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Lattice diffusion and the Heisenberg ferromagnet
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It is shown that the master equation for a general diffusion problem with exclusion and symmetric binary
transfer rates can be mapped exactly on the Schrodinger equation for an equivalent Heisenberg ferromagnet.
Quantities of physical interest, e.g., the site occupation probability, are related to the lowest eignstates of
the ferromagnet which play no thermodynamic role. The thermodynamics is only reflected in unobservable

quantities such as the joint occupation probability of all sites. An additional result, , obtained by elementary
considerations, is the exact equation for the time evolution of the site-occupation probabilities. For symmetric
transfer rates the equation reduces to a linear form in which exclusion effects are no longer present.

Huber, Hamilton, and Barnett' have recently
pointed out the formal analogy between the rate
equations in a diffusion problem and the linearized
equations for spin deviations in a Heisenberg fer-
romagnet. Earlier, Kirkpatrick' had already re-
lated the resistor network problem to the spin
stiffness of such a ferromagnet. The purpose of
this note is to give these relationships a more
precise meaning. We consider a general site-dif-
fusion problem, with symmetric two-site transfer
rates and exclusion of double occupancy of any
site. We shall show that such a problem can be
mapped exactly on an equivalent ferromagnetic
Heisenberg problem. The quantities of physical
interest are, however, quite different in the two
cases. As a result, the diffusion problem is re-
lated to the ground-state properties of the ferro-
magnet and does not, in practice, reflect its
thermodynamic behavior.

In general the site-occupation probabilities (n;)
obey the standard equation

d(n;) = —Z [W, )(n, (1 —n~)). —Wq, ((1 —n,.)nq) ],

where for the occupation numbers one has n, = 0, 1

and, as usual, the on square brackets denote sta-
tistical averages over the configurations of the
system. We note that the occupation probabilities
((n,.)) are continuous variables, The multiple site
joint occupation probabilities (e.g. , (n; n~)) obey
analogous equations. Thus, in general, Eq. (1}
implies a hierarchy of equations for the joint oc-
cupation probabilities of successively larger num-
bers of sites. The derivation of Eq. (1) is standard
and follows directly from the definition of the sta-
tistical averages on the lattice.

When the transfer rates are symmetric, the in-
terference terms in Eq. (1) cancel

d,
' = —g w, ((n, ) -(~,)) (2)

where the 8, are spin-& vector operators. This is
an operator form for the master equation of the
two-site problem. Since the transfers are binary,
the master equation for a large (N site) system
becomes

d II(t) =Q W)) (S;S) —4) II(t),
gI

(4)

where II(t} is now a 2"-dimensional vector de-
scribing the probability distribution of the states
of the whole system.

Thus, the master equation for the diffusing sys-
tem is identical to the Schrodinger equation for an
equivalent Heisenberg system (2W, ,—8, ,) for
imaginary times and can be described in terms of
the eigenfunctions and eigenvalues of that prob-
lem.

An interesting result is that the configuration
of the diffusing system as a whole shows a thermo-
dynamic behavior, with time playing the role of
an inverse temperature. One has from. Eq. (4),

where H is the Heisenberg Hamiltonian implied
in Eq. (4). The probability of finding the system,

and the equations no longer depend on the occupa-
tion density.

In principle, Eq. (1) should be derived from a
master equation for the probability distribution
for states of the whole system. 'To show the con-
nection with the Heisenberg problem we do this
explicitly. Consider first a two-site problem. 'The

system has four possible states. We introduce
a spin notation with spin up (g; =+ &) describing
occupied sites. The joint occupation probability
of the two sites II, ,(t) can then be regarded as a
vector in the 4-dimensional space of product
states

~
o,a&). It obeys the equation

'"-""' = 2W,. (S,.S —,') II,,(f),dt
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at time t, in its initial state is

f(t)= g ( o; ~e"'~ o, )II( o; '),
e ~ ~ g, ~ ~ e

where n is the number of occupied sites. If the
initial configurations are uniform [IIO(' o,. ' ' }
= const], this leads to a relation with the free
energy of the Heisenberg system at constant mag-
netization

lnI„(t) = —tF(~,„)(,(k~ /f),

where E~(T) is the free energy of the Heisenberg
system with total magnetization M at temperature
T. Thus, I„(t) should exhibit a phase transition.
This singularity is, however, of no physical in-
terest because E is always of order N so that the
transition occurs on a time scale

t=(WN) '

We now want to show that quantities involving- a
small number of sites are related to the lowest
eigenstates of the Heisenberg problem which pl.ay
no thermodynamic role. We discuss explicitly
only the site occupation probability. In the spin
notation we have introduced, we can write the sta-
tistical average as

=(4 ~n, Q W)~(S)S„—~) ~II(t)) .

This must be equivalent to the linear equation for
t e(n,.) [Eq. (2)].

To see how this comes about, we notice that 4
is an eigenvector of the "Heisenberg Hamiltonian"
with the maximum spin (S =2 N) and eigenvalue
zero. The single spin operator n,. operating to the
left can only connect this state to eigenfunctions
with total spin S and (S ~ —1). These are the
Bloch single spin-wave states. ' They aredescribed
by the linear equations. An explicit calculation
would of course lead to Eq. (2).

More generally we see that a v site joint occupa-
tion probably would only involve states with,

S ~ —v~S~S

In other words, only states with, at most, v spin
waves are involved. Such eigenstates (for micro-
scopic v} play no role in the thermodynamic be-
havior.

The relationship derived is of interest mainly in
relating the nontrivial solutions of the twoproblems
for random systems. '"' We also note that there
seems to be some confusion inthe recentliterature
as to the proper form of the rate equations, their
derivation and range of validity. The procedure
we outline may therefore also serve as an ex-
plicit proof of the validity of Eqs. (1) and (2) if
such a proof is indeed required.

n; =S,'+ —'.
Finally,

(10)

where 4 is a 2 -dimensional vector all of whose
elements a.re unity (1) and

ACKNOWLEDGMENTS

We would like to thank Professor R. Orbach
for very helpful discussions. Supported in part by
the NSF Grant No. OMRV5-'19544 and by the Office
of Naval Research ONR F0001.4-75-C-0245 PS.

Permanent address: The Racah Institute of Physics, the
Hebrew University, Jerusalem, Israel.

D. L. Huber, D. S. Hamilton, and B. Barnett, Phys.
Rev. B 16, 4642 (1977).

~S. Kirkpatrick, Solid State Conimun. 12, 1279 (1973).

~F. Bloch, Z. Phys. 61, 206 (1930).
H. E. Stanley, H. J. Birgeneau, P. J. Reynolds, and
J. F. Nicoll, J. Phys. C. 9, 1533 (1976).
T. Holstein, S. K. Lyo, and R. Orbach, Phys. Rev. Lett.
36, 891 (1976).


