contribute to a.'F is not
straightforward to answex. Detailed analyses of
the isotope-effect studies may help answer such
questions.

t

IV. SUMMARY OF CONCLUSIONS

These calculations were performed to provide
a test and firmer foundation for the molecular-
crystal model of the lattice dynamics of Chevrel-
phase superconductors. The applieabil. ity of the
BvK approach using I J potentials suggests that
short-range interactions are important, as
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expected within the molecular-crystal model.
Hybridization of external acoustical and Pb-atom-
dominated optical modes was found to produce
interesting structure in the dispersion curves
along A. Verification of these predicted features
await inelastic-neutron-scattering studies on
single crystals. Site-weighted frequency moments,
densities of states, and Debye temperatures were
calculated for representative Chevrel-phase com--
pounds. Torsional-character modes were found
where predicted previously using the molecular-
crystal model. . However, internal-external mode
mixing presumably caused the torsional motion
to be hybridized with breathing motion within a
Mo, octahedron for a representative mode studied.
Reasonable agreement was found upon comparison
of the present calculations with experimental
lattice heat capacities and entropies""'" and
generalized phonon densities of states determined
by means of inelastic-neutron-scattering studies
of polycrystalline samples. ""We emphasize
that the calculations for the compounds other than

PbMo, S, should be treated with some caution,
since the lattice constant, rhombohedral angle,
and the force constants were taken throughout

to be those appropriate to PbMo, S,. The an-
harmonic temperature dependence of the "'Sn
Mossbauer recoil-free fraction"'" in SnMo, S,
was not as amenable to the present analysis as the
above, possibly due to the multiplicity of available
sites straddling the origin" as for Cu,Mo, S,. The
T'-resistivity behavior below 40'R for sputtered
films"" of PbMo, S, could be understood as
arising from non-Debye-tike structure in E(&u),
as had been demonstrated previously"'" for the
A.-15 superconductors Nb, Sn and V,Si. The tem-
perature dependence of the resistivity below
40 K was used to determine the plausibility of
various models for the superconducting tunneling
function n'E. It was found that modes associated
with djsplacements of chalcogenide as well as Mo
atoms, and internal as wel. l as external modes
contribute to a'I and hence X and T,.
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