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Vibrational properties of alloys: Study of Si„ce~ „
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We have extended the theory of binary alloys developed by Falicov and Yndurain to study vibrational

properties. As an example, the phonon density of states of amorphous Si„Ge, „alloys has been calculated For

the entire range of concentrations. The results are in excellent agreement with first-order Raman spectra.

I. INTRODUCTION

In the last ten years there has been an increas-
ing interest on the study of vibrational properties
of noncrystalline materials like amorphous semi-
conductors, glasses, and alloys. ' This has been
mainly prompted by the fact that in noncrystalline
materials light scattering gives information about
phonon density of states in the entire frequency
range. As an example, analysis of Raman spectra
has identified the presence of homonuclear bonds'
in amorphous SiC. Study of infrared and Raman
spectra has given information on coordination,
topological arrangement, and bonding character
of some chalcogenide glasses' like Ge„Se, „and
Geg, „. These experimental techniques have also
been used to obtain information on phonon density
of states of amorphous covalent semiconductors. 4

Finally, information about the phonon density of
states of amorphous and crystalline semiconduct-
ing alloys has been obtained by means of first-
and second-order Raman spectra. '. 6

In spite of current interest and the rich experi-
mental information on vibrational properties of
noncrystalline materials, the theoretical situation
is not satisfactory, most of the work being con-
cerned with homopolar amorphous semiconduc-
tors. ' The theoretical approaches used thus far
to study vibrational properties of alloys can be
classified in three categories: (a) numerical cal-
culations on finite clusters w'ith various boundary
conditions; (b} mean-field approximations like
the averaged T matrix and coherent-potential ap-
proximations', and (c) study of molecular units
interacting weakly. " Each of these approaches
is valid for very specific situatioris and its ex-
tension to more general cases is difficult. The
results using (e) are appropriate when looking at
the local density of states, since it is not very
sensitive to boundary conditions when dealing with
large enough clusters of atoms. This approach is
also valid for studying mixed crystals" where
periodic boundary conditions are appropriate. The
main drawback of single-site mean-field approxi-
mations is their inability to take into account
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FIG. 1. Experimental reduced first-order Haman
intensity vs frequency of amorphous Si„Ge& „alloys
(Ref. 5). The curves are normalized to the same area.
The concentration of Si atoms X is indicated in the
right-hand side of the curves.

short- range-order effects. Finally molecular-
type calculations are valid indeed for molecular
systems only.

In this work we present a theoretical approach
to study vibrational properties of alloys which we
believe overcomes the shortcomings of previous
approaches. " It is essentially based on the theory
of Falicov and Yndurain intended to study the elec-
tronic properties of binary alloys. " In this theory
the cluster-Bethe-lattice approximation"" is
used in such a way the short-range properties are
present in both the cluster (exactly} and in the
Bethe lattice (in an approximate form).

Although the theory we present here is general,
we have applied it to study the phonon density of
states of Si„Ge, „alloys because: (i) first-order
Raman spectra have been measured for the entire
range of concentrations' (see Fig. 1}; (ii) the
results have been checked against second-order
Raman spectra and inelastic tunneling measure-
ments. ' In addition, the bonding character and
coordination of both Si and Ge is very similar;
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thus the distribution of Si and Qe atoms is expected
to be rather homogeneous throughout the alloy. "
Finally, since the ratio of ion masses is large
(mo, /ms, =2.6) the effects of short-range order
and clustering should be clearly reflected in the
phonon density of states.

In order to study the phonon density of states of
Si„oe, „alloys we will deal with the Born model. "
In this model the potential energy is given by

V(r)= —,
'

p g [(u, —U„) r„(I)]'

+ ,'(n ——P)Q (u, —u )'.l

The sums are on atoms E and their nearest neigh-
bors l&; r~(l) is the unit vector from the equili-
brium position of atom E to that of its neighbor l&,
and u, and u, ~ are the displacement vectors of
these atoms. In this model we can identify a cen-
tral force, of strength 2 p+ n, and a noncentral one
of strength n —p. In this work we assume that the
potential-energy parameters n and p in (I) are the
same for all pairs of atoms (Si-Si, Ge-Ge, and
Si-Ge). This is justified by the fact that the bond
ing character of both Si and Qe is very similar.

The format of this paper is as follows. In Sec.
II we discuss the extension of the cluster-Bethe-
lattice approximation to study vibrational proper-
ties of alloys. In Sec. III we present phonon den-
sities of states corresponding to clusters of dif-
ferent size for a fixed concentration. The density
of states for different concentrations is calculated
and a detailed comparison with experiments is
presented as well. Finally, in Sec. IV some con-
clusions are drawn.

II; CLUSTER-BETHE-LATTICE APPROXIMATION

P„=P~= 1 (segregation sequence}, (2a)

In addition to the concentration X, we charac-
terize the alloy by the short-range-order para-
meter P„(Pa) which gives the probability that when

choosing a nearest-neighbor pair such that one of
the atoms is of class A (8}, the other atom is of
the same class. " In this section we mostly dis-
cuss the Bethe lattice because once we know how
to solve it, the extension to obtain the density of
states for the cluster-Bethe-lattice system is
straightforward. '4 The density of states in the
Bethe lattice corresponding to both the binary
compound and segregation sequences defined in
Ref. 13 is easy to obtain. For these sequences
the short-range-order parameters take the simple
form

~A 0 0 Dl ~A. ~0 0 'Di i A 0 0
-2

where the transfer matrix T is given by

M„(o T„=D,+ D, ' T„+ Di'Si' T~'Si' &~. 4a

In these equations M„represents the mass of ions
of class A; ai stands for the frequency. The ma-
trices D are formed by the matrix elements of the
full dynamical matrix as described in detail in

Ref. 18. Finally the matrices S correspond to the
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FIG. 2. Total phonon density of states vs frequency
for the Si„oe& ~ alloy. (a) Segregation sequence (i.e.,
I'@=PG, =1). (b) Binary compound sequence (i.e., Ps&
=PGe =0).

P„=O, P, =(X,-X„)/X, if X„-X,
Pa=0, P„=(X~-Xa)/X~ if Xs &X„

(binary- compound sequence) . (2b}

Then we get the following equation for the matrix
elements of the Green's function 6 associated with
the atom in which we are interested.

(i) Segregation sequence: If the reference atom
is, say, of kindA we obtain
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symmetry operations of the tetrahedral coordina-
tion.

Qnce the matrix G, , is known, the local density
of modes associated to the reference atom is given
by

n,"((u) = -((o/w)M„1m[Tr(G, ,)] .

The total density of states corresponding to this
sequence and for X=0.5 is drawn in Fig. 2(a).

(ii) Binary-compound sequence: For this se-
quence we obtain

4

.M~(o Go 0= 1+D, ~ T, 'Go 0+ D]'S]'T, 'Go O'S),
=2

where now the transfer matrix T, is given by

obtain the transfer matrices. As it was shown in
Ref. 18, the solution of (4a) or (10a) is reduced
to solving a quartic equation. The solution of the
transfer matrices in the case of the binary com-
pound sequence ('la) and ('Ib) can be obtained from
the solution of (4a) by a suitable transformation. "
The problem of this kind of solution is that out of
the continuum the choice of the proper root of the
quartic equation is not simple, and one can get
spurious solutions. Here instead we resort to a
simple iterative procedure. " Vfe can write T„and
T in the form

a]

1M~ —Do — D) 8]'T~'S] ~ D, 4b
=2

M~M Ti=Dj+Do'Ti+ D;'S T2'S)'T2, Va
)=2

M„(u'T, = D, + Do . T,+ D, 'S, ' T, 'S, ' T( . (7b)
=2

To obtain the density of states associated with
atoms of class B we have to change M„ into M~,
and T, into T, in (6). The total density of states
corresponding to this sequence for X=0.5 is
drawn in Fig. 2(b).

For a general value of the short-range-order
parameters P„and P~ different from the above
discussed, we use an interpolation scheme. In
particular, in the case of the random distribution
of atoms, the interpolation scheme for the Bethe
lattice reduces to the virtual-crystal approxima-
tion in which all the atoms are equivalent (no
short-range order), and their mass is given by

M =xM„+ (1-x)M, . (8)

In this case, we get the following equation for a
one-atom cluster-Bethe-lattice system:

M(u T=D, +Do'T+ D)'S; ~ T 'S]'T .
=2

(10a)

Since we are aiming to introduce short-range
order, the density of states for this sequence de-
pends on the cluster of atoms we are dealing with
when the cluster-. Bethe approximation is used. %e
leave the detailed discussion of this sequence to
Sec. III.

Before we discuss the results of our calcula-
tion, we would like to comment on the way we

M~(0 Go () 1+D] T Go
~
0+ D) S) T S] Go 0

i=2

(9)

where T is given by

~]

T 1MOP D() D] S] T S D 10b
=2

T, and T, in (V) can be written in a similar form.
The solution of (4b) and (10b) can be easily obtained
numerically by iteration. Details of this procedure
are given in Ref. 20. The advantage of this way of
solving the transfer matrices is that it ensures us
to be in the right sheet of the Riemann's surface.

III. RANDOM ALLOY:
COMPARISON WITH EXPERIMENTS

If we now try to reproduce the experimental
results shown in Fig. 1, we realize that neither
the segregation sequence [Fig. 2(a)] or the binary
compound sequence [Fig. 2(b)] are appropriate.
The density of states corresponding to the segre-
gation sequence reproduces the peaks at -280 and
480 cm ' of the experimental Raman spectra but
does not reproduces the peak at -390 cm '. Qn the
other hand the density of states corresponding to
the binary compound sequence reproduces this
peak but does not give the former ones.

In order to pick up the proper values of P„and
P~ in the Si„oe, „alloy, we first study the one-
atom cluster-Bethe-lattice system. As we said
before, to solve the Bethe lattice for nonspecial
values of the short-range parameters, we use an
interpolation scheme in which the actual mass of
the ion is approximated by an averaged mass.
First of aQ, since we expect an homogeneous dis-
tribution of Si and Ge atoms, we shall assume that

P8, =PG, =P. If the central atom is of kind, say
A, the mass of the atoms in the different shells of
atoms as we go away from the center of the Bethe
lattice are
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Mo =M„, M, = PM„+ QMs, M, = (P'+ PQ)M~+ (Q'+ QP)Ms,

M, = (P'+ QP'+ Q'+ Q'P)M „+(Q'P+ QP'+ P'Q+ Q'P)Ms,

0.5-

0.4-
a)

P~ 0.5

0.0

when Q= 1 —P. To solve for the density of states
in the Bethe lattice @re write the local Green's
function in a continued fraction form, such that
the successive terms in the fraction contain the
mean masses M„M„.. . . The solution of this
continued fraction cannot be obtained analytically,
but the numerical solution is rather simple.

In Fig. 3 we shower the density of states for the
one-atom Bethe-lattice system for Ps, =Pa, =0.5.
The position of the high frequency peaks as a func-
tion of the short-range-order parameter are also
drawn in the insets of this figure.

In the inset of Fig. 3(a), we see that for Po, = 1
(Ge-Ge bond) we obtain a peak at -290 cm ' in ac-
cordance with Fig. 2(a}. In the same way the inselt

on Fig. 3(b} indicates a peak at -470 cm ' corre-
sponding to Ps, = 1 (Si-Si bond). Finally for Ps,
=PG, =O, there is a peak at -400 cm ' correspond-
ing to the Si-Ge bond. The positions of these
peaks are in agreement with the experimental
data. Nevertheless it does not seem to be a pre-
ferred short-range order in Si„Ge, „alloys. In
what follows we shall then adopt the values corre-
sponding to the random distribution, i.e. , Ps, =PG,
= 0.5.

%e have calculated the density of states of the
five-atom (the central atom plus its four nearest
neighbors) cluster-Bethe-lattice system taking
into account all possible cluster configuration and
for the entire range of concentrations. The results
when the central atom is Si and X=0.5 are drawn
in Fig. 4. The results corresponding to Ge and X
=0.5 are drawn in Fig. 5.

In order to compare with the experimental re-
sults we have calculated the weighted averages of
the densities of states corresponding to the central
atom in the five-atom cluster-Bethe-lattice sys-
tem. The density of states is now given by

n, (w) = g Wcn, (u&, c), (12)
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FIG. 3. Local density of states for the one-atom Bethe-
lattice system. Ps& =E'G, =0.5. (a) Ge Bethe lattice;
(b) Si Bethe lattice. The insets indicate the position of
the high-frequency peaks'as .a function of the short-
range-order parameter (see text).

where all possible clusters C contribute each with
its proper weight W~ given by

Si-SiSiSiSi, %=X,
Si-SiSiSiGe, W= 4X'(1 X),
Si-SiSiGeGe, W= 6X'(1 —X)',
Si-SiGeGeGe, W= 4X'(1 —X)',
Si-GeGeGeGe, W=X(1,-X)',
Ge-GeGeGeGe, W= (1 —X)',
Ge-GeGeGeSi, W= 4(1-X)4X,

Ge-GeGeSiSi, W= 6(1 —X)'X',
Ge-GeSiSiSi, W= 4(l —X)'X',
Ge-SiSiSiSi, W= (1 —X}X'.

(13)

The results for the whole range of concentrations
are given in Fig. 6." The shaded regions describe
localized discrete states. To make them visible, we
have added a small (8 cm ') imaginary component
to the frequency.

A direct comparison of Figs. 1 and 6 reveals
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FIG. 4. Local phonon density of states corresponding
to the central atom (Si in this case) of the five-atom
cluster-Bethe lattice system for X=0.5. The distribution;;
of atoms in the cluster is indicated. A small (8 cm" )
imaginary contribution to the frequency has been added.

FIG. 5. Local phonon density of states corresponding
to the central atom (Ge in this case) of the five-atom
cluster-Bethe lattice system for X=0.5. The distribution
of atoms in the cluster is indicated. A small (8 cm ')
imaginary contribution to the frequency has been added.

good agreement with the experimental measure-
ments. It should be noted that we just calculate
phonon density of states but we do not even esti-
mate matrix elements for Raman scattering. This
allows us to compare the position of peaks but not
their absolute strength.

The main features of the Raman spectra are

reproduced in our calculation in the following
ways:

(a) There is a peak at about 280 cm ' whose
strength decreases as the concentration of Si in-
creases. The peak disappears at X=O.V in both
theory and experiment. Moreover the peak shifts
to low frequencies as measurements by Feldman
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(c) A peak which is not present in either pure Si
or Ge appears for all intermediate concentrations
at -380 cm '. This peak is due to the presence of
Si-Ge bonds [see Figs. 2(b), 4, and 5] in the alloy
and the modes associated with it are mostly local-
ized (-90%) in the Si atoms. Although the position
of this peak is almost independent of the concentra-
tion in our calculation, there is some experimen-
tal evidence" that it shifts from 389 to 402 cm '
for 0&X&0.33. The modes associated with this
peak become localized when X &0.6.

(d} The low-frequency (&250 cm ') part of the
spectrum cannot be discussed in detail because
the matrix elements involved in the Raman scat-
tering at those frequencies are small. " Nonethe-
less the trends in our calculation also agree with
the experimental observations. We note that the
peak at -100 cm ' for X=O does not shift its posi-
tion very much for 0 &X&0.9, but at x ~ 0.9 it
shifts to essentially its value for pure Si. The
origin of this behavior is the presence of Ge-Si
bonds which give rise to a peak at about 140 cm '
[see Figs. 2(b) and 5], close to the pure Ge lower
peak position. The modes associated with the
former are mostly localized at the Ge atom, and
are resonance modes throughout the entire range
of concentrations. The particular positions of the
low-frequency peaks of the Qe-Ge, Ge-Si, and
Si-Si bonds are also responsible for the rather
flat line shape of this feature at X—=0.7.

In order to check the above discussed results
and to study how the results depend on the size of
the cluster, we have calculated for X=0.5 the den-
sity of states corresponding to the 17-atom cluster
shown in Fig. 7.

Since for a 17-atom cluster the combinatoried

FIG. 6. Calculated total phonon density of states of
amorphous Si„Ge~ „alloys. The concentration of Si
atoms X is indicated in the right-hand side of the curves.
Shaded regions correspond to discrete localized states.
A small (8 cm ~) imaginary contribution has been added.

et al. indicate. " We interpret this peak as due to
the presence of Ge-Ge bonds, as- is apparent from
the analysis of the individual five-atom clusters
(see Fig. 4).

(b) There is another peak at about 4VO cm ' whose
strength in the experiments decrease with the Si
concentration. In our calculation, the height of
this peak does not decrease with X, but the frac-
tion of states associated with it does. This peak
is due to the presence of Si-Si bonds (see Fig. 5}.
The modes associated with it are localized for
concentrations of Si atoms less than -0.9. For
concentrations less than -0.3 it is barely seen.

FIG. 7. 17-atom cluster with tetrahedral coordination.
Central atom has label 0.
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the atoms are surrounded by two atoms of its own

kind and two of the other kind. The density of
states corresponding to the first cluster is shown
in Fig. 9(a) and that corresponding to the second
cluster is shown in Fig. 9(b). From this result we
can tentatively conclude that the presence of clus-
ters of the type A-ABAB enhances the appearance
of a dip at around 350 cm '. This does not imply
however any specific short-range order in crystal-
line alloys. On the contrary, the overall shape of
the experimental curves' indicate that in crystal-
line Si„Qe, „alloys the distribution of atoms is
essentially random as in the amorphous case.

FIG. 8. Total phonon density of states vs frequency
for the random sequence and X=0.5. (a) Five-atom
cluster total density of states with an imaginary (8 cm )
contribution to the frequency has been added (solid line)
without imaginary contribution to the frequency (broken
line). (b) 17-atom cluster total density of states. The
density of states has been obtained by averaging over a
random selection of clusters (52 altogether). A small
(8 cm ~) imaginary contribution to the frequency has
been added.

aspects of calculating the weight W~ as well as the
sheer number of different clusters to consider
makes the calculation impractical, we resort to a
random selection of clusters (52 altogether). The
averaged density of states corresponding to our
random sampling is shown in Fig. 8(b) along with
the exact weighted average corresponding to the
5-atom cluster. We notice immediately that the
main features are common to both densities of
states making the 5-atom cluster results reliable,
and stressing the importance of short-range order.

The above discussed results apply to amorphous
samples since oo long-range order is assumed.
Nevertheless they are also in good agreement with
the results obtained by means of second-order
Raman' scattering and electron tunneling" for
crystalline alloys. These experimental results
indicate that the phonon density of states of crystal-
line alloys present additional fine structure with
respect to that of the amorphous samples. This
new structure is essentially a peak at about 340
cm ' close to a dip at about 360 cm '. I,ooking at
the second and third panels of Fig. 3 we see that
this structure may be due to the simultaneous
presence of Si-Qe and Si-Si bonds. To check this
we have calculated the density of states of two
different configurations in the 1V-atom cluster of
Fig. 7. Both clusters are such that the central
atom is Si with two Si nearest neighbors and two
Qe nearest neighbors. In the first cluster the
distribution of Si and Qe atoms in the second-
nearest-neighbors shell is random, whereas in
the second cluster the distribution is such that all

IV. CONCLUDING REMARKS

In this work we have calculated the vibrational
properties of Si„Ge, „alloys for the entire range
of concentrations. The method of calculation al-
lows us to include short-range order and keep
tetrahedral coordination throughout the entire
system. Based on our results we can conclude
the following:

(i) Statistics of the near-neighbor coordination
must be explicitly dealt with, while further neigh-
bor coordination can be treated in an average way.
Although our calculation is intended for amorphous
alloys (no long-range periodicity is assumed), the
results are also valid for crystalline alloys. This
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FIG. 9. Local density of states vs frequency associated
with a Si atom foi two different 17-atom. clusters (see
text). (a) The first-nearest-neighbors shell has hvo Si
and two Ge atoms, and the atom distribution in the
second-nearest-neighbors shell is random. (b) All the
atoms are surrounded by two of its own kind and two of
the other kind. A small (8 cm ~) imaginary contribution
to the frequency has been added.
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stresses again the importance of short-range order
in these alloys.

(ii) Good agreement between theory and experi-
ments indicates that the unknown matrix elements
in Raman scattering do not introduce spurious
structure in the density of states.

(iii) Distribution of Si and Ge atoms is essen-
tially random. Study of possible deviation from
the random distribution would require us to analyze
larger clusters or else to go beyond the mean-
field approximation in the boundary of small clus-
ters. This possibility is currently being analyzed.

(iv) In spite of its simplicity, the Born model

seems to be appropriate to study amorphous
Si„oe, „alloys given the experimental resolution.

(v) The model we propose assumes perfect tetra-
hedral bonding and neglects effects due to the
presence of closed rings of bonds. Effects of bond
angle variations and topology should be investi-
gated.

In conclusion, in spite of the simplicity of our
model, all the features of the Raman spectra are
reproduced in our calculation. We believe that the
outstanding properties, i.e. , short-range order
and tetrahedral coordination, of Si„Ge, „alloys
are properly incorporated in our model.
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