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A theory of positive-muon spin depolarization in solids is presented. Treating the interaction of the muon
spin with the solid perturbatively, the depolarization rate is related to the temporal correlations of the local
magnetic fields at the position of the muon. This general result encompasses both transverse and longitudinal
spin depolarization. For some situations it is shown that the local-field correlations can be expressed in terms
of two quantities, a muon self-difFusion function which contains the information regarding muon motion, and
a function describing the spin dynamics of the solid. When applicable, this separation precisely identifies the
aspects of muon motion that are studied by muon-spin-rotation experiments. The consequences of some
simple models for muon motion are examined. The effect of the finite spread of the muon wave function
when centered on a particular interstitial site is also included. The possible importance of this efFect is
suggested by calculations which account for the applied-magnetic-field dependence of the depolarization rate
in copper.

I. INTRODUCTION

The recent availability of highly polarized muon
beams at a number of facilities, ' has provided a
novel probe of the solid state. The majority of the
experiments on solids have used positive muons
(p, ) which decay via the parity-violating weak in-
teraction in the process

8 +Vs+Pe

The lifetime against this decay is v'„=2.2 p.sec,
and the direction of positron emission is corre-
lated with the p,

' spin orientation at the instant of
decay. ' It is this asymmetry in the emission of the
positron which is the key to the usefulness of mu-
ons in studying the properties of condensed mat-
ter.

On entering a solid target, the muon thermalizes
from energies in the range 5-50 MeV in a distance
of a few millimeters and a time (-10 "—10 ' sec)
much shorter than g„.' In this short time interval,
the muon essentially retains its initial spin polar-
ization. The subsequent behavior of the p,

' spin
depends on the relative orientation of the initial p,

'
polari, zation and the direction of any static mag-
netic field present, either externally applied or
due to the magnetization of the sample. Two cases
are of particular interest. In the transverse ge-
ometry, the initial polarization is perpendicular
to the field and the muon precesses as indicated in
Fig. 1. Because of this, the probability of positron
detection in, say, the initial polarization direction
is modulated as a function of time at the p, 'pre-
cession frequency. . For ferromagnetic materials,
measurement of this precession frequency has been
used to determine the local magnetic field at the
interstitial site at which the p,

' resides. ' ' In the
longitudinal geometry, the initial polarization is

parallel to the static field and the polarization
simply relaxes to its equilibrium value. The ab-
sence of a static field can be considered as the
limiting case of either of the above situations. Ex-
periments designed to detect the asymmetry in the
positron distribution are collectively referred to
as pSR (muon-spin rotation).

In addition to the uniform precession in the
transverse geometry, fluctuations in the local
magnetic field at the position of the muon lead to
a decrease in the polarization of the precessing
p,
' spins. ' In such an experiment, the number N(t)

of positrons detected is measured as a function of
the time elapsed since the muon entered the tar-
get, and is fitted to

dN(f) =N, e '~'~[1+A(f) cos((g, f+ y)] .

The constant N, is determined by details of the ex-
perimental arrangement and the fa,ctor exp( fix„)-
accounts for the muon decay. The experimentally
interesting information is contained in the quanti-
ties A(f), which is related to the polarization of
the muons at time f, p, a phase angle containing
information about transient effects, ' and ~„ the
observed p.

' Larmor frequency.
The oscillatory term in (1) arises from the

asymmetry of positron emission associated with
a nonzero p,

' polarization. It is proportional to
the expectation value (d s(f)), where d is a vector
specifying the direction of the detector relative to
the target and s is the p,

' spin operator. Thus, the
evaluation of the expectation value (s(f)) is needed
for an understanding of the observed depolariza-
tion. The time dependence of this quantity de-
scribes the relaxation to equilibrium of the muon
polarization and is conveniently formulated in
terms of an initial nonequilibrium density matrix
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FIG. 1. The transverse depolarization geometry. The
p' enters the solid along the x direction and precesses in
the x-y plane. The decay positrons are collected at the
detector.

(cf. Sec. II).
As mentioned earlier, the depolarization is due

to the fluctuating magnetic fields at the position of
the muon. These fields arise from the magnetic
moments of the spins of the solid, either electron-
ic or nucl. ear, and the fluctuations occur both as a
result of the dynamics of the spins and the motion
of the muon. In general, one must simultaneously
account for the combined effect of these two factors
if useful information regarding microscopic pro-
cesses is to be extracted from the observations.
If the muon is stationary, the depolarization is
simply due to the dynamics of the spins in its vi-
cinity, which, however, may be modified by the
presence of the muon. " In this latter situation,
information related to the physical environment
around the muon can be obtained.

By measuring the temperature dependence of the
depolarization rate, "additional information con-
cerning the motion of the muon through the solid
can be extracted. The nature of this motion,
whether it be a thermally activated process or one
of quantum tunnel. ing, is of considerable interest
as an example of the motion of light interstitial. s
in solids. However, if the dynamics of the spins
in the solid exhibits a significant temperature de-
pendence, as in a ferromagnet near T„ then again
the depolarization rate will reflect the combined
effects of muon motion and the spin dynamics in
the solid. In this situation, it may not be possible
to unambiguously relate the observed temperature
dependence to the temperature dependence of muon
motion.

In Sec. II we present a general theory of muon

spin depolarization in solids. Although the formu-
lation is s.imilar to that used in the theory of nu-
clear magnetic resonance, '2 the experimental de-
tails of p.SR require a somewhat different ap-
proach. For this reason, the derivation of gen-
eral expressions for (s(t)) in terms of correla-
tion functions of the fluctuating magnetic fields
sampled by the p,

' is given in some detail. In ap-
plying the theory, we shall be concerned primarily
with the case in which depolarization is due to the
fields of nuclear magnetic moments. To the ex-
tent that the presence of the muon does not effect
the dynamics of the nuclear spins, it is shown in

Sec. III that the correlation functions can be fac-
tored into a part describing the muon motion and
a part referring to the correlations of the nuclear
spins. Some aspects of the muon motion are then
discussed with a view to realistically incorporat-
ing the nature of the intersititial state. The nu-
clear spin correlations and the resulting depolar-
ization rate are calculated in Sec. IV and simpli-
fied expressions applicable to the stationary and

motionally narrowed limits are obtained. The in-
fluence of quadrupolar interactions is also con-
sidered, but only in the stationary limit. We con-
clude with a discussion of our results in Sec. V.

II. FORMALISM

In the transverse geometry with the detector in
the beam direction, the oscillatory term in (1) is
to be identified as

A.(t) cos(&dpt+ &()) pp (s„(t))= Re(s.(t)),
where

S~= S» +$Sy ~ (3)

One expects, for times longer than a few +p that
the expectation value of the spin will behave as

(s (t)) (s (0))Re(s ((op( 'lo r-(t)f ) (4)

where the decaying amplitude A(t) has been written
in the form exp[—I'(t)t], thereby defining the de-
'polarization rate I'(t), which in general is time de-
pendent.

If the coupling of the muon spin to the solid is
weak, (s„(t)) can be determined by perturbation
theory. Specifically, the result of such a calcula-
tion will. have the form

(s„(t))= (s,(0))Re(e &"~'[1—t(t), &d &»+ ~&d(») t

—,(t) &d(, )t) —I"(,)(t) t

&(t) &2&+ ]]' ~

Here the subscripts refer to the order in the inter-
action to which the various quantities are calcu-
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lated, with only those terms to second order being
explicitly shown. (The zero- and first-order con-
tributions to p and I' will be shown to vanish. )
The observed precession frequency , w'ill be a
sum of two terms, the frequency „ in the exter-
nally applied field and a frequency shift 6 = b, &»
+ h~&»+ ~ ~ ~ due to the interactions with the solid.
A comparison of (5) and (4) thus provides the per-
turbation theory estimates of the various quanti-
ties &o„@, and Nf). To the extent that the cou-
pling is indeed weak, the second-order calculation
is adequate. For the longitudinal geometry, sim-
ilar arguments apply to (s,(f)) which will also be
calculated. However, in this case, no oscillatory
behavior is observed.

The Hamiltonian H describing a single p.
' in a

solid consists of a number of terms, representing
(i) the solid in the externally applied magnetic
field; (ii) the p, 'kinetic energy; (iii) the electro-
static interaction of the p, 'with the electrons and

ions; (iv) the interaction of the i&,
' spin with the

electronic and nuclear spins; and (v) the interac-
tion of the p,

' spin with the applied field B,. The
terms (i)-(iii) will be referred to collectively as
H', while (iv) and (v) are, respectively,

H& = - p, „B(r„) (5)

Using this density matrix, the time development
of the Pauli operators is given by

&o(t})=»pU'(t)o(t)U(t) -=»p(f)o(t),

where p(t) = U(t)pUt(t) with.

t
U(t) = exp

~

—— dr H (T) (12)

o. ( f) o ev&4)~&

o,(t) = o„
(13)

where ~„=y B, is the p. 'precession frequency in
the applied field.

Expanding the operators U in (11) in powers of
H', we obtain the perturbation series

t
(o(t))= (o (t)),+- dt' ([H'(f'}, o (t)]),

0

Here the subscript "+" indicates a positive time
ordering, and all operators 0(f) develop in time
according to

exp[i(H'+ H„)f/@]0 exp[ i(H'+-H„)tie] .

Since g commutes with H' and H„commutes with
all operators not containing o, the time dependence
of z can be extracted explicitly, giving

and

(7)

t g

+ df& dt«((H&(f«) [o(t) H&(t&)] j)
0 0

+ ~ ~ ~

In these expressions, the p.
' magnetic moment is —= (o'(f))&o)+ (w(f))o)+ (v(t))&2)+ ' ' '

y (14)
=y s= —'hy o, (8)

where y =8.517 x10' Gsec ' is the gyromagnetic
ratio and s= —,'@o is the spin angular momentum.
The operator B(r ) represents the microscopic
magnetic field at the position of the muon due to
the surrounding electrons and nuclei. The nuclear
contribution is simply the magnetic dipolar field,
while the electronic contribution (in metals) in-
cludes the Fermi contact interaction.

Due to the rapid thermalization, ' the initial state
of the system will be taken to be a p.

' in a spin
state with polarization P but otherwise in thermal
equilibrium with the solid (i.e. , with respect to
H'). The corresponding density matrix is

e'"' (1+P (r) p,(1+P g)
Trg-t'~' 2 2

It is convenient to introduce

P = P„+iP, (10)

although with the applied magnetic fieM in the g di-
rection, P, can be chosen to be zero without loss
of generality. The transverse geometry corre-
sponds to P„=1 and P„=P,=O while longitudinal
geometry is spec if ied by P„=P = 0 and P, = 1.

where ( ), indicates a trace with respect to the
initial density matrix p, and [, ] is the commu-
tator. The lowest-order term gives

and

(O,(t))&o)
= P,e & "~'

&o'g(f)) &o& &g '

(15}

The term linear in H' contains the expectation
value (B(r„))„ i.e. , the average magnetic field at
the position of the muon. Assuming that only the
g component of this field (B,(r }), is nonvanishing,
we find

& (f)) =&, '" '[-~ &B.( .}).t] (17)

and (o,(t))&» -—0. The contribution (17} is clearly
the first term in the expansion (5) involving the
frequency shift 6&d&» -y„(B,(r )),. The —average
field (B,(r„}),may be comparable to B, when elec-
tron spin contributions are important, as in ferro-
magnets, although the nuclear contributions are
negligible. We suppose that the summation of this
and similar terms [the second-order contribution
is given explicitly in (32b)] can be absorbed in

(a,(t))&» by replacing oo„ in (15) by the observed
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Larmor precission frequency &p. By this replace-
ment, we have effectively absorbed the average
internal field (B(r„}&,into the term H„of (7), leav-
ing the fluctuations from the average value to de-

fine the perturbation O'. This replacement is to be
understood in the following.

In a similar fashion, the spin traces for the sec-
ond order term can be carried out with the result

and

t t~

(o,(t)),»= -~ e '"o' dt' dt" (P,gB,(t'), B,(t")]),+ —,
' P((B,( t'), B (t")]), ,'P—(—fB(P),B,(tlI))&,

p p

—P,&(B,(t') B,(t') j&, + &[B.(t'), B,(t')] &,
—&[B,(t'), B,(t")]),)

t t~

&o,(t)&(, )
= -~ dt' dt" (P,((B,(t'), B (t"))&,+ P,&(B (t'), B,(t"))&.-P ((B,(t'), B,(t")]&.

p 0

-P,&fB (t'), B,(t")]&,+ &[B (t'), B.(t")]&.—&[B.(t'), B (t")]).),

(18)

(19)

where we have defined

B (t) = e"""B(t) (20}

(21)

B„(t)= B„(t)cos~, t —B,(t) sin~, t,
B,(t) = B„(t)sin~, t+ B,(t) cosa&, t.

In terms of these fields, (g„(t)&,»can be expressed

B,(t) = B„(t)+tB,(t) .

It is to be noted that B(t) represents the time-de-
pendent operator e'" '~" B(r )e '" '~". The anti-
commutator is denoted by (, ]. Again, ~„has
been replaced by the precession frequency Q)p.

The terms involving commutators in (18}and (19)
are inherently quantum mechanical, for they would
be identically zero if 8 were a classical field.
Furthermore, the commutator terms arise even
when P = 0 and therefore correspond to the equi-
libration of the system in which the initial density
matrix e ~+ eventually evolves into the equilibrium
density matrix e"~ as a result of the interactions
H . Since the equilibrium polarization in the ex-
ternal field is negligible, the contribution of the
commutator terms is small compared to the re-
maining terms when P+ 0 and therefore will be
ignored.

Although the expressions in (18) and (19) are
rather complicated, their content can be clarified
by considering a particular example. If we take
P„=1 and P,=P, =O, the magnetic fields parallel
and perpendicular to the spin directions in a ro-
tating frame are, respectively,

as
y

(a„(t)&(,) = ——" dt'
p

dt" I,",B, t"
p

+ gB,(t'), B,(t")]),] cos~,t
—((B„(t'),B,(t"))&,sin~, t).

C„{t'-t")= &B,.(t')B,(t")+B,(t"}B,.(t')&. . (23)

The equilibrium average implies that 4,, depends
only on the time difference v = f' —t"." As a re-
sult, one of the time integrals in (18}and (19}can
be carried out to give our final general result for
the second-order contributions to (g(t}&:

The term proportional to cos~pg is in phase with
the muon precession and B, and B, appear sym-
metrically. Thus field fluctuations in these two
directions behave equivalently with regard to de-
stroying the in-phase component of the spin. In
addition, it is seen that an out-of-phase component
proportional to sin~pg develops in time and is due
to the cross correlation between B„and B,. In gen-
eral, the observed polarization consists of a de-
caying in-phase component and this growing out-
of -phase component.

It is apparent from (18) and (19) that the time
dependence of the nonequilibrium polarization is
governed by the symmetrized correlation functions

y2 t
(o,(t)&&»= -~ e '"0' dr Pgt —7')e„(7)+2P,(t —7)e'"O'C. (v)+ ' (e' o"' "—e«o')C (7}

0 4&dp

(24)
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&o,(t))(,)
= —4" «~ I',(t ~-) [e'""C.(~)+ e '"o'C,(7)]

jP,*(e'"'-e' ")e (r)+ (e'"'-e'"')e (r))
iP

p +p
(25)

The expression for &g (t))[» is just the complex conjugate of (24).
Since our main interest here is the depolarization rate in the transverse geometry, we restrict ourselves

in the remainder of this paper to the particular case of P„=1and P,= P,= 0 with a detector in the g direc-
tion so that only &z,(t)) need be considered. To further simplify (24) it is convenient to introduce the Fou-
rier transform

(25)

%'e then obtain

2

(e.(r).) e )= -
4

e " '
2 &f,(te)[r „(te)r ' e.(ter te.)] -

q
[O„(ter e,) —e„„(ter te,)]) r e.e. ,

2m 2(dp
(27)

where we have defined the functions 1img, ((d) = P/(d+ tw 6((d) .
t~~

(31)

I. —t(dt —e '"'
ur t

1 g $4lt

gg((d) =

(28)

(29)

lim f,(~) = v5((d) —iI'/(d,t~ (30)

which have 5-function and principal-value parts at
large times:

These functions are shown in Fig. 2. It is clear
from the above that for times much longer than the
Larmor period 2v/[0„ the term in (27) containing

f,((d} is dominant, growing linearly in t, and gives
the asymptotic time dependence of the second-or-
der contribution.

Comparing (27}with (5), we can make the fol-
lowing identif ication:

=r'„»
r q (eJ,(e)[e„(te)r e(te+e, )] —

2 , [e„(ter le, ) —e„„(tere,)])
(32a)
(32b)

As indicated in (32b), the frequency shift t),(d(»
and phase (t) cannot be unambiguously defined for
all times. At small times, transient effects are
important and it is not meaningful to think in terms
of a frequency shift and phase. However, asymp-
totically in time, the right-hand side of ( 2b) con-
tains a term growing linearly in time and a con-
stant correction. These terms can be associated
with the frequency shift and phase, respectively.
It is useful, however, to consider the depolariza-
tion rate F(t) as being defined by (32a) for all
times.

The interpretation given to the two terms multi-
plying f,((d) in (32) is similar to that in the case
of NMR. 4„(~) describes fluctuations of the local
field along the applied field direction. This term,
therefore, corresponds to a distribution of pre-
cession frequencies which leads to a dephasing of
an ensembl. e of spins initially polarized in a given
direction. This contribution is sometimes re-
ferred to as secular broadening. '~ The second
term 4, ((d+ ~,) involves spin-flip processes; the
requirement of energy conservation results in the

x (gy„'), + &B',),) . (33)

Thus, for a range of times satisfying +pt»1 but
during which the local fields remain constant, the
decay of the polarization has the Gaussian form

argument of 4, being displaced by &p. This term
is referred to as either nonsecular or lifetime
broadening. ' It should be emphasized, however,
that both dephasing and spin fl.ipping have the same
observable effect in that they decrease the polar-
ization of the ensemble of spins.

%hen the z and y directions are equivalent, the
term in (32) containing g,(z) drops out. In any

event, this term is small when ~pt»1 and will be
ignored in the following. Furthermore, we shall
deal only with the depolarization rate defined in
(32a}. Its general behavior can easily be under-
stood by considering Fig. 3. If the local fields are
constant in time, C,.&(&o) = 4 &B',v) 5&&5o( ) (dFrom.
(32), this gives
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+ 6(ru r (pg))B (~rn pi)g(~&z r (f())B (ri p)) (35)

where r„(f) is the g'position operator and B,(r',.f'} is the operator obtained by formally replacing r (p) by
r' in B,.(f'). In general, the time evolution of the magnetic field B,(r, .f) is coupled to that of the muon and
the average to be performed in (35) is extremely difficult. However, if the spin degrees of freedom of the
solid are only weakly influenced by the presence of the muon, the time dependence of the fields can be
taken, to a first approximation, as that occuring in the absence of the muon. %ith this assumption, the
average in (35) factors into two statistically independent parts giving

o z(t' —t )= fd'r'fd'r [G(r't'~r"t")J";&(&'t'~f t)+ "(Gr"t ~r't')t', ,(r"t"~r t )),'' (36)

where

G (rett
l
ref(() = (5(rz r (gz))5(r(( r (fe))) (37)

will be called the p.
' self-diffusion function, "and

z (r f lr~f )=(B (r~f)B.(r f-)) (36)

is the field correlation function for the unper-
turbed solid. The above approximation neglects
the effects of any lattice distortion induced by the
muon on the spin degrees of freedom of the solid.
More importantly, it fails to account for the cou-
pling of the nuclear quadrupoiar moments to the
electric field gradients set up by the p, 'which, as
recently shown, '" can play an important role. Of
course, if the nuclear quadrupole moment is zero,
or the magnetic field is sufficiently strong, this
interaction has little effect, and it is to these sit-
uations that the above approximation is applicable.
We shall return to the question of quadrupolar ef-
fects within our formulation in Sec. IV.

Within the approximation leading to (36), the ef-
fects of p.

' motion have been isolated in the self-
diffusion function G,. In calculating the depolar-
ization rate, the correlation of the field fluctua-
tions between the space-time points (r', f') and
(r", f") is weighted by the probability that the muon
migrates from one point to the other. If the field-
field correlations decrease with increasing sepa-
ration, the motion of the p,

' inevitably leads to a
decreasing depolarization rate. An understanding
of motional narrowing can thus be obtained by
studying the properties of G,. The behavior of E,z
wi11 be discussed in detail in Sec. IV for the fields
due to nuclear magnetic moments.

The strong Coulomb repulsion between the muon
and the nuclei of the solid provides energetically
favorable positions at interstitial sites. Because
of its large mass, one would expect the muon wave
function to be reasonably well localized at these
positions, and polaronic effects will increase this
tendency to localization. With this picture in
mind, we imagine a reference system defined by
some effective static potential in which the muon

with

x y,(r')G, (II't lmm'f'), (40}

G,(II't l
mm't') = (c,'(t) c,( t)c'„(t') c„,(t')), . (4I)

The summation over $ in general includes all states
on the /th site. For the purposes of the following
qualitative discussion we suppose that it is ade-
quate to consider only a single state on each site.
If these states are indeed well-localized, the pro-
ducts y*, (r)p, ,(r) are smail unless I= I', and only
the diagonal elements

G,(l& l

&'&') = (n)(&)n, ,(t'))0

are important. This quantity is just the correla-
tion function for particle number ~, = p~g, on the 1th
and l'th sites. We shall assume that these terms do
provide the main contribution to G, (rt~r't'). Their
explicit evaluation of course requires a specific
model for the muon-solid interaction.

With this simplification, (36) becomes

c (7)= Q[G.(«l~)~ («l~)

(43)

wouM propagate as a particle in a narrow band.
This reference provides a basis of localized tight-
binding states which can be used to describe the
interstitial state of the muon. To make use of this
physical picture it is convenient to express the
self-diffusion function in second quantized nota-
tion,

G,(rt lr't') = (g'(rt)P(r&) g'(r't')g(r'&')) . (39)

Introducing a complete set of orthonormal local-
ized states {p,(r)) of the reference system, such
as Wannier states centered on the interstitial sites
I, (39) can be written as
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where

pc((r)m)= fd'r fd'r' )p(r) ~* p &(relr'0) (p (r') ('.

In terms of these uantities the de olarization rate isq p

de'r(l)=Re f 4 f/e) f ZG() e'lm)[P()e —e'Im)+re&* cp()ere'~m)
4~ ~

lm

(44)

+ 2E, (l, (d, + (0 —&u'Im) + ', e /'"-'"'"""o'E, (m, (d, +(u+ (O'Il)] .

(45)

Here we have made use of the symmetry property

S'/;(I ~Im)=e »-S-„(m, ~ll) (46)

which applies to the canonical ensemble average.
In order to obtain a qualitative understanding of

i('motion, we consider the evaluation of G,(la Im)
for various simple models. For a tight-bindihg
model with Hamiltonian HT&=g, „t, etc„and en-
ergy dispersion e.=E,t,„e'~'("( "m) we obtain"

BE
G (i~ Im) ~ e ir( (5(--5 )

S

BE e ge»
)( e((e),-s),e&)P/)) (4cl)g

k

where Z=Q e ("~ is the muon partition function
and R, denote the various p.

' interstitial sites. At
v= 0, this expression reduces to G,(l0 m) =I()t

For temperatures much less than the band-
width, the large-time behavior is determined by
the low-energy states. %e can then expand z. and

k
about R= 0 as c.=@'g'/2m* and extend the summa-
tions to all values of R, obtaining

n, ( m*
G,(l~ Im) (pr + ')r))

xexp[ m*IR, R, '/2~(IT7+aa)],

(48)

(49)n, (&)= P [W, n„(&) —W„,n, (&)],

where S; is the transition rate from the neth to
the lth site. The self-diffusion function G,(lv'Im}

where Q, is the volume per site. This is the usual
expression for a free quantum particle. " For
times larger than k/&T ='l. 'I x 10 "/T sec, (luan-
turn effects are not important and the motion is
that of a free classical particle. The amplitude at
the original site G,(lr l) behaves as v

' for long
times.

An alternative semiclassical description of p,
'

motion is based on the assumption that the site
occupation number satisfies the rate equation

x exp
(

—P )pm() —ere g )(e)r) .
n

(50)

This expression is similar to (4'I), with thermal
averaging giving a temperature-dependent transi-
tion rate W. The explicit evaluation of (50) is dif-
ficult although the long-time behavior can be ex-
tracted easily. Expanding cosq H~ in powers of

q and assuming the occupied sites to have cubic
symmetry, we find

) 3(2
G,(l7'Im) = —'

I
exp(- IR, —R„I'/4Dr),

where the diffusion constant is defined as

(51}

D=
8 Q W~B~. (52}

(51) is the usual result for a diffusing classical
particle. In this case the single site amplitude de-
cays as v

' ', that is, more slowly than for the
free particle. This is simply a consequence of the
particle returning to the origin as a result of "col-
lisions. "

If the particle were forever lost after leaving a
particular site, the on-site correlation wouM be-
have as

G,(lr I I) -(1/f(t) exp(-r/r, ), (53)

which follows from (49) by neglecting the scatter-
ing-in term. In neither the free nor diffusing par-
ticle limits is an exponentially decreasing time de-
pendence observed, al.though for practical pur-
poses it may be convenient to use a function of the
form (53). In order to identify the parameter r,
it is useful to consider the regime in which the
muon is rapidly moving. In this case, G,(l, v Il)

is then the solution to (49) with the initial condition
+ '5, . If the sites form a Bravais lattice, the so-
lution can be expressed as

BZ

G,(l~ Im) = —,g e "'" ""'
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has a short correlation time compared to other
times in the problem and therefore G,(l, e~ l) in

(45) can be replaced by G,(l, z= 0 l). Further-
more, if NG, (l, 7'~l) is given the interpretation,
strictly correct in the classical limit, 'of being the
probability of residing on a site ) for a time 7, one
can define the mean time of stay as

ds-
( d~ ~ ]

A. Free nuclear moments

Following the discussion of Sec. III, we begin by
evaluating E.

&
for the unperturbed solid. The nu-it

clear moments p, are located at the positions R, ,
the possibility of different isotopes being allowed
for by the site index j. The magnetic moment is
related to the nuclear spin f,. by

(55)

=Re dY.NG, l, v l
0

NG, (l,—(o = 0
~
I) ~ (54)

where y, is the gyromagnetic ratio.
The dipolar field at the position r is

Thus in the rapidly moving limit, the depolariza-
tion rate is proportional to the mean time of stay.
In addition, a consistent choice for the parameter
r, in (53) is clearly r, Th. e usefulness of this
choice is demonstrated in Fig. 4 where a compari-
son of the exponential approximation and the rate
equation solution for a simple cubic lattice is
made. The similarity of the curves suggests that
data analysis based on the exponential approxima-
tion directly gives an estimate of the mean time of
stay.

IV. FIELD-CORRELATION FUNCTIONS

In this section we return to the evaluation of the
field-correlation functions F,~(rt~r't') for. the spe-
cific example of the local fields being due to nu-
clear magnetic moments.

(56)

where the unit vector u,. is (r —R,.)/ r —R, ~. In the
following, we shall assume the nuclei to be fixed
at their equilibrium positions and neglect the ef-
fect of their vibrational motion. Since these vibra-
tions occur on a time scale of 10 "sec, their ef-
fects are averaged out in a Larmor period (10 '-
10 ' sec). Furthermore, our assumption neglects
the effect on the dipolar field of the local distor-
tion around the muon.

Since the dipole interaction between the nuclear
spins is not important during the time of a depo-
larization experiment, the spins can be treated as
independent. Thus, the only time dependence of
the nuclear fields, in the absence of quadrupole
interactions, arises from the precessional motion
of the spins in the external field and is given by

1.0
I (t)= I e '"~'

&u =y 8
(57a)

(57b)

0.8

0.6

The evaluation of (38) involves a spin trace over
nuclear spin configurations. Since the nuclear po-
larization due to the exterrial field is negligible,
the density matrix for each spin is proportional to
a unit matrix and we have

0.4 FU(rt
~

r't') = F))(r't'
~

rt) (58)

0.2

I

0.5 1.0

FIG. 4. The solid curve gives G (l, r ~l) from Eq. (50)
as a function of W7 for nearest-neighbor hopping on a
simple cubic lattice. For comparison, the exponential
approximation (53) is shown by the broken curve with 7,
equal to the mean time of stay (v, = 0.246/~.

by the cyclic property of the trace. In this situa-
tion, the Boltmmann factors appearing in (45) and
(46) can be replaced by unity. Since the spine do
not interact, there are no correlations between
different sites and the quantities- to be evaluated
are of the form

(u T,.(t)v T,(t'))= —,
' 5,,I,(I,+1)..

x (u,v e '"P+ u v,e '"~'+ 2u, v, ) .

(59)

Using this result we find
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(ffy, )'I,(I,+ 1)F„rt r'Pj=
6 ir R ]sir' —R» i'

x [9»»»QS (»»»»» e» +tl» 0» e» )

+ 2(2n'», —1)(3»»t2 —1}]

(6Oa)

1.0-

X(v)
0.5-

( l, ,) p 1 (fry»)'I, (I»+1)
I r —8,, t' Ir' —R, I'

x [(&n».n» —2)(&n f,n»I —2)e '"»'

+ 9»»'». n' 'e» "»'+ 1-6n, ,n»~» n», ] .
1.0 2.0

V=R»»/]

3.0

(6ob)

n,' is defined as (r' —R,)/lr' —R, l.
Since the muon self-diffusion function is invari-

ant with respect to translations by a lattice vector,
the field-correlation functions can be averaged
over the random positions of the various isotopic
spins. If the zth species occurs with probability

p, the average of Eqs. (60a) and (60b) allows the
replacement

(ffy»)'I, (I,+ 1)e""»'-p p (hy )'

x I (I +1)e""e'. (61)

Thus the field-correlation. functions involve geo-
metrical sums multiplied by factors having oscil-
latory time dependences at the various nuclear
Larmor frequencies.

The quantity of most interest is the field corre-
lation function in the site representation defined
in (44). We note that each of the terms in

F»&(rt r'ti) contains an angular function which is
simply proportional to a product of spherical har-
monics of order 2: 1","(8,, »p,.)1;"*(8»',»p,'.). The po-
lar angles (8„»p») define the orientation of the vec-
tor r —R, within a coordinate system which has its
g-axis aligned with the external magnetic field.
Thus, in evaluating F,.z(it mt') we require inte-
grals of the type

FIG. 5. The function X(R;»/$) for a Gaussian p wave
function.

Equation (62) reduces to the general form

Z&;&= [r;(8,.„y„)/a'„]~(Z„/~), (64)

where (8„,p»») define the orientation of R, —R,
=—R«. The scale factor X(B»»/$) is given explicitly
by

, 2 "dg 2lt'1 3 3'I
&(y) = y' — —e '" "

l

———,+—3 Ix i c» c»' c»'i

—e»"'"&
I
—+ —a+ —,li, (65)

2(l 2

(n n' o»'&

with»». =2ay. X(y) is plotted in Fig. 5 which shows
that X(y} rapidly approaches unity for y greater than
one. Thus, for nuclear sites beyond a distance $
from the muon, J,'"' has a value corresponding to
the p,

' being fixed at the position R,. However, the
values for nearest-neighbor sites can be reduced
significantly by the smearing of the p, 'position.
This effect is opposite to thatpreviously assumed. '
If the spread is sufficiently large, its effect on the
magnitude of the depolarization rate must be taken
into account.

With the above results we finally obtain
J(P ) d3 l 2 (62)

Ir -R, I'

which is related to the dipolar field of the jth nu-
cleus averaged over the position of the muon cen-
terd on the &th site. The weight function l»p»(r) l'
has the spatial symmetry of the particular site be-
ing considered. Since the essential aspect is its
degree of localization about the 1th site rather than
its symmetry, it is useful to parametrize it by a
spherically symmetric function. In particular, if

l»p»(r) l' is chosen to be a Gaussian

I e»(r) I'= (v&') '"exp(- lr —R» I'/e) .

F„(ftlmf)= g p(e y)' I( I+1)

J(o )J(o)+
W im

i

+
5 Qp (Ify, )'I (I +1)e'" '

x ~ J(')J")*+c.c.fl int (66)
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and

F, (If~mt ) = g p.(ny. )'f.(f.+1)

i 40 7' J(0)J~o)+8m

j5 il im

+ ~ J(1)J(1)g
il im

i

& ~ J(2)J(2)W

In order to evaluate (45), we shall make use of
the approximate form for the self-diffusion func-
tion given in (53), which is chosen for its math-
ematical simplicity. As discussed previously, 7,
is to be interpreted as the mean time v; that a mu-
on resides on a particular site before hopping to
an adjacent site. The details of the hopping pro-
cess will not be specified further since only the
qualitative dependence of the polarization rate on
the magnitude of 7', will be discussed.

The Fourier transform of (53) is the I orentzian

(67)

Since the functions E,,(lt ~

mt') decrease with in-
creasing site separation R, —R, the largest con-
tribution to the depolarization rate in (45) is ex-
pected to come from the $= ~ terms in the site
summations, even when the muon is diffusing. For
a stationary muon, only these terms contribute
since G,(lr ~m) =N '5, . We shall make the ap-
proximation of retaining only these terms in ob-
taining the estimates of the depolarization rate
which follow.

The transforms of the field-correlation functions
given by (66) and (67) contain 5-function contribu-
tions at ~= 0 and at the nuclear Larmor frequen-
cies ~=+~ . The relative importance of the. vari-
ous terms depends on the degree to which the Lo-
rentzian (68) overlaps these 6-function contribu-
tions and, as explained in Sec. II, leads to behavior
ranging between the stationary and motional-nar-
rowing limits. %'ithin the single-site approxima-
tion, this entire range of behavior is described by'

the depolarization rate

)'(t)=))e g p. )ay r.)').)l.+)) "y'( ')g ~Z!& +—f&(ld ——)+f, (
—al ——

) p ~Z!,
Cf C c

C C

(69)

This expression simplifies in two important limits.

1. Stationary limit

For a stationary muon, r, is much longer than
any other time in the problem. Considering the
limit v', »t»T, where T is a typical Larmor peri-
od, the first term in (69) dominates and we find

I',(f)=6 & Q p„(@r„r„)'&(& +1)

P (3, 1),X (R,,/$)
il

(70)

Except for the scale factor X(R„/g) which accounts
for the spatial spread of the muon wave function,
this is the usual dipolar-broadening result famil-
iar in NMR" and used in the interpretation of p.SR
experiments. Since the nearest-neighbor terms
usually contribute most to the summation, I',(f) is
sensitive to the spread of the muon wave function

and therefore can provide some information con-
cerning its. localization.

2. Motional narrowing

Here we consider the extreme limit t» T»r,
corresponding to the muon sitting on a site for a
time much shorter than the Larmor period. The
factors f, in (69) can then be replaced by 7', and

I'„„(t)= —7;Q p (Sy„y,)'I (I,+ 1)

x g(3cos e. +7)''" /&)
il - g6il

(71)
For rapid motion through the lattice, the polariza-
tion decreases exponentially with a time constant
determined by field fluctuations both- parallel and
perpendicular to the external field. This should
be contrasted with the dependence of 1", on only
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E„for the stationary case. It should be noted in
particular that I'M„ is not simply 2(r,'T„as sug-
gested previously, "and consequently does not ex-
hibit the same anisotropy with respect to the field
direction as does 1",. However, as a practical
matter, the first term in (69) dominates for ~,r,
&1 and the depolarization rate then behaves as

(72)

The remaining terms do not become significant un-
til ~,v; =1, at which point I'(t) has decreased by
roughly a factor (~,t) ', which is typically between
10 ' and 10 '. Thus the effect of the other terms
in (69) can be observed only if depolarization rates
of this magnitude can be measured.

B. Quadrupole effects

W'e shall now consider the more general situa-
tion in which the nuclei also have quadrupole mo-
ments which can couple to electric field gradients.
Since a muon is positively charged, the dynamics
of the nuclear spins in its vicinity are modified as
a result of the quadrupole interaction. In a metal
the fields produced by the muon are rapidly
screened within a distance of the order of an in-
teratomic spacing and only those spins within this
distance will experience appreciable field gradi-
ents. Nevertheless, the quadrupole coupling can
have a profound effect on the depolarization rate
since the near-neighbor spins contribute most to
the rate. Recent experiments' on Cu have demon-
strated the importance of quadrupole effects for
sufficiently weak applied magnetic fields, and the
dependence of the, depolarization rate as a function
of field strength could be well accounted for in
terms of the quadrupole interaction. "

The experiments for Cu were performed at tem-

peratures sufficiently low that the muon was sta-
tionary. In this situation, the arguments of Sec.
III can be generalized by evaluating F,.~(r't' ~r"t")
in the presence of the field gradients set up by the
muon. Specifically, one must calculate F,~(lr ~l)
in (44) corresponding to the muon occupying site I.
Since the vibrational motion of the muon occurs
on a time scale of 10"sec, a time much shorter
than the Larmor period, the neighboring nuclei ex-
perience an electric field obtained by averaging
over the instantaneous positions of the muon with-
in the site. Assuming axial. ly symmetric fields,
the dynamics of neighboring nuclei is determined
by the Hamiltonian"

2

(73)

where (eqQ), is the product of the electric field
gradient in the direction g' and the nuclear quad-
rupole moment. The time dependence of the nu-
clear spins is accordingly modified from that given
in (57).

If the muon is moving, the situation is compli-
cated considerably since the factorization in (36)
is not valid. However, since the single-site con-
tribution to the depolarization rate given in (45) is
the most important, a reasonable estimate of I'(t)
can be obtained by using (68) for the self-diffusion
function and evaluating F,&(lr

~
l) as described above

for the stationary muon. For simplicity, we con-
sider only the stationary limit G,(le am) = (I/N)6, „.

The field correlation functions can be evaluated
using the eigenstates of the Hamiltonian $C',

(74)

where the subscript j denotes the jth nucleus. Us-
ing this basis we obtain the result

I'(t)= Q(hy„y, )'X'(R„/$)R.,',(2l(+1) 'Q [Ref ((o' )

(75)

Since Ref,(~) behaves as a 5 function at large .

times, the only terms contributing to the summa-
tion are those for which (E„' —E')/5 = &g„'„=0 or-

—p= 0. The former situation is always true
for the diagonal terms m=~. However, the latter
situation is a resonance condition corresponding to
the excitation frequency of the Zeeman-quadrupole
Hamiltonian being equal to the Larmor precession
frequency of the muon. Since ~p is proportional to
Sp while „' is independent of field for small
fields, such a crossover must always occur and
should be accompanied by an increase in the ob-
served depolarization rate.

As an application of the quadrupole result, we
have considered the field dependence of the depo-
larization rate in Cu. With the muon occupying an
octahedral site, it was assumed that only nearest-
neighbor nuclei experience a field gradient in the
radial direction. Retaining only the diagonal terms
in the E„contribution, the depolarization rates
&r„„(B,) —= (I"/t)'~' were calculated from (75) for var-
ious symmetry directions and the results are
pl.otted in Fig. 6. The value of the wave function
width parameter $ was adjusted to 0.90 A to obtain
a fit to the observed Q, pp rate in the high-field lim-
it. A good fit to the data could then be obtained
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FIG. 6. Field dependence
of the depolarization rate in
copper for various symmetry
directions. The experimental
points are taken from Ref. 9.
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using u&s/2v —= e2qQ/4I(2I —1)h= 0.17 MHz, which
is close to the value of 0.16 MHz based on the as-
sumption of a point muon and nearest-neighbor nu-
clei being displaced away from the muon site. ' The
two models are essentially equivalent in that both
decrease the nearest-neighbor contribution to the
rate by the appropriate amount. The existing cal.—

culation" of the potential seen by a point positive
charge in Cu suggests that the assumed value for
the wave function width is unrealistically large.
On the other hand, this width allows an explana-
tion of the data even if the nearest neighbors are
displaced inward, toward the muon, as electron
gas calculations" indicate. Since the effects of
lattice displacement and wave function spread are,
in principle, both present, it would be of consid-
erable interest to obtain reliable interstitial po-
tentials for the positive muon in a crystal.

V. DISCUSSION

In the preceding sections we have presented a
general theory of positive-muon spin depolariza-
tion in solids. Our emphasis has been on the
transverse geometry, although expressions for
arbitrary polarization are given in Sec. II. The
central result (32) gives an expression for the de-
polarization rate I'(f) (as well. as for the frequency
shift and phase) in terms of the correlations of

the local field at the position of the muon. The rel-
evant correlation functions C„(~) were studied in
detail for the case in which the depolarization is
caused by the nuclear spina. Provided that quad-
rupole effects could be neglected, the muon self-
diffusion function 6, emerged as the natural way
of including the p, motion. In this description,
correlation functions E,,(I, ~

t
~) accompanying G,

were defined which describe the correlations of the
nuclear dipolar fields at the various sites sampled
by the muon in its motion through the lattice. By
introducing these functions, one can systematically
examine the implications of various models of p,

motion on the depolarization rate.
In the stationary p,

' limit, our expression re-
duces to the usual dipolar broadening result famil-
iar from NMR, with the one modification of allow-
ing for the spread of the p,

' wave function about the
interstitial site. For a Gaussian wave function,
the effect of this modification is to reduce 1 „al-
though the reduction is only significant if the pa-
rameter ] is larger than about one half the dis-
tance from the muon to the nearest neighbor nu-
clei. In considering the field dependence of the
rate in Cu, it was found that the experimental ob-
servations could be explained by taking $ = 0.9 A.
The scarcity of information about interstitial po-
tentials makes it difficult to decide whether or not
a width of this magnitude is a viable alternative to
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the explanation based on the assumption of nuclear

displac erne nts.
Once motion on the time scale of 7„=2.2 p, sec

becomes significant, the depolarization rate de-
creases, which is the analogue of motional narrow-
ing in NMH. In contrast to the stationary limit,
multisite correlations F,,(I, u& ~m) contribute to I",
weighted appropriately by the self-diffusion func-
tion [cf. Eg. (45)]. The results of Sec. IV were ob-
tained within the single-site approximation; cal-
culations for the simple cubic lattice have shown,
however, that correlations between nearest-neigh-
bor interstitial sites can contribute to the rate in
certain situations. Neglecting such contributions
can lead to erroneous estimates of the p,

' hopping
rate.

In the extreme motional-narrowing limit, I'(t) is
time independent and proportional to 7„ the mean
time of stay on a particular site (again using the
single-site approximation). In addition, in a cubic
environment it exhibits an isotropic external field
dependence. It would be interesting to study the
transition from anisotropic to isotropic field de-
pendence by performing experiments at high fields
and spanning temperatures from the stationary to
the motional-narrowing limits. However, a severe
limitation on such experiments is that g must be
measured within a time -v„, thus placing a lower
limit of about 10 '-10 ' Sec on 7,.

We have not considered the longitudinal geometry
in any detail here. It is, however, clear from (24)
and (25) that the spin-flip contribution C is com-

mon to both the longitudinal and transverse cases.
In particular, the longitudinal depolarization will
be relatively small, even for a stationary p, ', un-
less the external field is such that ~„ts 1. This
observation suggests the possibility of studying C,
in some detail by performing longitudinal depolar-
ization experiments as a function of magnetic field.
Unfortunately, the interpretation of such field-de-

" pendent measurements would in general be com-
plicated by the nuclear quadrupole interaction.

Finally, we should mention the depolarization
due to the conduction electrons of a metaL Using
the Fermi contact electron-muon interaction one
obtains from (32) an expression identical to the
Korringa relaxation rate" for nuclei in simple
metals (i.e'. , noninteracting electrons). However,
the numerical value of the rate is much smaller"
than the nuclear dipole contribution. In strongly
interacting electron systems, such as metallic
ferromagnets, the situation may be different. The
anomalous temperature dependence of the depolar-
ization rate observed in ferromagnets near T, (Ref.
4) indicates that electron-muon interactions are
playing a dominant role. It would therefore be of
interest to extend our treatment to the problem of
spin depolarization in ferromagnets.
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