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Anisotropy and field dependence of the electron-paramagnetic-resonance linewidth of Ag:Dy
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Here we report measurements of the EPR linewidths for the I'7 ground state of Ag:Dy at 9 and 35 GHz
and 1.45 K. Our data show linewidth anisotropies that depend on the magnetic field. To analyze the

experimental data, two models are discussed. In the first, we consider modifications of the Korringa
relaxation due to the Zeeman interaction; in the second, the eA'ect on the linewidth of random stresses in

the sample using a model that preserves the full cubic local symmetry at the impurity sites. The second

model is able to account for the experimental data and allows us to obtain information about the stress

distribution in the sample.

I. INTRODUCTION

Earlier, ' we reported measurements of the crys-
tal-field and exchange parameters in Ag: '"Dy.
In that work, me concentrated on the g anisotropy
at 35 GHz, ' which mas explained as being due to
the mixing of excited states with the ground l,
doublet due to the Zeeman interaction. An anisot-
ropy of the linewidth mas also observed at that
frequency. '

In this paper, in an effort to understand the
source of the anisotropie broadening, me have
studied this phenomenon at tmo well-separated
frequencies, 9 and 35 GHz, where we found that
the linewidth anisotropy is magnetic field depen-
dent.

We discuss tmo mechanisms which produce
anisotropic broadening for Kramer's doublets
in cubic crystals. One is the modification of
the Korringa relaxation due to the Zeeman mix-
tures of excited levels with the ground state. The
other is the presence of random stresses in the
sample. This is similar to the mechanism pro-
posed by Feher' and McMahon' for magnetic
impurities in insulators and by Davidov et «.'
for Dy in the metallic compound LaSb.

Comparison of our experimental data at both
frequencies with the predictions of the models
indicates that the residual linemidth extrapolated
to 0 K is a consequence of random internal stress-
es in the sample. Using a simple model for the
orbit-lattice interaction, we are able to charac-
terize the distribution of these stresses.

II. EXPERIMENTAL TECHNIQUES AND RESULTS

The single crystal (tbe same as used previously' )
was grown in vacuo. by the Bridgeman technique.
The silver, 99.9999/p-purity Cominco, was doped
with '"Dy obtained via reduction of the oxide. The
concentration mas 220+ 20 ppm as measured by

atomic absorption and dc susceptibility.
The reflection EPR data were obtained both at

9 and 35 GHz mith superheterodyne spectrometers
equipped with magnets which could be rotated 180'.
The temperature of the sample was determined
from the vapor pressure of the surrounding liquid.
Sample alignment, magnetic field, frequency mea-
surements, and other experimental details mere
carried out as previously discussed. '

The EPR spectrum of Ag:Dy, both at 9 and 35
GHz, consists of a single line that is an admixture
of the pure, real, and imaginary responses due to
the skin effect. Excellent signal-to-noise ratios
and repeated measurements allowed an accuracy
in the half-linewidth (hB, ~,), defined as the balf-
power halfwidth of the absorption part of the re-
sonance line, of 1 G at 9 GHz and 3 G at 35 GHz.
Assuming an intrinsic Lorentzian line shape, we
extract the linewidth as before. ' These linewidths
are presented as a function of field orientation in
the (110) crystal plane in Figs. 1 and 2. The theo-
retical curves shown in Figs. 1 and 2 are calcu-
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FIG. 1. Angular variation of the EPR linewidth of
220-ppm &P:Dy measured at 9.06 GHE in the (110) crys-
tal plane. The solid line is the best fitting with Eq. (1).
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FIG. 2. Angular variation of the EPR linewidth of
220-ppm &P:Dy measured at 35.0 GHz in the (110) crys-
tal plane. The solid line is the best fitting with Eq. (1).
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FIG. 3. Angular variation of the gyromagnetic factor
g of 220-ppm &P:Dy measured at 35.0 GHz in the (110)
crystal plane. The solid line is the best fitting with
Eq. (3).

HI. THEORY

lated using the best fit to the expression

m'(8, y) =A +Bf,(8, cp) +Cf, (8, y),
where f,(8, cp) and f,(8, y) are the linear combina-
tions of spherical harmonics of fourth and sixth
order having cubic symmetry

Reflection and transmission EPR and magnetic-
susceptibility measurements, allow one to obtain
the parameters ~f the crystalline field and the
exchange interaction acting on Dy ions in metallic
Ag. ' The Hamiltonian for the crystalline field can
be written' as

f,(8, y) = 35 cos48 —30cos'8 +3

+5 sin 8cos4cp,

f,(8, p) = 231 cos'8 —315 cos'8+ 105 cos'8 —5

—21(11cos'8 —1) sin'8cos4y,

(2a)

(2b)

Hcp=B, (O,'+ 50',)+B,(O, —210',), (4)

where 0"„=O„(J')are Stevens' operators. ' In the
notation of Lea et aE. ,

' crystalline field parameters
S'and x are defined by

Wx=60B, and W(1 —Ix1) = 13660B,.
In Fig. 3 we ~how data on the angular variation

of the g factor measured at 35 GHz with the magne-
tic field in the (110) plane. We added new points
to those previously published' where the curve
shown is the best fit to the equation

The values for the crystalline field parameters of
Ag: Dy extracted from the data of Oseroff et al .'
are

@=0.53, 8'=0.32 cm '

g (8, rp) =A' +B'f,(8, y)+C'f, (8, y) . (3) B,=28&10 ' cm ' and B,=0.11&&10 ' cm '

The fitting of the experimental values with Eqs.
(1) and (3) was done using a least-squares calcu-
lation, and the results for the parameters are
given in Table I. Additional, but less accurate,
data on the linewidth at 35 GHz in the (001) crys-
tal plane fit Eq. (1) well using the values given in
Table I.

The ground state is a F, doublet with g=7.555
(the experimental value is 7.65); the level scheme
within the J =~2' multiplet is shown in Fig. 4.

In order to explain the Knight shift and the Kor-
ringa rate measured from the broadening of the
EPR line, an isotropic exchange interaction be-
tween the rare-earth and the conduction electrons
has been proposed'

TABLE I. - Values of A, B, C, and &', B', C', obtained from the best fit of the experimental
data with Eqs. (1) and (3), at 9 and 35 GHz.

A
(G )

B
(G2)

C

( G2) BI C'

9.06 GHz
35 GHz

2 482
16 156

-36.2
-602.6

5.0
68.8 7.6524 -0.0042 0.00040
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FIG. 4. Scheme of the
energy levels of Dy and
&g:Dy as obtained from
thedata in Ref. 1.

A. Change of the Korringa relaxation induced

by the Zeeman mteractson

In the low-temperature regime. , when kT is
much smaller than the crystalbne field splittings,
the contribution LUX to the linewidth from the Kor-
ringa relaxation is given by'

(E )2ji'

I=. ~ 9 s +

(6)

(5)

R, 8, and J correspond to the rare earth and r&

and s, to the conduction electrons, A =-', for Dy",
and g is the exchange interaction. ' Equation (5)
gives g= 0.47 eV using Knight-shift data and Q

=0.22 e7 utilizing the Korringa rate. " The dif-
ference between these two values was attributed'
to different averages of the exchange interaction
over different wave vectors for the electrons.

We now turn to discussion of the two mechanisms
mentioned in the introduction that lead to anisot-
ropic, magnetic-field-dependent broadening.

Xg =A+8 J (7)

is not negligible compared to the crystalline field
splittings, Eq. (6) should be modified in order to
consider the admixtures of the ground doublet
with excited states via K, . In this case, the ma-
trix elements which appear in Eq. (6) should be
replaced by

where g, is the gyromagnetic ratio of the ground
doublet and ps is the Bohr magneton; q(Ez) is the
conduction-electron density of states at the Fermi
surface; g is the exchange-coupling constant de-
fined in Eq. (5); and & el', I P& are matrix elements
of the angular momentum components J„, J„, and

t, within the 1', eigenstates In& and IP).
When the Zeeman interaction

& ~ 9

(&~l&, lf &&g I3c. li&&i I30. lp&+&o'I3I'. If &&i l~, li&&i I3t, I p&

+&~I30. If &&f I3c. Ii&&i I&, I p&), (8)

where b,, =Er (i }E„andthe -sum is over the
8 7

four states of each of the three I', quarters.
The correction to the Korringa rate introduced

in Eq. (5) was calculated using Eqs. (7) and (8),
considering only the first excited F,' quartet of
Dy" (see Fig. 4). We obtain the result

+(—,H+ —,K}]

where D, &, II, and K are matrix elements, which
can be obtained using the tables of Lea et a/, ' for
the wave functions of this quartet as a function of
the parameters (D= —", , E= —2.37, H=0.65, and
K= —0.30 for @=0.53). v is the frequency used in

the experiment and 6 is the energy difference be-
tween the first excited quartet and the ground state.
f,(8, Q) is the cubic function defined in Eq. (2a}.
The contributions of other quartets to Eq. (9) are
negligible.

A similar perturbation calculation was per-
formed in order to obtain the anisotropic contri-
bution to the g factor of the ground state intro-
duced by the Zeeman admixtures with excited
states. With the same definitions as in Eq. (9),
we obtain

g(8, q) =g(1+ (@via)'E'/ 2D'[ ( aH+ ,',K)f,(8,-y)—
+ (-5 H —.~ K)]) . (10)

It is seen that the anisotropic parts of ~(8, y)
and g(8, y) are proportional and differ by a factor
of -3, a fact 'which will be discussed below
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B. Broadening of the EPR line due to random internal

stresses

6H = —PH5glg ps . (15)

Feher' accounted for the EPR linewidths of
magnetic impurities in MgO assuming a random
distribution of internal stresses in the host sample.
A somewhat similar idea was used by Davidov
et a/. 4 to interpret the angular variation of the
EPR linewidth of Dy in metallic LaSb. Here we

apply the random stress model to Ag:Dy. Our
analysis is divided into two parts; in the first,
a phenomenological spin-Hamiltonian formalj. sm
is used to evaluate the predictions of the model
in terms of a few constants which can be evaluated
from the experiments. In the second, these con-
stants are related to the more fundamental orbit-
lattice interaction.

We assume now that the probability of the system,
being in a certain state of strain, i.e. , a certain set
of values. for the normal deformations, is given by
the product of the probabilities of each of the nor-
mal deformations. That is to say, we assume
that the probabilities of the normal deformations
are uncorrelated. We further assume that each
normal deformation is random, leading to a pro-
bability function P(e,. ) that is Gaussian.

We wish to consider deformations that conserve
cubic symmetry in mean value. This requires
that the width of the probability functions P(e,. )
be equal for the different components u within the
same irreducible representation.

With these assumptions, we evaluate the second
moment ~' of the observed resonance line as

1. Phenovnenological theory

The spin-Hamiltonian for an effective spin S= 2

in cubic symmetry and in the presence of small
deformations around this symmetry can be written
aS4s 9

~ ~ ~ 5Q'm& P e,. de, „
where 5H is obtained from Eqs. (13)—(15). The
result is

Xq ~ =gp~H ' S+g, p~ &,H ~ S
I

(10g3 3 40g5 5)f 5(6r 9 )] (16)

where

+g3ps [ (3H, S, -H ' S)e3 8

+ M3(H„S„-H,S,) e3~, ]

+g5ps[3(H, S,+H, S „)55 &+ 3(H„S„+H S,)e5

+ ,'(H„S „+H,S„—)a5~],

where f,(6, y) is the cubic function defined in Eq.
(2a). This result should be compared with Eq. (5)
of Davidov et a/. 4 Their result predicts an angu-
lar variation of the linewidth which has axial sym-
metry, i.e. , gives different linewidths for the mag-
netic field along the [001] and [010] or [100) direc-
tions. Our result, Eq. (16), maintains cubic sym-
metry. This fact will be discussed later.

xx+6y + gg) CS 5 3tg )

~3.e = 2~~~ —~xx ~3» ~s, ~= ~x~ (12)

5g(6, y, e) = 5g, + 5g, (6, y) + 5g, (6, y),
with

~8'i =8i~x ~

5g3=g3[(3cos3 8-1) e3 8

+ M3 sin36 cos 2@ ~3 ~, ],

(13)

(14a)

(14b)

5g5 =g,[ 3(sin28 sing )s5
~ &

+ —,
' sin26 cosy)c5

~ „
+ 3(sin'8) sin2ys5 & J . (14c)

The shift in magnetic field of the. EPR line is

e3, =v 3 (e„, —e„), e, ~ =e„, ,

are normal strains with specific transformation
rules within the cubic group.

The changes in the gyromagnetic factor g of the
spin doublet as a function of the deformation can
be written as

2. Orbit-lattice interaction

The orbit-lattice interaction, which describes
the interaction of the magnetic ion in the J repre-
sentation with the deformations of the lattice, can
be written as'

(17)
n, f, n

where the 0," are linear combinations of the
Stevens' operators' of order m, transforming like
the n component of the I", irreducible representa-
tion of the cubic group. Q;" are the corresponding
orbit-lattice coefficients. It is known that in gen-
eral, the most important contributions to Ra~are
those for n= 2. Thus, we will neglect the fourth-
and sixth-order terms of Eq. (17). The change of
the gyromagnetic factor is produced by a second-
order process involving the orbit-lattice and, Zee-
man interactions. These second-order g shifts
for a 1, Kramer's doublet are given by'
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5g= —(4/p H) IV. DISCUSSION

where Re means "the real part of."
The relations between the parameters g, of the

phenomenological theory with the second-order
orbit -lattice parameters Q&' can be easily found
using the Wigner-Eckart theorem. We chose

0,'e= 32'-Z(J+1)

and with this normalization for the orbit-lattice
operators, we obtain

(2)~ F, T
g3 — 2A'Q3- ~ (f )

r8 r7
(18a)

=4/3 ~oi»~g5 5 ~ (g)
i &8

(18b)

where the sums in Eqs. (18a) and (18b) are over
the three excited quartets. F,-, T, , and V, are
matrix elements of the Zeeman and orbit-lattice
interactions between the doublet and the quartets,
and can be calculated as a function of the param-
eter x using the tables of I.ea et al. '

The energy denominators in Eqs. (18a) and

(18b) allow us to consider only the excited quar-
tets I",' and I', ' (see Fig. 4). In this case and
for @=0.53, F, =-2.37, T, =0.94, V, =5.60, F,
= 2.7, T, = 53, and V, = -9.5. Then

g, = —&2.&a&'~

g = —23.56~2~

(19a)

(19b)

Qi,»= --', ate'Z „,(r') /R' = —8.3 cm ',

G ' =—'o.ge'Z, ff(r') /R'=6V cm ', (20b)

where o.~ = -2/315 is defined in Ref. 5; Z.n is the
effective charge of the ligands in units of the elec-
tronic charge e, equal to -1 in our case; (r') is
the mean-square radius for Dy'+, given by Abra-
gam and Meaney. ' B= 2.85 A is the paramagnetic
ion-ligand distance for the silver lattice.

where Q,' and C,' are given in cm '. On the
other hand, using a point-charge model to evaluate
the orbit-lattice parameters, we find'

The accuracy of our experimental data allows
us to separate the anisotropic contributions to
AH' proportional to f,(8, y) and tof, (8, y) of Eqs.
(2a) and (2b), as shown in Eq. (1) and Table I. In

order to obtain the anisotropic contribution pro-
portional to f,(e, y) in Eqs. (9) and (16), a higher-
order perturbation calculation would be needed.
In this section we will compare our experimental
results with the predictions of the models dis-
cussed in Sec. III.

In order to check the accuracy of the perturba-
tion calculation which led to Eqs. (9) and (10), we
use Eq. (10) to evaluate the crystalline field split-
ting 6, from the experimental data. With the
values given for D, F, H, and K, and v=35 GHz,
we get 4, = 9 cm ' in good agreement with the re-
sult 8 cm=' obtained from a full diagonalization
of the J =—", energy matrix. ' Using the fact that
the coefficients of f,(e, y) in Eqs. (9) and (10)
differ by a factor of -3, it is seen that this model
predicts an angular variation of the linewidth of
less than 2%% of AHo at 35 6Hz. This contribution
is smaller than that observed experimentally, and
has the wrong sign.

To compare the data with the prediction of the
random-stress model, we extrapolate the line-
widths to 0 K using' 5(bH)/5T =18.5 G/K. Then,
at OK

(AH'o „)go„,= 751.3 —36.2f,(8, y) + 5.0f,(e, y),

(AH' „),~„——10243 —603f,(e, qr) + 69f,(6, y) .

(22)

TABLE II. Values of ~gsa3~ and )g&s&) obtained from the
values given in Table I, using Zq. (16).

Frequency

9 GHz
35 GHz

0.097
0.086

0.48
0.47

The ratio between the values of the three coeffi-
cients at 9 and 35 0Hz are in good agreement with
the ratio of the squares of the frequencies (or the
magnetic field) as predicted by Eq. (16). In Table
II, we show the values obtained when Eqs. (21) and

(22) are used together with Eq. (16). The good
agreement between the values at 9 and 35 0Hz
shows the applicability of the random-stress model
to Ag:Dy. In the following, we will use the values
obtained at 35 6Hz, since the experiments are



3046 SAUL B. OSEROFF AND RAFAKL CALVO 18

more accurate. In order to estimate the widths of
the distributions of stresses in the sample we use
the point-charge estimates given in Eqs. (20a) and

(20b) together with Eq. (19); we obtain

g, =100 and g, = -1574. (23)

There is a large error in the estimation of g, .
The value T, = 0.94 for x = 0.53 used there would
be -14 and 8 for x = 0.4 and x= 0.6, respectively.
Thus, a small error in the value of x produces a
large error in g, .

Using Eq. (23) together with Table II, we find

g, =8.6x.10 ' and 0, =3.0x10

In spite of the limitations of the point-charge
model and the additional uncertainty of g, men-
tioned above, we get values for a, and 0, similar
to those measured for paramagnetic impurities in
insulators. "" In order to avoid the uncertainty
in the values of the widths of the distributions of
stresses introduced by any model used to estimate
the parameters of the orbit-lattice interaction,
uniaxial stress experiments"" are needed. Re-
cently, Dodds and fanny" observed the magnetic
resonance of dilute Dy in thin polycrystalline Ag
films deposited in fused quartz substrates. They
obtained a lower limit for G,' that, in our notation,
is Q, ' = -1.2 cm '. The agreement in sign and
order of magnitude of this lower limit and the
value we obtain using a simple point-charge model
support our idea that uniaxial stress experiments
can be performed. These experiments are readily
feasible and our estimation for Ag:Dy indicates
shifts of the EPR line of about one linewidth at
any frequency for typical strains of 5x10' dyn/cm'.

We have estimated o, and o, by equating the sec-
ond moment calculated in Eq. (16) to the halfwidth
of the resonance line. This is clearly an approxi-
mation because, in general, the lineshaPe will
not be Gaussian. Thus a factor of unity order
would be needed to pass from the second moment
to the linewidth. This same factor would enter
in the calculation of o, and 0,. We observe that
the quadratic dependence of the linewidth anisot-
ropy on the field, as predicted by the model, would
not be affected by the factor because the line shape
would be the same at different fields due to the
linear approximation in Eq. (11).

We carried out the integration which led to Eq.
(16) assuming a Gaussian distribution of strains.

If we assume a different distribution with some
characteristic width and finite second moment
proportional to the square of that width, we would

(i) predict a different line shape than in the present
calculation and (ii) calculate quantities analogous
to o, and o„corresponding to the assumed distri-
bution. The different line shape would produce a
factor as discussed in the previous paragraph, but
would not change the results in an important way.

In the work of Davidov et al. ,
4 a random stress

model is used to explain the broadening of the
EPR line of Dy in the metallic lattice of I,aSb. It
is not clear to us, however, what assumptions
were made by these authors to obtai'n Eq. (5). The
equation applies to a model where the distribution
of stresses is not random, but, rather in a pre-
ferred direction. Thus there is axial symmetry
for the angular dependence of the linewidth. This
question will be pursued elsewhere.

Recently, Dahlberg" measured the residual
linywidth of Ag:Er as a function of concentration,
with Er dopings between 125 and 2000 ppm at 1.7
and 9.2 GHz. His data is particularly useful to
understand the frequency-independent broadening
which he attributed to spin-spin interactions be-
tween magnetic impurities. Since he used pow-
dered samples, the detailed form of the anisot-
ropy is not readily available. Thus information
about random stress broadening contributions is
limited. He obtained frequency-dependent con-
tributions of two types; one depends on the con-
centration of Er and is attributed to Kohn-Vosko
oscillations. of the charge density. The other does
not depend on concentration and is attributed to
residual stresses in the sample.

As a concluding remark, we feel that, in order
to have a complete view of the sources of broaden-
ing of the EPR lines of magnetic impurities in me-
tallic lattices, more measurements of the depen-
dence of the residual linewidths as a function of
concentration and frequency in single crystals are
needed, together with uniaxial stress experiments. '
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