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Critical behavior of the resistivity in magnetic systems.
II. Below T, and in the presence of a magnetic field
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The effect of critical fluctuations on the electrical resistivity of magnetic materials is discussed in detail.
The temperature and magnetic field dependences of this critical resistivity p(T, H) are given for both cases:
when the critical temperature T, is approached from above and when it is approached from below. The
results obtained apply to the two basic classes of magnetic materials: ferromagnets and antiferromagnets, as
well is to the two basic electronic systems: metals and semiconductors. The present work is founded on the
conclusion that close enough to T, the critical resistivity of all systems has a magnetic-energy-like behavior.
This behavior extends farther away from T, for all systems except for ferromagnetic semiconductors. It is
shown that the critical magnetoresistance, Ap = p(T, H) —p(T,O) is negative except for antiferromagnetic
semiconductors. hp is found to be peaked at T, for all systems but it never diverges as a function of
temperature or field. The results are expressed in terms of power-law dependences of Ap on T- T, and H for
all the different material classes and for all interesting temperature regions. The corresponding powers,
under various conditions, are combinations of the well-known critical exponents, a, P, y, 5, and v. In the
mean-field regime the powers are predicted to be those of the critical regime except that the classical values
of these exponents have to be used. The present results predict more details of the critical resistivity than
can be deduced from the existing experimental data. However, the experimental data available are in accord
with the results. In the case of antiferromagnetic metals, the present work explains the features of the
magnetoresistance in the rare-earth metals, features that have not been understood before. It is suggested
that by proper fit of critical resistance and magnetoresistance data to the power-law behaviors predicted here,
critical exponents can be deduced. Recent demonstrations of such fits show that this is indeed feasible.

I. INTRODUCTION

In a previous paper, ' hereafter Paper I, it was
shown that the temperature dependence of the res-
istivity, in the close vicinity of the critical tem-
perature T„ is the same as that of the magnetic
energy. ' ' 'That work was essentially a general-
ization of the Fisher-I anger' result, for ferro-
magnetic metals, to the other magnetoelectronic
systems (i.e. , ferromagnets, antiferromagnets,
metals, and semiconductors). However, for tem-
peratures below T, the critical resistivity was
discussed very briefly" and only for the very
close vicinity of T, . The magnetic field de-
pendence and the temperature dependence of the
critical resistivity p(T, H) in the presence of a
magnetic field have not been considered in I. The
discussions of these dependences in the literature
were concerned -mainly with the magnetic field
dependence of the measured magnetoresistance, ' "
Ap = p(T, H) —p(T, 0), and the calculations were
carried out in the molecular-field approxima-
tion. "" Recently the critical resistivity of Gd
was measured in the presence of a magnetic field, "
and the results have shown that the proportionality
of dp/dT to the specific heat C~ is also maintained
under these conditions.

In this paper we would like to extend the work
reported in I by finding the temperature and mag-

netic field dependences of the critical resistivity
below and above T,. This is possible particularly
now in view of the very recent group-renormaliza-
tion results" for the magnetization-dependent cor-
relation functions. Considerations of the antifer-
romagnetic correlation function and plausible cor-
relation functions in the mean-field regime, enable
a comprehensive study of the critical resistivity
in all magnetoelectronic systems and in both the
critical" and mean-field" regimes. The calcula-
ted p(T, H) is shown to have power-law depen, —

dences on the parameters T —T, and H. These de-
pendences are determined for asymptotic rela-
tions between the two parameters. The predicted
power-laws show universal behaviors, the powers
being combinations of the critical (or classical)
exponents ~, P, y, 5, and v. It is thus suggested
that the measurements of the critical resistivity
under the proper asymptotic conditions can yield
the values of these exponents. The confirmation
of many of the present predictions by the available
experimental results indicates that the asymptotic
conditions can be easily obtained in real magnetic
systems. Further, this confirmation shows that
our quantitative predictions that involve the lead-
ing temperature and magnetic field dependences
are at least as accurate as the available experi-
mental results, and the correction to the leading
dependences under asymptotic conditions can be
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neglected.
We should stress that the present work is not

intended to predict the absolute value of p(T, H) or
its exact behavior between the asymptotic regions.
On the other hand, the results do indicate the
qualitative features of the critical resistivity for
all T —T, and H regions. In some cases these
features explain the qualitative behavior of the
magnetoresistance of materials for which this
property has not been understood before.

As in I we consider here the critical regime' '"
as well as the mean-field regime, "'"althougl) the
transition point between these regimes cannot be
predicted by the present calculation. On the other
hand, with the present predictions one can analyze
experimental data and find exactly the critical
parameters of the corresponding system as well
as the temperature at which such a transition is
taking place. This has been demonstrated recently
by nonlinear least-squares analysis" of the critical
resistivity of dysprosium. "

The present work has more predictions than can
be gathered from the characteristic results of the
experimental data. As far as the qualitative tem-
perature dependence and the power laws of the
magnetic field dependence, we do not knom about
experimental results that are not in accord with
the present results. However, probably due to
the absence of adequate theory, the experimental
power-law determination of the temperature de-
pendence of the magnetoresistance in the close
vicinity of T, has not been reported. The only
relevant data" just confirm the general conclusion
that the temperature derivative of the resistivity
is proportional to the specific heat.

The calculation here is based on the well-
known" relation between the critical resistivity
(i.e. , the inverse of the carriers mean free time)
and the correlation function, I"~&@. Here q is the
wave vector of the momentum transfer, K is the
point of instability, and q= ~q~. This relation, in
the case of a spherical Fermi surface and when
plane-wave-like eigenfunctions are assumed for
the charge carriers, can be written as" '

p(T, H) ~I, =- [I'~; K~+(S)'5(q))qd'q,

where the integration is over the Fermi surface
(assumed to be of diameter Z) of the carriers par-
ticipating in the interaction with the spin fluctua-
tions. In this equation (SQ represents the thermo-
dynamical average" of the spin operator. In the
case of a ferromagnet this average is simply the
magnetization per spin, ' m, while for antiferro-
magnets, as will be discussed below, the situation
is not as simple. Extensions to other, more com-
plicated, Fermi surfaces are possible, but then

the integral (1.1) has more than one cutoff Z for
the lower-symmetry cases. '

As is immediately apparent from (1.1) the heart
of the problem is the finding of a proper correla-
tion function. By "proper" we mean a function
that accounts for both elastic' and inelastic scat-
tering processes" due to spin fluctuations. " Fur-
ther, its q dependences should be given explicitly
for all momentum transfers in the range 0 +q
~ Z. Unfortunately, the correlation functions
available are far from satisfying these require-
ments. "" In the critical regime one has an ex-
plicit expression only for the asymptotic cases"'"
q/v«1, and q/w» 1, where I/g is the correlation
length. " These expressions are for the Ising
model and in the quasistatic approximation. Hence
scattering by transverse modes'"'0 (spin waves)
as well as inelastic spin fluctuations scattering
processes are not described by these expressions.
The situation is even worse in t;he mean-field re-
gime since for this regime only the correlation
function for the q/g«1 limit, i.e. , the Qrnstein-
Zernike correlation function, " is available.

The fact that only asymptotic expressions are
available for the static correlation function was
discussed in detail in I. It was concluded. then that
for the interaction of charge carriers with spin
fluctuations this limitation is of minor importance,
especially in the critical regime, and that energy-
like behavior of the critical resistivity should al-
ways be observed. We should note that this latter
conclusion indicates that the specific forms (e.g. ,
Ising-model result) of the correlation functions
used there (and to be used here) are not important.
This is the conclusion of the fact that the q, the T
—T„and the m dependences of I', are determined
by general consideration of the monotonicity of
the internal energy and by the scaling hypothesis. "

Before extending the use of the static correlation
function for T& T, and for the case of an applied
field, we should remark on the use of the quasi-
elastic approximation for determination of the
critical resistivity. This problem has not been
considered previously in the literature. Hence
we have studied its relevance, and have come to
the conclusion that while the contribution of the
dynamical scattering may be significant in the
case of large momentum transfers, its tempera-
ture and magnetic-field dependences will be the
same as those obtained from the present quasi-
elastic approximation. Our study of this problem,
in regard to all carrier transport properties, will
be published elsewhere.

For systems in which the spin has more than
one component, transverse modes' may be exited
below T, . However, such modes are expected to
be damped in real materials since the latter do not
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have a spatial rotational isotropy. " Even if these
modes do exist, they should be ineffective for car-
rier scattering" (see below) due to the fact that
they are zero-momentum modes. Hence, for the
present problem the effect of these modes can
be neglected and the Ising-model results can be
used.

A justification for the use of the static-Ising
correlation function is also borne out by all avail-
able experimental data. This is because semi-
quantitative analyses"'"'" of these data, have
shown that the relation dp/dT o-C~ is fulfilled for
both T& T, and T&T, and in the absence" or pres-
ence" of magnetic field. A recent quantitative
approach, that utilizes a nonlinear least-squares
analysis' ' ' for the critical resistivity, has yield-
ed'""'" the same critical exponents below (n')
and above (o.') T, . Further, the critical amplitude
ratios (A/A') were found to be in excellent agree-
ment with the theoretical predictions for the speci-
fic heat. For example, analysis" of Shacklett's
data" on the critical resistivity of the Heisenberg
ferromagnet, iron, has shown that n = n' = -0.21
+ 0.02 and A/A'= 1.48+ 0.0S, while the correspond-
ing theoretical values are u = a'= —0.14+ 0.06
and A/A'=1. 36+0.06. Following the above discus-
sion it appears that the correlation function used
in I and in the present work accounts for the dom-
inant contribution to the critical resistivity in
real magnetic solids.

In view of the importance of the correlation func-
tions to the problem at hand, we shall present
their definitions and expressions in some detail in
Sec. II. The correlation functions of ferromagnets
are presented in Sec. IIA and those of antiferro-
magnets are presented in Sec. IIB. The results
for the critical resistivity are obtained then by
using Eg. (1.1) and the dominant terms of the cor-
relation functions. These results are given in
Sec. IIIA for ferromagnets and in Sec. IIIB for
antiferromagnets. The predictions are easily
amenable to experimental examination, and thus a
comparison with the available experimental data
will be given in Sec. IV. We shall see that in some
cases the present work gives the first explanation
of experimental results. We do not discuss here
the effect of the change in the number of carriers
on the critical resistivity since this is apparent
from our work on the critical band shifts. '" We
thus restrict our discussion, that will be summar-
ized in Sec. V, to the effect of critical scattering
on the carrier's mean free time.

II. THE SPIN CORRELATION FUNCTION

The spin-spin spatial correlation function is de-
fined by'

r(R) =&(s; —
&.s&) ~ (s-„-&s&)&, (2.1)

where SR is the spin of the ion located at the lattice
site R measured with respect to a chosen lattice
site 0, &S& is the thermodynamical average of the
spin in the system, and S is the spin eigenvalue.
The Fourier transform of I'(R), the correlation
function, is defined by

F, =Jr(R) *'~'", (2.2)

where q is the wave vector of the momentum trans-
fer"' and & =

I
q

A. The correlation functions of ferromagnets

In the case of a ferromagnet, ~&S&
~

is the reduced
magnetization m =M(T, H)/M(0, 0), where M(T, H)
is the magnetization at the temperature T when a
magnetic field H is applied and M(0, 0) (=gpzSN)
is the saturation magnetization. " Hence in this
case (2.2) can be written as

r, = &S, S„&- m'6(g), (2.3)

where S& is the Fourier transform of S"„and where

q is defined within a reciprocal lattice vector in
our effective-mass approximation.

In the above expression the correlation function
depends on the magnetization m. Since in the ex-
periments the measurable quantities are the tem-
perature T and the magnetic field H, we express
all correlation functions in terms of the reduced
temperature t = (T —T,)/T, and the reduced mag-
netic field h=—pH/ksT„where p. is the magnetic
moment of an ion and k~ is Boltzmann's constant.
The relation m =m(h, t) for ferromagnets is given

by the Widom equation"

h/m' =f(z), (2.4)

where f(z) is the properly normalized Widom func-
tion, 6 is the critical isothern exponent, z =t/m'ta,
and P is the spontaneous-magnetization exponent.
The expressions for the functions f(z) in the critical
regime are quite cumbersome" and seem to be of
little use if results that are comparable with ex-
perimental data are desired. Since for such a
comparison a simple power-law dependence on T
and H is wanted, we use here only the leading
terms of f z) and discuss the asymptotic cases ~t

~

»h and ~t «h. The coefficients of the develop-
ment of f(z) in powers of z or 1/z are smaller
than 1 (see below), and thus our results will be
exact to order t/h or h/t throughout this paper.
For simplicity we normalize here the functions

f(z) so that in the classical limit" (i.e. , where P
=&, 5=3, and y=1, y being the critical exponent
of the susceptibility) the f(z) will yield the well-
known S=2 equation of state.
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For lz
l

& 1, the leading term of f(z) is z, and
thus the equation of state is"

I[,/m' = ', + f-lm'/' (2.5)

while for the lz l
& 1 limit, the leading term of f(z)

yields'9

exponent, v is the correlation-length exponent,
and a is the specific-heat exponent. The function
P(z) is given by"

4(z)=c, f ''"[f'(0( f (-/ z''z)]d z
1

(2.6) f '(o)
C —1/(Z z 1 ) (2 9)

For m, we take here its molecular-field value
m, = (S+ 1)/S, noting that within a factor, m, is
the same as in the critical regime. " As is ap-
parent, (2.5) is always applicable for T & T„while
for T&T, it is applicable in the k»t case. For
T&T, in the t»h case, Eq. (2.6) is to be used.
We shall thus call the 1»([2» ltl limit the "large
fieLd" case and the 1»

l
i

~

» 12 limit the "small
field" case. (Note that z = -2 corresponds to the
sgn(i) term used in Ref. 2 a.s the coefficient of
the

l
i l' term, see below. ) The development

of m to the first order in l2/f or f/I2 is given, for
the four cases under discussion, in Table I.

Correlation functions for the scaling regime have
been calculated and are available in the litera-
ture"'" for the two extreme cases; x«1 and
x» 1, where x =q/g (see discussion in Sec. I).
In the critic:al regime we restrict the discussion
to results obtained for the Ising model. "noting that
for the present problem (see Sec. I) this is jus-
tified even for systems with more than one com-
ponent of the order parameter. In the "small-q"
x«1 limit we can apply the result of Combescot
et al. ,

"who showed that

I'(x', i, z) = y(f, z)[1+x'+ o,(z)x'+ o, (z)x'+ ~ ~ ] '.
(2.7)

)((t, z) in (2.7) is the static susceptibility, and the
correction terms are small since o, (z) « l. In the
"large-q" x» 1 limit we can use the result of
Brezin et al.":

Go bg (+-&)/v
I (q, t, z ) = „a—,f„—(t[ (z )q" q" m"

(2.8)

where G„a, and b are constants. In the nz = 0
case"" the last term is reduced to ci' /q"
where the constant c is defined by c=z '(t[(z-~).
In this correlation function g is the critical-point

—3 ((([+ 1) ln3 + 2(([ln2] . (2.10)

However, the function (2.10) is not proper for
e» 1, and in this case one has to use the expan-
sion"

f(~) p g (d2' 2(p 1)[[

P=l
(2.11)

The dominant term in (2.11) is the first term and
one can approximate"

j (u)) -'- 0.588' (2.12)

In the "large-field", case of
l
z

l

& 1 we can thus
substitute Eq. (2.10) into Eq. (2.9) to obtain (f[(z).
The result of this substitution is

4(z)=c, -1 ~ —Q z ). (2.13)
Pf '(0) P (-1)'z~

[11P0+
In the small-field" case lz

l
&1 we have to con-

sider both the region where Eq. (2.10) applies and
the region where Eq. (2.12) applies. Such a con-
sideration, as will be shown in Appendix A, yields

P(z) = c,[( P/18a)z' -+ 0.29yz" '], (2.14)

Comparison of Eq. (2.14) and Eq. (2.8) shows that
c = ( e,P)/(18-a), and thus using the m = 0 value'"
for c yields the value c, =36a/(pv, ' " "), where
K, is the inverse of the spin-interaction range.
Similarly, b =3K0 and a=0.962. We should note
that the neglect of the higher-order terms in the
development of f(z), and thus of Q(z), does not
allow one to attribute too much significance to

where c, is a, constant and f((([) is the renormaliza-
tion-group Widom function. " For the present pur-
pose it will be enough to develop f((d) to first order
in the dimension parameter E =4 —d' and to con-
sider the & =n=1 case. The normalized function
f((d) is thus approximated by

f((d) = 1+ (d+-,'[((o+ 3) In((d+ 3)

TABLE I; The leading t;erms of m in a ferromagnet.

Region

It I && h

T&T

night ~h

(3h) ~ —(3/6) t(3h)~ ~

T&T

(3 l t l)P + 3Ph(3 l t l)p P'

(3h) )~ + (3/$) l t l(3h)(~-&~i«
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the calculated coefficients of the approximated
terms (2.13) and (2.14). On the other hand, the
asymptotic temperature and magnetic field depen-
dences to order h/t or t/h are well established.

In the mean-field regime we have the Ornstein-
Zernike function which is applicable only for x «1.
In the presence of magnetization this correlation
function takes the form"

)

an'd tI) is a. parameter that accounts for the matching
of the functions (2.18) and (2.19) at y. Carrying
out the integration (2.20) in the two regions
0 & x ( y and y & x ( A yields

2))'[S(S+I) —(S) ]/0 ())."+q') ' for q&y~
gA+ g(y —arc tany —)J)y)

q for q &ye.

I'(q, m, t) =G/())."+q'),

where G is a constant and

(2.15)
(2.21)

x' = ~,'(t+ m')l(1 —m') . (2.18)

I', =A/(q'+ 8) for x & y

and

I', =A()t)/q') for x & y .

(2.18)

(2.19)

Here A is a constant that we determine by the spin
sum rule. '

(0/')w )J )' t)'dq=S(S+))'—()I)
0

(2.20)

The main problem in this regime is that there is
no available model-independent correlation func-
tion for the x» 1 limit (which is so important for
critical resistivity'). For this reason we had to
develop an approximate form that may account for
the expectations from such a function. We have
used'" for this purpose the spin sum rule proper-
ty and Eq. (2.15), yielding essentially the correla-
tion function of the "non-small q's. " The result
obtained previously, ""

(2v'/Q)[S(S+ 1) —(S)']
[A —~ arc tan(A/x)] (q'+ ~') '

can be easily generalized to the present case (for
which the magnetization is considered) by using
Eq. (2.16) rather than g = a', t 't'. In (2.17), 0 is
the volume per spin, S is the spin eigenvalue,
and A is the effective radius of the Brillouin
sphere. This function satisfies the sum rule, has
the correct q -0 behavior, has the expected (t ' '
for m =0) temperature dependence of the energy"'"
in the q» v limit, and is monotonically increasing
with T for T &T, (as expected from the behavior
of the magnetic energy'). In contrast with the first
three properties, the latter property is not satis-
fied for T&T,. Hence we had to modify our pre-
vious function" to find a mean-field "large-q"
correlation function for (&0.

%e propose for temperatures below T„ to use
the Ornstein-Zernike-like correlation func-
tion for x~ y and the asymptotic classical correla-
tion function I', 0: 1/q' for x &y. The matching
point y between these two functions is adjusted in
a way that will ensure the monotonicity require-
ment. Hence

As can be seen from Eq. (2.21) the monotonicity
requirement dI', /dT & 0 yields (& 1 —(arc tany)/y,
and thus g & 1. Thi. s is also apparent from the con-
tinuity requirement of the correlation furiction at
y which is given by g/y' = I/(1+y'). These two
requirements approach compatibility the larger
the value of y. However, since 1- (arctany)/
y &y'/(1+y') for any y, there is always a mis-
match between the functions (2.21). For example
at y = 30, )I) = 0.95 and the mismatch is 5%. A sim-
ilar matching between Eq. (2.7) and (2.8) in I has
yieMed the correlation function in the critical re-
gime. Here as in the critical-regime case the
details of the matching are not important for the
determination of the critical behavior of the
resistivity.

It should be pointed out that neither Eq. (2.17)
nor Eq. (2.21) solves the problem of the "large-q"
correlations function in the mean-field regime.
These functions measure in fact an integral prop-
erty, and thus only their asymptotic behavior at
x» 1 or x «1 should be taken literally. The con-
fidence in the predictions at these asymptotic
limits arises from the fulfillment of the mentioned
expected properties of such correlation functions
and their asymptotic behavior. Here we only sug-
gest these functions as plausible forms that are
correct in the asymptotic limits. The values of
the parameters y and )t) in Eq. (2.21) are of im-
portance only if one wants to determine the value
of w at which a transition between the two asymp-
totic regions takes place, or to determine the cor-
rection to the one asymptotic behavior by the
other. Since this is associated with the intermed-
iate x region, where the functions are ill defined
anyway, it is not expected that this determination
will be meaningful. At best, one can find the order
of magnitude of v at which the transition is ex-
pected to occur (see Table I in I). The conclusions
to be used in this paper are the Qrnstein-Zernike-
like behavior in the x «1 limit and the
[S(S+ 1) —(S)')[I + sgn(t)tc/A] behavior in the x » 1
limit. These conclusions are extensions of our
previous results'" to the T &T, region. The lead-
ing temperature and magnetic-field dependences of
the two behaviors will be discussed in Sec. IIIA in
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connection with the critical resistivity in the mean-
field regime.

the function is given by""
I' =G (2tl ™—3t+1), (2.23)

l(s)
l

=am, (2.22)

where a=a(1 —t[T,/(T, + e)]] and a= (S+1)T,/
[3S(T,+e)]. To calculate a in the critical regime
let us recall that in the close vicinity of T, the
susceptibility of an antiferromagnet is proportional
to the correlation function" I'~. In this regime

B. The correlation functions of antiferromagnets

For antiferromagnets we consider the simple
case of two sublattices. In this case the point of
instability is the reciprocal magnetic-lattice vec-
tor Q, and I', in (1.1) is then to be replaced by

r~,- z~ . When no magnetic field is applied, l(S)
l

=m(0), the field-free sublattice magnetization.
The situation becomes more subtle when a mag-
netic field is present. Since this situation, as
far as we know, has not been discussed in the lit-
erature, we elaborate on it somewhat.

For the small fields relevant to the present prob-
lem of critical behavior (i.e. , h«1) the average
value of the spin is l(S) l

= xH/M(0, 0) where y is
the antiferromagnetic susceptibility. " In the mol-
ecular-field approximation the susceptibility above::
T, is given by lt=C/(T+8), where C =Ng'p ss(s+1)/
3k~ and g is the Curie- Weiss temperature of the
antiferromagnet. One can then write

r",' = (1/N)g g ((S-„-ah) ~ (Sit,e "'"'- ' - ah)
R R'

X efg (R R)qI r (2.25)

where we assumed that S~ is parallel to the mag-
netic field H. Hence the "antiferromagnetic" cor-
relation function I', will be given by

r, =r~' Q~ (S~;@~ ~ S-,;z,) —(ab)'6(q). . (2.26)

Below T, one has to consider the sublattice mag-
netization and to sum over the two sublattices. The
correlation function in this case can be defined
by

where Go is a constant. (For simplicity we have
assumed that the spin-spin interaction range I/v,
is of the order of I/Q). In view of the value of a
we can normalize 6+=1 and thus within a factor
(which is of the order of the corresponding ampli-
tude ratio"), a will be given in the critical regime
by

a =((S+ l)T,/[3S(T, + e)]/(2t ' ' —3t+ 1) . (2.24)

Using the above average of l(S)
l

and recalling
that for T& T„ l(S) l

is the same for both sublat-
tices, the spin correlation function can be defined
as

r~ = r ~- z, = (1/N)g P([Sa—m(0) —bh] ][S"„,—m(0)] e @' "'—bh)e"'"' "')
R R'

(2.27)

where b = X„/M(0, 0) and y„ is the parallel sus-
ceptibility. " For the small fields relevant to cri-
tical phenomena, and in the molecular-field ap-
proximation, b can be given (to order

l
tl) by"

b=b(1- ltl/a), (2.28)

where

(S+ 1) 6(2S'+2S+1) T
S 5S'(S + 1) T,

and

38 6(2S +2S +1) T
5(S + 1)' T

As for the T&T, case one can replace (1 —ltl/B)
in Eq. (2.28) by r& G&(-2ltl' -3lt I+1) and thus
get, within a factor, the value of b for the critical
regime. The correlation function for T &T, can '

then be written as

= r)~ @(
——(s)~ @) s )~ ~))

—m(0)'&(q —Q) —(bb)'6(q) (2 29)

[T,(H) —T, (O)]/T, (O) = FH' = fb', - (2.30)

where

3pi[ (S + 1) + S ]
2o[(s+ I)'(Ngi, s)'] '

XJ is the transverse susceptibility, Ngp ~S is the
saturated magnetic moment per unit volume, and

It should be noted that m used in Eqs. (2.7) and
(2.8) is the order parameter. This quantity is not
well defined for antiferromagnets in the presence
of a magnetic field. However, it can be shown"
that the correction to (2.29) via the difference
m(H) —m(0) is of the order of (bh)'. Hence (2.29)
is adequate for the determination of the leading
temperature and magnetic field dependences.

For the derivation of the explicit dependences
one has to recall that in antiferromagnets the
Neel temperature T, (H) is magnetic field depen-
dent and its relation to the H = 0 Noel temperature
T, (0) is given by '
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(S+ 1)'
60S'[1+6/T, (0)]' '

The relation (2.30) is valid as long as

EH' «T, (0), (2.31)

A. Critical resistivity of ferromagnets

As is shown in I, the critical resistivity is given
by an integral of the form (1.1). In the critical
regime" the result of this integration is given by'

I, =D (y)P"'""+D, —D34(z)m" "'/~-D4t, (3.1)

and it has to be modified when anisotropy is taken
into account. For simplicity we consider here
only the form (2.30), noting that it applies for both
the critical regime and the mean-field regime. "

It is apparent that when critical effects. are dis-
cussed, the distance between the (T, H) point and
the critical curve T, (H) in the antiferromagnetic-
phase plane is to be considered. For the small
fields discussed here [Eq. (2.31)] one can approxi-
mate dT, (H)/dT= tan@ =-4, and thus the distance
will be given by [T —T,(H)][1—2(EH)']. The ef-
fective reduced temperature t*=[T—T, (H)]/
T, (H) can then be expressed to order h' by

(2.32)

where f = [T —T,(0)]/T, (0).
Since molecular-field calculations"'" were car-

ried out for magnetic fields for which the condition
(2.31) prevails, and since we are interested in cri-
tical effects, i.e. , in the close vicinity of T„we
assume the validity of this condition in our dis-
cussion on antiferromagnets. In view of this, we
use for antiferromagnets, the correlation functions
given in Sec. II A, but with m r eplaced by m(0) and
with t replaced by t*

In the perturbation approximation that will be
considered below, (S)'«1. This implies that the
leading temperature and magnetic-f ield-dependent
terms of I'~-, @ will be proportional to

I
t*l' in

the critical regime, and to It*I' ' in the mean-
field regime. It is then the shift of the Weel tem-
perature that will determine the critical behavior
since the corrections introduced by the other
terms in (2.29) are of higher order than th'.

III. THE CRmCAL RESISTIVITY

In this section we derive the leading temperature
and magnetic field dependences of the critical
resistivity. This is done by the procedure used in

I, i.e., by substituting the correlation functions
that were given in Sec. II into the integral (1.1).
The results obtained will be presented in their
asymptotic ( I

t
I
» h or

I
t

I
«h) limits for the vari-

ous regions of ~ or t. For comparison, the cor-
responding &=0 results which were calculated in
I, will be given for all regions. The qualitative
features of the results will be explained on physi-
cal grounds.

where D, (y) is a function of the matching point

y between the "small-q" correlation function (2.V)

and the "large-q" correlation function (2.8), and

D„D„and D4 are constants that depend on the
effective radius of the Fermi surface Z [i.e., the
cutoff of the integral (1.1)]. Here we have added
the magnetization-dependent term which in the
m =0 case, calculated in I, reduces to D, I

I I' ".
Equation (3.1) is dominated by the x» 1 correla-
tion function' as long as y & Z/z. Then, the term
of the dominant temperature dependence and the
only term which depends on the magnetization is

C, (g)m (1-m & / 0 (3.2)

Hence the temperature and magnetic field de-
pendences of the critical resistivity will be de-
termined by M„ the dominant part of I, . Vfhen

{3.2) is written explicitly in terms of the functions
C(z) (given in Sec. II) and the proper m values
(given in Table I), one obtains the explicit f and h

dependences of the critical resistivity in the criti-
cal regime. ' This is done here for the two limits
ltl »hand ltl «h. The results for these limits
are presented for T&T, in the first rom of Table
II and for T&T, in the first row of Table III. The
results account for the increase in the number of
large-q spin fluctuations upon the increase of tem-
perature through T,. Hence these results describe
the situation for metals" in the-critical regime
even for relatively large values of

I
f

I
(~10 ').

For semiconductors, on the other hand, this will
be true only in the very close vicinity of T, (see
below). The magnetoresistance is found to be al-
mays negative, as expected, from the suppression
of the critical fluctuations by the magnetic field.
For better realization of the predicted behaviors
of the resistance and magnetoresistance (given by
the first rows of Tables II and Ill) we illustrate
in Fig. 1 the corresponding leading temperature
and magnetic field dependences. The significant
dependences to be noted in Fig. 1 are the energy-
like behavior of the resistivity It l' [Fig. 1(a)],
the h't " ' dependence of the magnetoresistance
above T, [Fig. 1(b)], and the &It I' ~' dependence
of the magnetoresistance below T, [Fig. 1(c)]. In
the

I
t

I
«h limit the h" "'/~' dependence is found

both above and below T, . The results indicate that
for small enough fields (Itl » h) the magnetore-
sistance has a diverginglike behavior, but when

T, is finally approached (and k» lt I), the mag-
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Region h=o

TABLE II. Critical resistivity of a ferromagnet for T)T

h « E h. )) t

Critical

x )& 1

Critical

x « 1

t t —(6uy/P) t ~ (m0 h)

t " lnt t "(I +(6a /2[ a(2- t)t]) t t~'@(moh) ) lnt

1 1
(3h) P + (1- ) —+ t(3h) otj{P~

P5 1 8nf '(0)

h 2
"I/{[I~) lnh

Mean-field

x )) 1 t I /2

I /2

m@0 t + (mob/t)
[ 1 + (Ko /A) ] (moh/t)

2A 1 —(m 0h/t)2

I /2

7l Ko (3h)
2A 1 - (3h) ' —2t [ 1 + (vo/A) ] [(3h) ' —t ]

Mean-field

x « 1 t 1nt —[t+(moh/t)2] ]n {1+(Z/&0)' [t +(moh/t)'] [(3h)'" —t ] 1n [(3h)'" —t )

netoresistance saturates and depends only on the
magnetic field. As will be discussed in

Sec�

. IV all
the magnetic field dependences mentioned here
w ere found experimentally. '~' "

.

For a, semiconductor one can apply (3.2) only
in the very close vicinity of T, where the. condition

y & Z/tt is still satisfied. (This is for
l
t

l
& 10 ' as

can be seen from Table I of I.) Since the critical
regime may extend to larger t' s we have to con-
sider' the smail-x correlation function (2.7). This
yields a de Gennes-Friedel-type dependence of
the resistivity

p (X. 8 inc

While tt is well known~' in. the h=0 and the ltl«h
cases, we have not found an explicit expression

for it in the literature in the
l
t l» h) 0 case. In

view of our interest in this limit we have derived
this expression by using the proper rn in the sus-
ceptibility relation tt = (Sm/Sh)' '" ". For T) T,
we have used the relation h/m'=f(z) up to the sec-
ond term of Et]. (2.11) and found that

tt = t "(1+(6a,/[a, (2 —t])]]t"""m',h') .

For T & T, we have considered the equation of
state (2.5) with the corresponding m of Table I
and found that

tt = (3 lt I)'"+ [2/(2 - t])](P5- I/P- I)h(2
I
t I)

'
The results obtained for the critical resistivity in
this x«1 region are given in the second row s of
Tables II and III. It is thus expected that in semi-

TABLE III. Critical resistivity of a ferrornagnet for T & T

Region h=o h « I E I h)) IEI

Critical

x )) 1 — (3.1 t I)'-,{(1—e1 —(1-n)/[18f' (0)]}
X {I—(1 —tt)/[18ttf'{0)] } th(3 lt I)' ' P'

—(3h) ' ' ~' —(]-at) {(1/P5)+ 1/[18ttf'(0)]}
X I t l(3h)

Critical

x « 1 Itl " ln I tl
I

{(3 It I)'" + [2/(2- t))](P8 - 1/P - 1)

X(3hI t I)"~} 1n I t I

h2 /(P~) lnh

Mean-field

x )& 1

(yv & z)

Mean-field

x « 1

(y~ ) g) Itl 1n ltl.

[3h/(3 I
E'I)' '''] [' '1 + ('&0/A') ] (gt( 0/A)

&&{[2ltJ+ 3h/(3]tl)t'n]/[1 —3 Jt J)'
I

[2 I t I + 3h/(3 I t I)"']
X 1n {1+-(Z/tto) [2 It I+ 3h/(3 It l)" ] '}

(3h) ' [ 1 + (x /A)'] —(t ~ /A)

x{[(jh) ' + I tl]/[1 —(3h)"3 —2iti]} '"

l.

[ I t I+ (3h)"']
'
X J[n {]+ (g/tt ) [ I t I'+ (3h)2'3] }
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FIG. 1. Temperature dependence of the critical re-
sistivity of a ferromagnetic metal (a). Magnetic field
dependence of the magnetoresistivity of a ferromagnetic
metal above the critical temperature {b) and below the
critical temperature (c). The dashed curves represent
the transition region between small magnetic field
behavior and large magnetic field behavior. The results
apply in both the critical and the mean-field regimes.

conductors a transition from the behavior given in
the first rows to the behavior given in the second
rows will take place. This transition occurs when

~, which depends on
~

t
~

and h, increases through
the vicinity of the point ~= Z/y. For T & T, the
transition is associated with the point (T'„,H )
above which the dominant fluctuations have q's
larger than the electronic cutoff Z. For semi-
conductors, Z is quite small (Z/~, «1) and the
transition manifests itself by a maxima of the re-
sistivity at the above point. A similar situation,
but without a peak at T~, is expected fear T& T,.

The predicted behavior of the critical resistivity
of a ferromagnetic semiconductor is shown in Fig.
2. In the relatively narrow region, where the
x» 1 asymptotic correlation function applies (y
& Z/K) the behavior is exactly the same as for
metals. Hence, the region between T~ and T~ in
Fig. 2(a) depicts the behavior shown in Fig. 1(a)
but on a reduced temperature scale. The behavior
of the resistivity outside this region is charac-
terized by the ~t~'"In~t

~

decrease of the resistivity

FIG. 2. Temperature dependence of the critical re-
sistivity of a ferromagnetic semiconductor, (a), Mag-
netic field dependence of the magnetoresisitivity of a
ferromagnetic semiconductor above T, (b), and below

T, , (c). The dashed curves represent the transition
region between small magnetic field behavior and large
magnetic field behavior. The results apply in both the
critical and the mean-field regimes.

(notethatln~t(&0since (t~&1). Themagnetic-field
dependence of the magnetoresistance in this y & Z/I(:

region is the same as inthe T~& T & T„region for the
~t~«hcasebutchangestoh'" ~" lnhinthe (t~ «h
case. The temperature dependence of the magnetore-
sistance ist"" "~' above T,[Fig. 2(b)] and ~t

~
be-

low T, [Fig. 2(c)]. It is worth noting that these
temperature dependences coincide with the de-
pendence s iri the inner (T~ & T & T~) region when
the classical values of the exponents (o =0, P =-,',
@=1, 6=3, and v=-,') are used.

The qualitative features of the behavior of a
semiconductor are expected on physical grounds.
As the temperature increases through T, the dom-
inant fluctuations have larger and larger q's. Very
close to T, these q's are small enough to match
the wave vector of the carriers, X, and the ef-
fective large-angle scattering" takes place. As
the temperature increases through T~ the domin-
ant fluctuations have q's which are larger than
Z and the less-effective small-angle scattering
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t+I Z 1 —gyesI =(1-.m') —,'Z' ——,'z' In 1+' '1-I' ~ t +n'

(3.4)

As discussed in Sec. IIA, the functions (2.17) and

(2.21) yield the exact temperature and magnetic-
field dependences only in the asymptotic limits
K/Z«1 and K/Z» 1. Hence, we should consider
(3.4) in these limits. The explicit temperature
and magentic-field dependences are found by sub-
stituting the mean-field values of K [Eq. (2.16)]
and I (the values given in Table I but with clas-
sical exponents) into

m'[1+ (K /A)']+ (m/2)(K/A) (3.5)

for the K/Z«1 case, and into Eq. (3.3) for the
«/Z» 1 case. The results of this substitution in
the first case are given in the third row of Table
Q while those of the second case are given in the
fourth row of this table. As can be expected in
view of (3.4), the exact behavior of the critical
resistivity as well as the transition point from
the third-row behavior to the fourth-row behavior,
will depend on the parameters of the magnetic
(K, Rnd A} and electronic (Z and A} systems. ' The
latter transition can be looked upon as a trans-
ition from a mean-field behavior [Eg. (3.4)] to a
molecular-f ield behavior. This is because the
results obtained in the molecular-field approxima-
tion"" coincide with the results given here in the
fourth row of Table II. The physical picture as-
sociated with the behavior described by the third
and fourth rows of Table II is similar to the pic-
ture suggested for the behavior associated with the
first and second rows of th&s table, respectively.
Further, comparison of the predicted power-law
behaviors in the critical and mean-field regimes

process takes over. Correspondingly, the re-
sistivity decreases with temperature. As in the x» 1
region the effect of magnetic field is to inhibit the
fluctuations and thus to yield negative magnetore-
sistance (Ink&0 since h&1). Below T, the increase
of temperature is accompanied by a monotonic
increase in the number of the fluctuations. IIence
the resistivity increases monotonically with in-
creasing temperature and decreases with in-
creasing magnetic field.

In the mean-field regime, i.e., when It I~ to,
the latter being the Qinzburg reduced tempera-
ture, "we have to use the correlation functions
(2.17) Rnd (2.21) with tile clRsslcR1 K(2.16). CRI'I'y-

ing out the integration (1.1) for the T & T, case
yields then:

I, = (1 —m')f2 Z' ——,
' K' ln[(Z'+ K')/K'))

X [4A+ K(y —Rl'C'tRlly —t/fy)] (3.7)

Following the same procedure as above and writing
the dominant terms —I'[1+ (Ko/A)'] —gK/A, where
g = (y —arctany —(y)/g is a constant of the order
1, we get, in correspondence with (3.6) and (3.7),
the results of the third and fourth rows of Table
DI. As in the T & T, case the dependences of the
magnetoresistance, ht' ~ 8' and h" ~' ~', apply
also to the mean-field regime when the classical
values of the critical exponents are considered.
Hence the entire behavior illustrated in Figs. 1
and 2 represents also the mean-field behavior
provided tha. t 1 —o. is replaced by —,

' and the criti-
cal exponents are replaced by their classical val-
ues. Again the results of the fourth row coincide
with molecular-field calculations"" and the se-
quence of transitions in the behavior of metals,
semiconductors, and "semimetals" is similar
to tha, t found for 7'&T,.

B. Critical resistivity of antiferromagnets

. As was shown in I for electrons scattering in
an antiferromagnet, one has to consider the mo-
mentum transfer with respect to the point of in-
stabl lty Q. Tile reslst1vtty llltegl'Rl (ovel' the
Brillouin zone') (l.l) takes then the form

(3.8)

in view of the results obtained in Sec. IIB, we can
use the relations

shows that they are the same, provided the clas-
sical values of the critical exponents are used.

The following sequence of behaviors i.s predicted
for different electronic systems: In metals, a
transition from the first-row behavior to that of
the third-row behavior is expected around t~.
semiconductors, a transition from the first-row
behavior to that of the second-row behavior is ex-
pected at «=Z/y and then, with increasing K, a
transition to the fourth-row behavior, in the vicin-
ity of t~. In intermediate cases, such as of "semi-
metals, " (0.1 = Z/A & 0.5) we may expect' the be-
havior of a metal, but finally (large t or II), the
resistivity will assume the fourth-row behavior.

The situation below 7', is quite similar but we
have to use Eqs. (2.21} in the corresponding K

regions of the mean-field regime. For y~&Z
we get

I, = (1 —m') fpZ'+ K' [y'(1 —p) —ln(1+ y') ]j
x f2[(A+ K(y —Rrctany —gy)]] ', (3.6)

while for yv&Z
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and

g)'= (ak)'6(q) for T & T,

(S)'=m'(0) 5(q -Q)+ (bk)'5(q) for T & T, .

The case of a semiconductor, i.e. , when Z«Q, is
straightforward and Eq. (3.8) reduces to

p-F.(if*i) . (3.9)

Hence using the result (2.32) of Sec. IIB one can
determine the temperature and magnetic-field
dependences of p in the cases lt »k and lfl «k.
In the first case

p~t' +(1 —n)ft k' for T&T, (3.10)

Itl -+(I n)f

In the second case

p ~(fk')' + (1 —n)t(fk') for T& T,

(3.11)

(3.12)

ED
I

LIJ

I

~G ~C ~G

(a)

h
2(l-a)

TG Tg TG

(b)

h

(c)

-) t( h h2(1-a)

FIG. 3. Temperature dependence of the critical re-
sistivity (a) and the critical magnetoresistivity (b) of
an antiferromagnetic semiconductor. The temperature
dependence of the critical resistivity (c) and the mag-
netoresistivity (d} of an antiferromagnetic metal. The
dashed curves represent the regions where the molecu-
lar-field approximation applies.

p~(fk')' +(1 —n)ltl(fk') for T&T, . (3.13)

The behavior described by these formula is sum-
marized in Fig. 3. The temperature dependence
of the resistivity of an antiferromagnetic semi-
conductor when H = 0 is shown' in Fig. 3(a) and
the temperature dependence of the magnetoresis-
tivity is shown in Fig. 3(b). Qualitatively, the re-
sults shown in Fig. 3(b) can be gathered from Fig.
3(a) since the shift of the p(T; H=O) curve, paral-

lel to itself towards lower temperatures, will
yield an increase of the resistivity at each T I.f
this shift is induced by a magnetic field, as in the
present case, positive magnetoresistance will
result.

The physical meaning of the above predictions
is quite apparent when one recalls (see Sec. III A)
that for effective scattering of the carriers one
has to have Z = Q in the vicinity of T, If this con-
dition is not fulfilled, as in the present case, the
effectiveness of the scattering will increase with
increasing temperature. This will be the case as
long as the dominant fluctuations will have q's for
which Q=q& Z. Hence, the resistivity will as-
sume the dependence shown in Fig. 3(a). The ef-
fect of an applied magnetic field, at a given tem-
perature, is to enhance the shift to the more ef-
fective (in the present case) lower-q fluctuations
and thus to yield positive magnetoresistance. This
shift is responsible for the inhibition of the anti-
ferromagnetic ordering and the lowering of T,.
The results of the magnetoresistivity shown in
Fig. 3(b) indicate that for the fields considered
by the present theory [Eq. (2.31)j a, universal
quadratic (small field, ltl»k case) or a nearly
quadratic (large field,

l
f l«k case) magnetic-field

dependences are predicted. As for ferromagnets,
the diverginglike behavior of the magnetoresistance
is obtained up to some small, but finite, ltl. Then
the magnetoresistance saturates with temperature
and the behavior of Eqs. (3.12) and (3.13) takes
over.

For the mean-field regime [see Eqs. (3.5)-
(3.7)j we can repeat the same procedure, i.e.,
take the leading p(T, H=O) term z~sgn(t) ltl'~'
and replace t by t~. Developing then in the limits
ltl »k and ltl «k yields the results given in Eqs.
(3.10)—(3.13) except that 1 —n is to be replaced

1 1
by & and -n by --, .

From (2.21) we have concluded that the leading
terms of the mean-field correlation function will
be I"o ~-(S)'+sgn(t)~/A. So far we have con-
sidered only the second term, but in the large
field (t«k) limit the first term may become dom-
inant and a negative magnetoresistance results.
This negative magnetoresistance reflects the ef-
fect of the reduction in the total number of fluc-
tuations by the applied field. This result is ex-
pected from the molecular-field theory" for which
the correlation function is -m' ~ —k'/[(T —e)/T„j.
One should note that when this behavior takes ov-
er the sign of the magnetoresistance changes and
the magnetoresistance diminishes with increasing
temperature.

Using the same approach far below T, and re-
calling that for this case (S)'=m'(0) (but

l
t

l
is re-

placed by lt* ), we get again the molecular-field
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p ~ [I',+m'(0)5(j)] Iq+Q I
d'q . (3.14)

Addition and subtraction of Q f I', d'q then yields

p o-Q [I',+m'(0)]d'q+ I,( I
0+ Q I

—0) d q

(3.15)

Using the spin sum rule (2.14) and the correlation
functions (2.26) and (2.29), and assuming Q = A= Z

(as in a, proper metal), one finds that the first in-
tegral is simply

(2q~'/Q}[S(S+1) —(ah)'] for T& T,

(2q~'/Q}[S(S+ 1) —(bh)'] for T& T, .

The second integral, when Q is on the Brillouin-
zone boundary (the normal case), can be easily
shown to be'

result~' p -—If* I= —
I
f I+~'+

I
f If&' 'The resis-

tivity in this region is decreasing with decreasing
temperature due to the decrease in the number of
fluctuations. The positive magnetoresistance re-
sults in this region from the inhibition of the anti-
ferromagnetic ordering by an applied magnetic
field. The regions where the molecular-field ap-
proximation is valid are represented in Fig. 3

by the dashed curves. This is to stress the fact
that the behavior predicted for this region should
be considered more as a qualitative estimate of
the expected behavior since other scattering pro-
cesses as well as band-structure effects can yield
variatio~s in the above temperature and magnetic-
field d'ependences.

For an antiferromagnetic metal the momentum-
transfer cutoff may be larger than Q and one has
to carry out the integration (3.8) with the correla-
tion functions (2.26) and (2.29). Sufficiently close
to T, and for small enough fields, (S}' is small
compared with (S~.S„-,) and thus perturbation
treatment of the potential (S)' is possible. In this
paper we discuss only the close vicinity of T,
where this treatment is allowed. When this ap-
proximation is not allowed one has to consider
the changes in band structure that take place be-
low T,. As will be discussed in Sec. IV the ex-
perimental evidence" suggests that this is a valid
approximation up to

I
t*'I &0.1, which is certainly

satisfactory for our discussion'on critical effects.
Using this perturbation approach one can separ-
ate the two parts of the integral in (3.8). Then,
by the 5-function integration one eliminates the
(ale)' or the (bk)' terms. Finally, by the use of
the transformation j- j+Q, the integral (3.8)
takes the form

(3.16)

This term has the leading temperature and mag-
netic-field dependences: -(f*)' above T, and

I
t~ I' ' below T, Th. e leading terms are then the

same as those obtained for semiconductors [Eqs.
(3.10)—(3.13)]but with the opposite sign.

The physical reason for the decrease of the re-
sistivity upon temperature increase through T,
follows the decrease in the number of the large-q
fluctuations with which the carriers interact effec-
tively(Z =k~ = Q). The magnetic field inthe vicinity
of T, inhibites the large-q fluctuations and enhances
the less effective (in metals) small-q fluctuations
and thus negative magnetoresistance results. It
is interesting to note that in the present perturba-
tion approximation the effect of the antiferromag-
netic periodic potential does not contribute to the
critical resistivity up to order m'(0}. This comes
about due to the cancellation (to the above order)
of the coherent scattering term [proportional to
m'(0)] by the modification of the free-electron-like
e'.genfunctions of the carries4' [used for the deri-
vation of (1.1)]. Overlooking the effect of the co-
herent scattering" thus yields an erroneous m'(0)
dependence of the critical resistivity below T,.

"Far" below T,( I
f*

I

«0.1), the situation is not
necessarily consistent with our perturbation ap-
proximation. However, the decrease in the num-
ber of fluctuations as low temperatures are ap-
proached must lead, finally, to the decrease of
the resistivity with decreasing temperature in this
range. Hence the behavior of metals is qualita-
tively similar to that of semiconductors and it can
be described by the molecular-field approxima-
tion." "Far" above T, (t «0.1) the shift of the
Neel temperature with magnetic field is not im-
portant and, again, the dominant contribution to

. the magnetoresistance can be treated by this ap-
proximation. ""The above results for the re-
sistivity of antiferromagnetic metals are sum-
marized in Fig. 3(c) while those of the magneto-
resistivity are summarized in Fig. 3(d). In the

corresponding temperature regions, where only
the qualitative features of the behavior are under-
stood, the expected behavior is illustrated by a
dashed curve. Again, as for semiconductors, the
qualitative features of the magnetoresistance can
be gathered from a shift of the p(t) curve [of Fig.
3(c)] parallel to itself in the direction of low tem-
peratures.

The results given above are for a proper metal
(kz «Q). If the Fermi surface is not spherical
the qualitative behavior may vary between that of
a metal and that of a semiconductor. In particular
if Q, &k» in one direction and Q, &k~, in another
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direction, the tendency of the temperature depen-
dence and the sign of the magnetoresistance can
become complicated and direction dependent. How-
ever, the correlation between these two properties
will always be conserved, and one can character-
ize the critical resistivity of antiferromagnets as
semiconductor-like [Fig. 3(a) and Fig. 3(b)] or as
metallic-like [Fig. 3(c) and Fig. 3(d)].

IV. COMPARISON WITH EXPERIMENTAL DATA

Most of the available data on the resistivity of
magnetic materials around T, was reviewed in I.
Qualitatively, the temperature dependence of the
resistivity that is shown in Figs. 1-3 have been
conf irmed. ' The important consequence derived
from the data examination was that the proportion-
ality dp/dT ~ C& is well established at least sezni-
quantitatively. Very recently, renewed analyses
of available resistivity data, have shown that the
expectations, n =n' as well as reasonable values
for n, n', and A/A' confirm this expectation
quantitatively. This was shown to be the case for
the ferromagnetic metal iron" (see Sec. I) as well
as for the antiferromagnetic metal dysprosium. "
In the latter case, the data were good enough to
find exactly t~ and to show that in its vicinity a
trans'ition from critical to mean-field behavior
does take place. Hence, as far as existing data
and analyses are concerned there is no indication
that the quasistatic approximation as well a.s the
use of the Ising correlation functions are not
justified (no experimental deviation from the re-
lation dp/dT ~C~ has been reported). Moreover,
the quantitative verification of a specific-heat-like
behavior in antiferromagnetic metals shows that
the perturbation approximation used in Sec. III8
is justified and that there is no need to involve
critical band shifts in order to explain the re-
sistivity of these materials in the critical regime.

For semiconductors the situation is more dif-
ficult since the critical change in the number of
carriers"'" overshadows the critical change in
the mobility. For comparison with. the present
predictions one has to examine the resisitivity of
degenerate semiconductors or metals that are ex-
pected to have a small effective Fermi surface. '
In the cases known'~' (the ferromagnet GdNi, and
the antiferromagnets MnTe, GdSb, HoSb, and PrB,)
the qualitative behavior confirms the expectations
[Figs. 2(a) and 3(a)]. However, no quantitative
results such as the power-law dependences of the
critical resistivity were reported for such sys-
tems in the critical regime.

In the study of the magnetoresistanee most studies
were of qualitative nature. Hence, the negative
magnetoresistance of ferromagnetic metals4 and

ferromagnetic semiconductors' was confirmed.
The predicted sign change of the magnetoresis-
tance in antiferromagnetic metals as shown in
Fig. 3(d) was found in the raze-earth metals. "
On the other hand, we do not know about magneto-
resistance measurements in an antiferromagnetic
degenerate semiconductor, and the behavior shown
in Fig. 3(b) is still unconfirmed experimentally.
It should be mentioned that, as for the resistivity,
the existing data concerning the magnetoresistance
in semiconductors' '" are associated with the
change in the number of carriers. ""'~

The more quantitative studies of the critical
magnetoresistance were concerned mainly with
the magnehc-field dependences of the magneto-
resistance. Almost all dependences shown in
Figs. 1 and 3 were confirmed. In ferromagnetic
nickel the linear magnetic-field dependence below
T, and the quadratic magnetic-field dependence
above 7.', were established. ' In ferromagnetic
gadolinium the k" ~' ~ dependence was shown
to exist." This finding, although semiqualitative
(no number for n/P5 was deduced), is the only
result for magnetoresistance that can be associ-
ated with the critical regime. Gadolinium is also
the only material for which the temperature depen-
dence of the magnetoresistance was determined. 44

Thiswasfor T& T, where the ~t~ '~'hdependencewas
found. In the antiferromagnetic metal holmium"
the quadratic magnetic-field dependence was found
below and above T,. The dependence that was re-
ported for a ferromagnetic semiconductor" seems
to be associated with a change in the number of
carriers, and thus quantitative comparison of
experimental data with the predictions of Fig. 2 is
still a hard task.

In summary, both the qualitative, and the pres-
ently available, quantitative results on the tem-
perature dependence of the critical resistivity
are in accord with the present predictions. The
experimental semiquantitative studies of the mag-
netoresistance are also in agreement with the re-
sults of this work. On the other hand, there are
almost no quantitative experimental determinations
of the temperature dependence of the magnetore-
sis tance.

V. SUMMARY AND CONCLUSIONS

The temperature and magnetic-field dependenees
of the critical resistivity were determined for
ferromagnets and antiferromagnets, metals and
serniconduetors. It was shown that the tempera-
ture dependence of the critical resistivity below

T, is similar to that presented in I for T& T,. A
transition from a —(t ~' " temperature .depen-
dence to a —~t ('~' temperature dependence
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is expected for ferromagnetic metals when the
temperature is decreased below T,. For a semi-
conductor the corresponding transition will be
from a —

ItI�'
' behavior to a

I
t I'"

ln It I
behavior

and then to a.
I
t

I
ln It I

behavior. In the intermedi-
ate cases of a relatively small Fermi surface the
sequence of transitions will be —It I' to -It I' t'
to It

I
lnItI behavior. Similar temperature de-

pendences are predicted for antiferromagnets
except that no ItI "lnItI behavior is expected and
that the signs of It I' and It I' ' are reversed for
antiferromagnetic metals. In both magnetic sys-
tems when the Fermi surface is not spherical there
may be three different cutoffs in the resistivity
integral, and a more complicated behavior then
described above may be found. However, even
in this case, close enough to T, a It I' ' behavior
should always be observed and far enough (but

I
t

I
« I) from T, a

I
t

I

' ' or a
I
t

I
ln

I
t

I

- type be-
havior is expected. The experimental results of
studies in which the temperature dependence was
determined. are in agreement with the above pre-
dictions.

The magnetoresistance for small field (h« It I)
is expected to be always proportional to k' above

T, . Below T„a linear dependence of the magneto-
resistance is expected for ferromagnets and a
quadratic dependence for antiferromagnets. These
dependences are also in agreement with the avail-
able experimental data. In the h»

I
t

I
limit a

rather universal behavior of the magnetic-field
dependence of the resistivity, h" "'~~' for fer-
romagnets and h"' "' for antiferromagnets, is
predicted. We do not know of a direct experimen-
tal proof for this prediction, but it is in accord
with results of specific-heat measurements. The
temperature dependence of the magnetoresistance
is predicted to be peaked but nondivergent for
ferromagnets and antiferromagnets both above and
below T,.

The present results yield new qualitative explan-
ations and predictions for the critical resistivity
of antiferromagnets. The "strange oscillatory"
nature of the temperature dependence of the mag-
netoresistiviiy in the rare-earth metals (such as
holmium) has not been explained before. Now,
the negative magnetoresistance at the ferromag-
netic-antiferromagnetic and the antiferromagnetic-
paramagnetic transitions temperatures, as well
as the positive magnetoresistance between them, .

are understood. The explanation is given here in
terms of the magnetic-field effect on the relevant
momentum transfers that take place in the scat-
tering process at each temperature region. A
qualitative prediction that calls for experimental
verification is that of positive critical magneto-
resistance in antiferromagnets which exhibit a

semiconductor-like behavior. Hence in antifer-
romagnetic degenerate semiconductors such as
MnTe or antiferromagnetic metals such as PrB,
we expect positive magnetoresistivity in the vicin-
ity of Neel temperature.

We feel, however, that the important predictions
of the present paper are the power-law depen-
dences of the critical magnetoresistance. This is
because the predicted power laws are simple com-
binations of the critical exponents n, P, y, 5, and
v. It seems, then, possible that the relatively
simple measurements of critical resistivity and
critical magnetoresistivity can yield many critical
parameters, We believe that the main obstacles
to full utilization of this method, the data analysis
and the determination of the asymptotic regions,
can be removed. Recent success in applying a
new method of analysis to the critical-resistivity
data of iron and dysprosium indicates that such
data can even yield the temperature dependence of
the critical parameters. The form of the tempera-
ture and magnetic-field dependences suggests that
the association of the temperature and magnetic-
field regions with the asymptotic limits

I
t I» h or

ItI«h will not be too difficult. For example, by
ensuring a linear magnetic-field dependence of
the magnetoresistivity of a ferromagnet below

T, the
I
t

I

» h region can be identified. .In this
region a measurement of the temperature de-
pendence of the magnetoresistivity can yield the
corresponding power law. From the combination
of the power laws found in different regions one
can then deduce the critical exponents. In this
manner the exponents n, y, and (P6) can be found
for ferromagnetic metals, and the exponents u, P,
y, and 5 can be found for ferromagnets that have
a semiconductor-like behavior.

From the above it is seen that the present results
account for the available experimental data. It
can be concluded that comparison of sufficiently
precise experimental data with our results can
yield critical exponents and critical ratios. Such
a comparison may even detect crossovers from
one critical behavior to another.
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APPENDIX The second integral can be written as

To calculate p(z) for z &1 we divide the integra-
tion interval in (2.3) into two regions, 1 u & z
and ga & u & ~. In the first region we have to use
E(l. (2.5) [or rather Eq. (2.6)], and in the second
region we have to use'E(l. (2.4); Hence

((s)=e,( dms' 'i8(/'(0) —0.58y(z/u'i~)' ']

P + 1-n 1/3
dv v" ln(1+v),

6 3

where the substitution v =z/3u'/8, and the scaling
relations 6P+ P —1=1—o( and P6+ P —y =2P were
used. Carrying out this integration by using the
approximation ln(1+ v ) = v yields the value 1/3"n for
this integral. Hence (Al) can be approximated by

1
duu' '/~in(1+8/3u' ~)6,s

+f '(0)/(() —(I()+ ()) .

The first integral yields

(Al)

( ): (
() 02' () ), „(0.58'()), ,

(A2)

The first two coefficients of z' are almost equal
and thus

&6g+8-a , .:"-1f 0
/ 1

—0.58yz" '
y(z) =c,I( p/18c(-)z' + 0. 29'' '] . (A3)
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