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Self-consistent long-range order in a deformable-jemnm model
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A system of N fermions in a box interacting via repulsive delta forces and submersed in a deformable

jellium background is analyzed in te~s of several non-plane-wave Hartree-Pock states which are more stable

than the classic Overhauser ones for charge-density waves, and which also show long-range order.

I. INTRODUCTION

Non-plane-wave Hartree-Fock (HF) orbitals
which give rise to long-range order have been
studied extensively for the metallic state. Many
of these studies' have simulated the repulsive
electron-electron interaction with a repulsive
delta interaction acting between point particles.
We have reexamined the problem by (i) including
a "deformable-jellium" background in which the
(point) particles are submersed and (ii) con-
sidering three classes of HF'orbitals, different
from the standard Overhauser charge-density
waves, which give considerably lower energy
for wide regions of the coupling and/or density
in the model system, and wish to comment on the
results obtained.

The Hamiltonian for a system of N fermions of
spin-& is given by

+= ++ v~~ + v~~ + v~~ ~ T+ v~~

and, if the orbitals satisfy the usual HF equa-
tions, the HF energy is just

Although one can show that the (exact) ground
state of Eqs. (1) and (2) is a collapsed state of in-
finite density snd binding, just from the Rayleigh-
Ritz variational principle, the model may still be
useful in observing the relative behavior of the
different HF orbitals to be considered below, as
a preliminary guide for the study of more realis-
tic Hamiltonian systems.

H. HF ORSITALS

We consider the orthonowmal Bloch-like orbitals
(subject to periodic boundary conditions in a box
of length L)

where T is the kinetic-energy operator, v» is
the background-background, v» is the background-
particle, and v the particle-particle interaction.
The last equation defines the "deformable-jellium"
model, i.e. , such that the background terms can-
cel against the direct part of the particle-particle
potential term, when "a Slater determinant is taken
for the ground state. For the particle-particle
interaction we suppose

I, +v~e "", sgnk=sgnq,

U,(x) =( A„(a)(l+ ue "")",
(Sb)

(Sc)

where the function U, (x) is given in the five cases
to be studied by

v» g vg vc ' 5(rgy) y vc& 0
j& j

The ground state of the system is assumed de-
scribable by a single Slater determinant

B„(a)(j.+ u cosqx)",

Q(~)eOC ÃCCC

(Sd)

(5e)

Cc=(N1) ~ det[F„(rz)X,„(e., )l'

qg(r)-=Q q„(x„),
peL

where (5a) is for plane wave (PW), (5b) for Over
hauser, (Sc) for density-wave-n (DW-n), (Sd) for
density-standing-wave-n (DSW-n), and (Se) for ex-
ponential (EXP), respectively, orbitals. Also,
in Eqs. (5) we have
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u~, z~ real; u~+v~=1; Iq ~2k~, then

~ real&0; yg=1, 2, 3,

A„(u)-=Q
j =0

a„(u)-=g(" Z„u'»
&=0 jI,2 ~

C(u) =—[fo(2u)] '~';

1/2

p(x)=2'" Z Ie.(x} I'=2"'L ' g I&.(x) I'
0(ace) g(ace)

= p' '= N' '/L=2' '(k, lv) (8a)
1/3

= p', ~'(1+ 4 cosqx); 4 -=2 Qg, Vg
A(occ)

dx«s'x=-. [1 -(-)']2 ' (l
0

f,(y) =- g [s!(s+E}!1'(ky)"" =(-)'f, (-y)
s~o

= p', ~'A'„( u)(1 +u'+ 2u cosqx)"

= p'~'B'„( u)(1 +u cosqx)'"

p&/&f -&(2u)e2n comax

(Sb)

(Sc)

(8d)

(8e)

(n!) '(-,'y)"
y~0

~ (2vy) '"e",
y -mao

where the function f „(y) is the modified Bessel
function. ' We note that only in case (5b) does U~(x)
depend on k. Also, in cases (5c}-(5e), u is an
additional variational parameter, as well as the
integer n for (5d) and (5e); and for (5b)-(5e) so
is the wave number q ~ 2&0, where 2p, is the
length of the Fermi cube being filled in all cases.
The orbitals(5a)-(5e) explicitly satisfy the HF
equations for the occupied states. '

The resulting single-particle (local) density is

and clearly corresponds to nonhomogeneous den-
sity with long-range order centered on a simple
cubic lattice, which "dissolves" into the spatially
homogeneous case (Sa) when the "order param-
eters" b, or u vanish. Furthermore, for (Sc) and
(8d}, as n-~ or, u - ~ in (8e), one can see' that
one approaches 6 functions centered on the lattice,
where associated with each lattice site is a pair
of spin-up and spin-down particles.

III. HF ENERGIES

For the purpose of comparing the relative stab-
ility of the different HF states given above, let
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FIG. 1. Energy differ-
ence, in dimensionless
units [Eq (9)] betweenthe
various non-PW HF states
discussed herein and the
PW HF paramagnetic state,
as function of dimensionless
coupling X [Eq. (10)j, which
resulted from minimizing,
analytically in cases (5b)
(Ov) and (5e) (EXP), and
numerically in cases (5c)
(DW-n) and (5d) (DSW-g),
the HF energy for each
value of A. The state DW-
1 is higher than the state
Ov for all A, , as expected,
and, beyond its critical A, ,
is indistinguishable in the
present scale from the X

axis.
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FIG. 2. Overhauser order parameter 4 defined by Eq.
{8b) and given finally by Eq. {13), as a function of di-
mensionless coupling A . The appearance of long-range
order here is "gradual" and thus characteristic of a
second-order transition.

and dimensionless coupling

X —= mv, p', /'/v9E', v, &0. (10)

Moreover, we define the HF energy difference
with respect to the plane-wave (paramagnetic) HF
energy 6» as

LC —:6 —Cp~.

For the Hamiltonian e(luation'(1) and (2) HF en-
ergy e for cases (5b)-(5e) can'be minimized in

q by inspection, giving i@ i
= 200 and thus leaving

one remaining variational (order) parameter d for
(5b) and o, for (5c)—(5e) as well, of course, as the
integer g for (5c) and (5d).:

The ensuing energy difference (11) is straight-
forwardly evaluated for cases (5b)-(5e) and we

merely quote the results. We have

b, vo, = 2 x 2 /'(1 —coth[2 /2x(1+ 2 b2)2]

+ 2"/2X(1+ —,
' CP)'a2)

—2-'y[(1+ 2 b,)' —1] (12)

where the order parameter rh„, defined in Eq. (8b),
ls

us introduce a dimensionless energy per particle

E = 2mE„r/Ãff v'p0/
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FIG. 3. Order parameter P 0, defined in Eq. (Gc) for
(DW-p) and Eq. (Gd) for (DSW-z) as eo, which mini-

mizes the HF energy [Eqs. {14)or {15))for each value
of g Dashed vertical portions dropping from the open
circles correspond to the "sudden" appearance of long-
range order characteristic of 1st order phase transi-
tions, as coupling and/or density are increased.
(Note: the Po scale for the D%'-I family is 10"2 times
that shown. )

g-l 2w/3y(1+ l g2)2 stnh[2M/Sy(1+ I g2)2] 1

and is obtained by minimizing (analytically) eo,
with respect to either u» or zp». To obtain 6&
as a function of coupling x only, one must use
(18) to eliminate & from (12), and this was
done numerically. Also, for cases (5c) and (5d}
one gets, putting n2 -=p,

P}=12x2'/' gi("il P' -'
pi& &i f'P/ 2 '/2& g-(-"i P'

i P
l=l(( /( - /~l ( ) -i ~0( )

(14)

2' fl

aa„„„((}=1x (i' 'IP IPl I. lII„((' ' g( (II„(II+I)'(('
i=0 2 - /s0

tl 6 2g

Q('"'(2 ((' 'g "(Z„(I'
&2ji - -/ 2 I

which were minimized numerically in p ) 0, for each A, . Finally, case (5e) gives

ass»((2) = 3 x 2'/2c(f (2~)f,(2o() —2-'/2y[f (2(2}f20(4c() —1] .

(i5}
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This last case gives the lowest HF energy than
that of the previously mentioned cases, for any
finite X. In fact, (16) does not have a minimum
in ~, for finite X, but an "infimum" for a-~,
since

aeExp(a) ~ 3 x 2' 'o, —2-'~'X[(2va)'~' 1],
(13a)

where the modified Bessel function asymptotic
values given in Eg. (6) were used. But Ec[. (13a),
valid for very large n, can be negative (and in-
finitely so) for any y) 0 no matter how small.
The corresponding state is a simple cubic lattice
of "dimers" at zero density: the similarity with the
Cooper pairs of BCS theory and/or electron pairs
in the Wigner lattice of Ref. 5 is at least sug-
gestive.

IV. RESULTS

The results obtained are summarized in Figs.
1-3. The energy difference Eq. (11) between the
various non-PW HF states and the (trivial) PW
HF one are shown in Fig. 1 where, for each value
of the coupling X the value of the order param-
eter minimizing the energy was employed. The
open circles represent bifurcation points of the

new state relative to the PW HF paramagnetic
one. For both cases (5c) and (5d), DW-n and
DSW-&, respectively, the critical value of X beyond
which the new state is stabler tends, as ~-,
to a small but finite value which in cases (5b) and
(5e), Overhauser and exponential, respectively,
happens to be zero.

The order parameters which minimize the cor-
responding energy at each value of X are plotted in
Figs. 2 and 3 for cases (5b), (5c), and (5d) as func-
tion of coupling X. For case (5e), of course, the
order parameter z diverges for arbitrarily small
X, Eq. (13a). We note finally, that the onset of
long-range order is "abrupt" for DW-~ and DSW-~
and "continuous" for both Overhauser and exponen-
tial orbitals, indicating, respectively, first- and
second-order transitions.

The present work shows that long-range order
is possible in a system of many fermions with
repulsive interactions as has. been hypothesized,
e.g. , for the Wigner lattice, ' with new states
which are stabler than the classic Qverhauser
charge-density waves.
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