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W4 have stUdicd a system of two 1onlc, interpenetrating, incommensurate suMatticcs wltl'1 chain structures.
%'e show that the potential which drives thc commensurability between the sublattices varies as

exp( —2mMdlb), where b is one lattice period, d is the distance between chains, and the M is the
commensurability order. The static distortions in the sublattices, as well as the energy spectrum and the
dynamic structure factor of phonons polarized along the chains, are calculated. %C conclude that these

phonons should be observaMC in inelastic-neutron-scattering experiments. .

I. INIODUCTION

In recent years, there has been great interest
in linear-chain compounds with segregated chains
of donors and acceptors. In a number of cases
the compounds are not stoichiometric [e.g. ,
(TTF) (SCN)0,„„(tetrathiaiulvalenium-thiocyan-
ide), (TTF)IO 7~~, (TTF)Brg „, and Hg~ 86ASF6
(Ref. 4)j and ihe periods of the donor and acceptor
chains are Dot simply related. The materials con-
sist of two interpenetrating incommensurate sub-
lattices. ID some other cases the tw'o sublattices
are commensurate on]y in high order leading to R

large supercell or equivalently a long-wavelen~&h
superlatt;ice. In this paper we study the energi. es
of such con1pounds, especially the energies as-
sociated with commensurate states and the dyn-
amics of these states.

As R prototype of these compounds we will con-
sider a model with a two-dimensional array of
two types of chains, A Rnd gg, with each A chain
surrounded by nearest neighbors of type g and
vice versa. A two-dimensiona3. analog of our sys-
tem ls shown ln Flg. 1. To R lowest approxima-
tion we can view each chain as experiencing a
I'Jt, gi.d external perlodlc potentlR1 due t6 its neigh-
bors. We call this the external-potential approxi-
mation (EPA). The problem of a hnear chain of
atoms ln R pex'iodlc external potential has been
studied in the context of an adsorbed layer on R

substrate. If the chain is replaced by an elastic
continuum the problem can be solved exactly Rnd

the "olution was obtained some years ago by Frank
and&an der Merwe. 5 They showed that as the
period of the external potential is varied and ap-
pxoaches the natural period of the chain, a continu-
ous transition occurs to the commensur ate state
in which the period of the chain and the external
potential are the same. The di.screteness of the
chain was considered by Ying, ' who concluded that
the comIQensux ate-incommensurate tl Rnsltlons
should be discontinuous or first order. For a dis-

CX'Bte chRiD states with hlghex'-ox'dex' commensur-
ability'are also possible, in which the ratio of the
periods of the chain to the external potential is a
rational number. Ying obtained first-order re-
sults also for transitions between such higher-
order comxnensurate states Rnd the incommensur-
ate state. Recently, Aubry' has proven that no
first-order transitions occur in this model and
that all commensurate-incommensur ate transitions
are continuous.

Our approach will be to compare the continuum
limit to the discrete model and to pass to the con-
tinuum limit to describe the actual phase transition
between commensurate and incommensurate states.
In the incommensurate state the position of the
center of mass of the atoms relative to the ex-
ternal potential, described by a phase variable,
is undetermined in the ground state, but in a com-
mensurate state this phase ls pinned. The pinning

FIG. l. Wvo-dimensional analog of a system of bvo.
interpenetrating sublattices.
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potential, we show, drops off exponentially with the
order of commensurability. Similarly it is the
pinning potential which enters the effective Frank-
Van der Merwe continuum model which describes
the transition to a higher-order commensurate
state. We also discuss the limit under which the
EPA can be expected to be a good approximation.

Small oscillations about the equilibrium posi-
tions lead to a phonon spectrum for the lattices.
The phonon spectrum is again described by passing
to the continuum limit where the problem reduces
to one solved analytically by Sutherland. ' In the
external potential approximation each sublattice
has an independent acoustical mode in the long-
wavelength limit. In commensurate states there
is only one acoustical mode and an optical mode
with a gap whose magnitude is determined by the
pinning potential. Finally we discuss the structure
factor and show that these acoustical phonons con-
tribute to the dynamic structure factor and should
be observable by inelastic neutron scattering. Ac-
tually such independent acoustic modes have been
observed at high temperatures for the Hg and AsF,
sublattices in Hg, ,AsF, by Hastings et al. '

In this paper we restrict ourselves to models in
which there is a single natural period on each
chain. The significance of independent natural
chain-lattice constants has been emphasized by
Phillips" in his models of low-temperature lateral
phase transitions in compounds which undergo
Peierls transition such as TTF-TCNQ (tetrathia-
fulvalenium-tetracyano(luinodimethanide). These
models contain Aeo distinct electronic phases on
a chain, each with its own natural period. Phillips
has also considered the effect of these multiple
periodicities on conductivity and other properties.

The paper is organized as follows. In Sec. II we
introduce the model and discuss the magnitude of
the potential exerted on a chain by its neighbors.
In Sec. III we discuss the static arrangement of the
atoms in the EPA, especially the relation between
the continuum limit and discrete model and the
transition to commensurate states. The limitations
of the EPA are also considered. The dynamics
and phonon spectrum, are the subject of Sec. IV.

The statxc and dynamic structure factor ls con-
sidered in Sec. V. Finally Sec. VI is a summary
of our results.

II. POTENTIAL ENERGY

(2.2)

with N the number of atoms per chain of sublattice
A. Assuming only Coulomb forces

V.(n)=e. e, g ==- .. -,=-, (2.2)
g, o i, k

where x,& is the position of l ion on a chain whose
location is specified by the two-dimensional vector
k (see Fig. 1). Q, and Q» are the charges of ions
belonging to sublattices A and jp, respectively.
For simplicity we consider Q, and Q» as point
charges. Combining E(ls. (2.1) and (2.3) we obtain

We consider a crystal with a chain structure as
described in the Introduction, with two incom-
mensurate sublattices A. and B which have peri-
ods a and b, respectively. The two sublattices
are taken to be oppositely charged and bound to-
gether by electrostatic forces. The periods a and
b are determined by minimizing the combined in-
trachain energy, charge-transfer energy, and the
Madelung energy due to the long-range Coulomb
attraction between chains. This problem has been
considered by Torrance and Silverman. '~ In this
paper we study the effects of the short-range in-
teraction between chains due to the fact that the two
sublattices have different periodicities.

Because of the different periodicities, different
sites on the same chain will experience different
potentials. More specifically, let us consider one
chain of subl'attice A.. Let V,(n) be the potential
energy at site n, produced by sublattice B. V,(n)
is periodic with period 5 of sublattice g. Thus,
we can expand V,(n) in harmonics as follows:

Oo

) &
i (2w m/ »)na (2.1)

where U, (m) is given by
X/2

e- i(zest/»)na V (n)a
n= "N/2

U (m) — ~&~» ~ ~ ~ -i(2&rmnal») (2.4)

where 8& is the origin of the k chain and dg is its
distance to the A. chain under consideration. U(0)
is the Madelung energy and has been incorporated
in the determination of a and 5 as discussed
above.

In evaluating U, (m), for m e 0, we first sum
over n and then over I. Because [(na —Ib —s),)'
+d k]

' decays slowly, the summation over n can
be replaced by integration. In that case E(I. (2.4)
reduces to
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-NN/2 (3' +d

We note that the contributions to U,(m) from other
chains of the sublattice A are identically zero.
U, (m) then becomes

(2.5)

U ( ) Q)) QQ ff Imld t( - o2I( ))))~)/b

V,(n) =-,' U, cos[(21//b)(an s)],
with

U. =(8q.q, /b) s,Z. (21/d/b)(,

(2.8)

(2.8a)

where ~, is the number of nearest-neighbor B
chains at a distance d from the A chain. For
crystals with

d/baal,

it is appropriate to use the
asymptotic behavior of go, which gives

U —4Q Q g (bd) 1/2 c 2)(d/5 (2.9)

An order-of-magnitude estimate for the amplitude
U, ean be obtained by assuming b = 3 A., d = 4 A,
s/b=0. 8, z, =4, and Q, Q, =-e'a/b. We then get
U, = -&.2 X &0 ' eV. This estimate would be modi-
fied if we consider that the charges are distributed
in space and there are not simply point charges.

If instead of focusing on a chain of sublattice A.,
we examine a chain of sublattice'B, calculations
similar to those carried out before give

(2.8)

with Ã0 the zeroth-order Bessel function. Com-
bining Eqs. (2.1) and (2.6) leads to

( )
4)).)), g g (Oomd1

)
2mm

&& oos (oo —s1)) .
5

(2.V}

In the present work we restrict ourselves to the
case that s is independent of k. Since go decays
exponentially for large values of the argument,
only that B chains that are nearest neighbors to
the A chain under consideration, will contribute.
Also the m, =+1 harmonics will dominate. Thus,

The presence of the difference 1/a —1/b in the ex-
ponent of (2.12) indicates that the harmonic with
the largest amplitude is produced on the chain that
has the shortest period. The most signfieant fea-
ture of U, and U~ is that they decay exponentially
with the distance between nearest-neighbor chains
belonging to different sublattices.

We note that the magnitudes of the potentials U,
and U~ are quite small and the corresponding driv-
ing forces to commensurability will be weak. This
is a consequence of the linear chain structure and
the assumption of only Coulomb forces between
the chains. This result will be modified if covalent
bonding between chains were present and in that
case incommensurate structures are not likely to
be stable.

HI. GROUND STATE

Prom our calculations of Sec. II we found that
each sublattice is under the influence of an ex-
ternal periodic potential created by the other sub-
lattice. Each chain will have a natura/ period
along the chain axis; the natural period is defined
as the period of the chain in the absence of a spa-
tially varying potential from its neighbors. The
natural periods of sublattices A. and B are denoted
by a and 5, respectively. We also assume that a
and b are incommensurate and a & 5.

The presence of the potentials V„ i =a, 5 will
modify the periods of the sublattices. For a& g

we get from (2.12) that IU, I
& IU, I. The latter

inequality means that the lattice which will ex-
perience the strongest external potential will be
sublattice A. For this reason we choose to divide
our analysis into two stages: in the first stage,
one sublattice in an external Potential, we assume
that sublattice B is rigid with period equal to its
natural value 5 and study the effect on sublattice
A of the potential due to B. In the second-stage
tN/o sublattice-Problem both lattices A and 8 are
allowed to distort.

A. One sublattice in an external potential

We begin by studying only one chain of sublattice
A.. The total potential energy of the chain can be
written as

U, =(8Q.Q, /a) ~.Z, (2~d/a).

The asymptotic behavior of U, is given by

U 4q q + (+d}-1/2 e- 2)(({/((

(2.10)

(2.11)

N/2

N8, = 2p, , Q (z„„-z„-a)'
n= "Nl2

(3.1)

Combining Eqs. (2.8) and (2.11) we obtain the ratio
of the first harmonics belonging to chains of A. and
B sublattices

I U /U() I =(/1/b)+' exp[2md(1/a —1/b)]. (2.12)

where z„denotes the position of the nth atom and
we take U,&0. At zero temperature, the equi-
librium positions of the atoms can be found by
minimizing 8, . This problem is identical to that
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studied by Frank and Van der Merwe' for the case
of an adsorbed layer on a substrate. The equi-
librium position of the nth atom is given by

z„„-2z„+z„,=(vU, /p, ,b) sin[(22/b)z„] .

8 f(2i1 f 2 U /&2P2)X/2
1

a

x [2E(P.) (1 P', )&(I8,)] V, &(& -a)]
(3.9)

Making the transformation

&3=»+(&/&) 4.+2& ~

Eg. (3.2) reduces to

y„+, —2y„+y„,= -(2'U. /p. .b') sin(2y„) .

(3.2)

(3.3)

with Z(P, ) and K(P, ) the complete elliptic inte-
grals of first and second kind, respectively. The
asymptotic behavior of P, near U, =0 and U, =U',
will be useful to our subsequent calculations. Us-
ing the asymptotic formulas forK(p, ) and Z(p, )
near p, =0 and pc= 1 and minimizing h„when
U, ~U'„P, is the solution of

(3.4)

Frank and Van der Merwe studied Eq. (3.4) in the
continuum limit where p„,1 —2Q„+g„, is re-
placed by d'Q/dn2. The continuum-limit approach
is accurate if m2U, /g, b2 is small. For our case
where we have typical values of U, —10 ' eV,
p, =104 dyn/cm, and 5~ 3 A, we obtain 7/2 U, /p, b2

—1.8&&10 '. Thus it is justified to go to the con-
tinuum limit. Then Eq. (3.4) reduces to

1-U, /U;
ln [4/(1 -P' )'/2] ' (3.10)

Pc ln(1 U /Uc ) I Uc
(3.12)

while for U,«U;, P, can be derived from

P 1v (U /Uc )1/2 1 P3 (3.11)

Approximate solutions of Eqs. (3.10) and (3.11) are

2 2 ' sin(2$)dn' p, ,b' (3.5}

», for U, &U', ='—', m'p, (a —b)2

»+(Q/7/) Q&„&+ —,Q, for U,& U', .
Q&„l can be obtained from

(3.8)

This is the sine-Gordon equation which can be
solved exactly and gives that the equilibrium posi-
tion z„of the nth atom is'

For arbitrary values of U, /U', , P, can be obtained
by numerical minimization of 8, and the results
are plotted in Fig. 2. Also shown are the solutions
of Egs. (3.10) and (3.11).

We analyze Q(n) in more detail. Q(n) can be

1,0

f do 2~20 x!2

(1 - P2 sin2e)» P2 p, P (3.V)

0.8
with P, an integration constant determined by the
minimization of the total energy. P, is in the range
(0, 1) and has the behavior lim~, OP, =0 and
lim„~c p, =1. The physical picture is that for
U, & U', the lattice is in registry with the external
potential. At U, =U', dislocations appear and the
period of the lattice changes continuously ap-
proaching a when U, 0. Dislocations are sep-
arated by a number of atoms R, given by

t,2 1/2 2/2 dg
2U, , (1-P', sin'8)' ' '

(3.8a)

0.6

0.4

0.2

I
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I
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I
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I

0.8 1.0
Near the critical value U'„ the number of atoms in
a dislocation is given by

(3.8b)

The potential energy per atom relative to the
commensurate state is given by'

Ug
C

U~

FIG. 2. P~ as a function of U, /U~. The solid line
gives results obtained by numerical minimization of the
potential energy [Eq. (3.9)]; the dashed line gives the
solution of Eq. (3.10) and the dot-dashed line gives the
solution of Eq. (3.11).
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y(n) =am[ n-(2w U, /P,'p, 5') i'] . (3.13)

Using the nome expansion of the elliptic integral"
we obtain that for U,(U', the position of the nth
atom is given by

1 2Q

3.0—

I+q, R,
where the nome is given by

(3.14)
0.4—

0.2
(3.15)q. = exp [ vZ-(P', )/&(P. )],

with P', =(1 —P', )+'. For n integer Eq. (3.15) be-
comes 0.2 0.4 0.6 0.8 1.0

with

2b I q, . 2~m b
=A, n+ —sin an-ti 0 ~ ~ $ a@2m y 6 2

(3.16a)

~.=b(l- 1/a. ) . (3.16b)

We note that the external potential modifies the
position of the atoms. The modified chain is not
periodic anymore; instead it has an average period

The deviations from the average position are
described in terms of harmonics whose wave vec-
tors are equal to the reciprocal lattice vectors of

Ug

C
Uo

FIG. 3. No me q~ as a function of U~/U~.

the B chain. The amplitude of the harmonics is a
function of the expansion parameter q„which in
turn depends on P, . Since P, can be expressed in
terms of U, /U', , we can thus obtain q, as a func-
tion of U, /U', as shown in Fig. 3. From this fig-
ure we see that q, increases very rapid1y near
U, /U', =1. Using the asymptotic formulas for
elliptic integrals and Eq. (3.12) we obtain the
asymptotic behavior

in
I
—' [16U',/(U', -U, )]in [16U',/(U,'- U, )]I) ' U,'

q, = (

I 64 U' ' U'
a 0

(3.1 l)

For exam'pie, if U, /U', =0.985, then q, =0.3. This
demonstrates that for all U, /U', in (0, 1) except for
a very narrow range close to 1, q, is considerably
smaller than unity, and therefore only a small
number of harmonics in Eq. (3.16) is sufficient to
describe z„. We can understand this physically as
follows: a small number of harmonics can de
scribe z„only if B,-is not considerably larger than

The energy required to produce an extra dis-
location for U, =U', can be obtained from Eq. (3.9)
and is given by

p 1/2 0 j.l2
c =p, bl 5 —al; —1+4; e '~ I'o

(3.18)

order of unity except for U, /U', =1. A good esti-
mate of the upper bound of the region where we can
use few harmonics to describe z„ is B,= 0 „which
occurs for U, ./U', =0.91.

Until this point we have used the continuum ap-
proximation, but the chain is formed from dis-
crete atoms. It is of interest to compare the dis-
crete and continuum cases. For example, we can
expand the position of the atoms in a Fourier ser-
ies also for the discrete case and obtain'

g„=nz, + —+ — ', , + ~ ~ ~ . (3.19)
5 wb U, sin(2~ na/5)
2 4 p. 5' sin nab

In the continuum limit a similar expansion is given
in (3.14) and this gives

/

The equilibrium condition is e =0. Since the re-
pulsion between dislocations decays exponentially,
the ratio 8, /r, determined by e =0 in (3.18) is of

b wb U, sin(2mna/5)
2 4 n (b a)' (3.20)
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The leading coefficients in the expansion differ
only by a numerical factor and in fact in the limit

a the expansion coefficients approach each
other.

One important difference between the discrete
and continuum cases is the possibility of higher-
order commensurability in the former case. If
Ma=I.b, where I. andM are relative prime in-
tegers, then a small 0, will drive the system to
a state with average period A., such that jV~, =I.b.
The case M =1 is similar to the 1:I commensurate
state and we will not discuss it further. In order
to describe the j/I:I. commensurate state for 3f&1,
in principle one should keep JI/I harmonics in the
atomic position, but a qualitative description of
the behavior can be obtained by keeping only the
first harmonic. With this restriction the most
general form of z„ is

g„=nX, + ~zb +(b/v) Q + t sin(2m nA., /b + 2Q') .
(3.21)

Q defines the position of the fundamental period
relative to external potential, Q' the position of
the harmonic relative to the fundamental period,
and t is the amplitude of the harmonic. The poten-
tial energy per atom for the M:I commensurate
state, for~~3 is given by

h, = —,p, (A., -a)'+p, t'sin' ' + 2'

(3.22)

The last term on the right-hand side can be simply
evaluated for the case of low-order commensur-
ability, e.g., for the 3:1 ease is

U 2m U 2 2rt - 2cos z„= cos —r + 2Q + sin —7f + 2(f&

n=1

2g 2gt . 2F 2rt+cos ——2p+ sin —-2$' +cos 2p+ sin2$'
3 Q 3 5

(3.23)

Ting' considered this case also but his answer differs from ours.
For a general order of commensurability the last term on the right-hand side of Eq. (3.22) can be evalu-

ated by expanding in a Bessel function series (for details see Appendix A), leading to

oos( s„)= — ' Z ( ) sos[2(g —P')]
n=l

' Z„, cos[2my'+2(y —y')]+O
~
Z„„, 2vt l

(3.24)

2(Q —Q') =0 (mod2v) . (3.26)

As indicated previously our interest is mainly in
the weak-coupling limit and in this limit the first
term on the right-hand side of (3.24) is much
larger than the second for j/I ~3. Therefore, the
difference Q —Q' is fixed by' this term to be

C

tions to pinning potential all of the same order of
magnitude -U, (U, /p, ,b')s ' or equivalently

exp(-2vMd/b). Thus the pinning potential for
higher-order commensurate states will be very
small.

The case 2:L, wig L odd, is a special one.
Here the potential energy per atom is given by

Thus there is a strong restoring force keeping
primary harmonics to be in phase with the ex-
ternal potential. By contrast, the energy is in-
dependent of the value of Q for the incommensur-
ate state and for a general commensurate state
the restoring force is ™t" ~ for changes in Q,
with t determined in Appendix A. Thus the poten-
tial which pins the phase for the case j/I ~3 is
-U, (U, /p, ,b')~ and in general will be small.
This calculation has included only the first har-
monic of the potential and the first harmonic of
the atomic displacement on the A chain. It is
straightforward to see that higher harmonics of
the potential which are submultiples of M will
also contribute a pinning potential of the same
order. In general there will be several eontribu-

8, = —2p, (A,, —a)'+2p, t' sin'2P'

+ ' — 2' sin(2$) sin ~ sin(2$')
~

Using the variable

s =2t sin(2$'),

Eq. (3.26) becomes

h, = 2 p, , (X, —a)'+ 2 p, ,z'+

U - . mz
2' sin(2&) sin

(3.26)

(3.2V)
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0

and zo is the solution of

(3.29a)

The ground state of the system is given by ($0, zo),
where

this potential and, at least close to higher-order
commensurate transitions, the Peierls potential
which varies exponentially in the ratio of disloca-
tion width to the lattice parameter will be very
small.

(3.29b) B. Two-sublattice problem

Expanding 8, in terms of the deviation of Q and z
from their equilibrium positions we obtain

8 = —p, (X -a) + —p, z + ' 1-sinU, . m@0
a 2 a a 2 a 0

1 m Ug . mao+
2

P'a+ 2 2 sin

&&(z -z, )'+U. sini '
i (y y. )2. (3.30)

where, as we showed above, the pinning potential

V„' = const U, (U, /p, b' )" ' . (3.32)

If we pass to the continuum limit, this leads at
once to a Frank-Van der Merwe' problem with a
sine-Gordon equation of the form

(3.33)

The transition to higher-order commensurate
states is similar to the 1:1transition and the re-
sults can be taken over with suitable choice of
coupling constants, etc. This approach is con-
sistent with the exact mathematical proof given
by Aubry' that such higher-order transitions are
continuous. This approach mill lead to a phase
diagram in U, -5/a space similar to Ping's' in
outline but with all commensurate-incommensur-
ate transitions continuous.

Another difference between the discrete and
continuum cases is the periodic potential known
as the Peierls potentia1" which acts on disloca-
tions in a discrete lattice. We have neglected

From Eq. (3.30) we see that in the 2:I, case it is
Q —$0 and z —zo which are the normal coordinates,
with z —z, a strongly pinned coordinate and Q —Q,
a weakly pinned one.

So far we have only considered the commensurate
state. Since the pinning potential is weak for a
higher-order commensurate state, this suggests
we use a continuum model and consider states
where Q„=- Q'„but P„ is a slowly varying function of
n. The potential energy for 3f ~3 then becomes

y2 n=N12
g ya + a g (y y )2

n= S/2
n= E/2

+ g Vg cos(2M P„),
n= -N/2

'In the two sublattice problem both chains are al-
lowed to distort. With A,, and Xb we denote the final
average periods of sublattices A and B, respec-
tively. Since the natural period a&&, this implies
a & X, & A.b

& p. The potential energy created by a
chain mill depend on its average period. In prin-
ciple it will also depend on the harmonic deviations
from the average period. Let us, for instance,
examine the harmonic deviations of a chain belong-
ing to sublattice g. The period of these deviations
mill be A, Therefore the potential produced by
them on sublattice A, will have the same period
with A and the effect of the harmonic deviations
wiB be to renormalize the mass and the force
constant of the A sublattice. In our subsequent
calculations we shall ignore these effects of har-
monic deviations. The range where such an ap-
proximation is valid will be discussed later.

The potential energies of the chains belonging
to A„,and B sublattices, respectively, are given by

U. 2v
+ —' g 1 —cos — z„i

tt

Ã 8, = p, Q—(z'„-z„',—b)'1

Z, =(2/~) p, ( p, ,X,'/2U, )"'~(p, ),
Ut = 8v'P, (A., —b')', ,

~, =~.(1+1/Z, ),

(3.35a)

(3.35b)

(3.35c)

U~ g i (nor,
)

U, and Ub wiQ depend on the periods Xb and A.„
respectively. Their expression is given by (2.8a)
and (2.10), with a and 5 replaced by A., and X~ .
The equilibrium positions of the atoms can be ob-
tained in a self-consistent way by minimizing 8
avd Bb. The equations obtained from the mini-
mization are solved in the continuum limit as in
the case of the one-sublattice problem. In this
latter problem we have studied one chain in an
external potential with period larger than the per-
iod of the chain. In our present situation, how-
ever, the external potential acting on sublattice I3
has period A.,& 5. We can treat this case in a simi-
lar way and the results are
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7t'
~ m 1 +Qb

(3.35d)

with fz'„) the equilibrium positions of the atoms of
sublattiee B, and qb is defined in a manner similar
to Eq. (8.15). The expressions for sublattice A
are given in Sec. IIIA if we replace 5 by A,b. Thus

(3.36)

The periods A,, and A. are the solutions of the sys-
tem of Eqs. (3.35c) and (3.36).

Let us now examine the range of validity of our
original assumption to ignore the effects of the
harmonic deviations from the average periods.
For our assumption to be valid, the parameters
q, and qb must be considerably smaller than unity
so that the harmonic deviations be small. As was
demonstrated in the one sublattice problem, the
reouirement q„qb«1 is not a severe one and
therefore our solution of the two-sublattice prob-
lem covers all but a very small section of the in-
commensurate regime. A situation, however,
exists when our analysis is valid even close to the
transition. This occurs when the elastic constants
of the two sublattices differ substantially. In that
case we ean consider the sublattice with the larg-
est elastic constant as rigid and the two-sublattice
problem reduces to a one-sublattice problem. Also
for the case of high-order commensurate states,
the driving potentials are small, thus. the devi-
ations of atoms from their average positions will
be small. Consequently the high-order commen-
surate states can adequately be described by the
EPA.

IV. EXCITATION SPECTRUM

two independent sublattices each under the influence
of an external periodic potential created by the
other sublattice. We study in deta. il the phonon
spectrum of sublattice A. The potential energy of
the A. sublattice for motion polarized along the
direction of the chains is

+
2 P (Zn, l Zn-, t+1)

ttl

+ ' P S —sss s„,)
jtJa 2r

nl b

(4.1)

We consider an array of chains. all in phase with
each other and p, is the shear modulus for dis-
placements of the chains relative to each other.
The equation of motion is then given by

~a df2 ~a(Zn+l, t n l Zn-l, l)

rUa . 2m'
—S (s„, , —ss„,+s„, ) = — ' sis s„,)b Xb

(4.2)

Making the transformation

z„ t =nA2+(XQ/tt) f„ t + 2X2

Eq. (4.2) transforms to

ttta dt2" V'a(fn+1 ~ t 2fn, t +fn 1,t)-
m' Ua

(fn, t+1'fn, t fn, l -1) y2 Sl ( fn, l)
a

(4.3)

In the continuum limit Eq. (4.3) becomes

In the present section we study the phonon ex-
citation spectrum of the l,attices under consider-
ation. From Eqs. (3.22), (3.24), and (3.25) we
obtain that for 3f the energy of the system is
independent of the relative phase Q of the two sub-
lattices. Consequently, for incommensurate lat-
tices and U«U, so that the positions of the atoms
are effectively described by one harmonic only,
uniform motion of one sublattice relative to the
other along the direction of the chains does not
cost any energy. This implies that phonons with
polarization along the axis of the chain will differ
substantially from the phonons of usual crystals.
For polarization perpendicular to the chain we will
find the usual branches of optical and acoustical
phonons and we shall not consider them.

As we have shown in previous analysis forq&«&,
i=a, b, we can treat the crystal as consisting of

It is easy to generalize Eq. (4.4) to the three-
dimensional case, in which we have

Bf Bf Bf Bf ttUa~a Bt2 V'a Btt2 V'1
B

2 P B~22g2' »n( f) s
3 1 2 b

(4.5)

with the z axis parallel to the direction of the
chains.

We now consider small. oscillations around the
static solutian, that is,

where Q is the solution of Eq. (3.5). Equation (4.5)
then reduces to
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8 4 8 4 8 4 8
e ~t2 -Pa ~~2 -&x ~~2 -&2 8~2

3 1 2

, ' +(1 —2 sin'P) . (4.6)
2m U, 0.8

&I = exp [i(k, a, n~ + u, a, n, —(oi )]G(n, ), (4.'I)

where a~ and a2 are the periods along the x and y
directions, respectively. Substituting+ as given
'by!4. 7) into Eq. (4.6) we obtain

QQ 2w U, pA~
0.2

with aP, =&a' —(I/m, )(p.,k', a', +p, k,'s,') and ~,
=(iL, /m, )~'. Making the transformation

02
Uo

Uc

0,6 0.8 t. o

(4.10)

wifhII, 8, Z, Jacobian eta, theta, and zeta func-
tions with parameter P, . ra, is determined by

1+P.'cn'(~. /P. ) =P'. (I+~l/Q'), (4.10a)

and the requirement that Z(no) be purely imagin-
ary. Q'=(2w'U, /iJ. ,A. ', )~0 and cn(o., /P, ) is a Jaco-
bian elliptic function with parameter P, . The wave
vector k3 along the chain will be determined by
e+'~~~"=e ~&'0'. Sutherland' found that the pho-
non spectrum consists of two branches. ln the
lower branch, a0=K+iy and the energy is given by

~, = »'(y/P'. )' "' d"(y/P') =' 'Q
while in the upper branch &0=i@ and the energy is

2 2

2( /Pt )
Pa Q2

sn(y/P', ) and dn(y/P', ) are the Zacobian elliptic
functions with parameter P', . The lower branch
represents the collective modes of the lattice dis-
locations and has energies in the range 0&v~

s=( 2m'U, /p. ,X,
'

P', )' 'n, ,

Eq. (4.8) reduces to

4'IG 2 P, ,A.,'
d~ ' 2m'U,

-+ P 1+—' —2sin g G'=0. (4.9)

Equation (4.9) has been studied by Sutherland. '
This equation can be reduced to Lame's equation
and is exactly soluble and its eigenfunctions are
given by~4

FIG. 4. The energies, co& of the upper and ~& of the
lower edge of the excitation gap, in units of O„are
plotted as a function of U, /U,'.

((P,"/P', ) O'. The upper branch corresponds to
renormalized phonons and has energies +',
&(1/P', ) O'. The energy gap is 6 =[(1—P', )/P, ]Q.
The energy of the lower edge of the gap is w,
=[(1—P', ) '/P, ]Q and of the upper edge e', =(1/P, )Q.
In Fig. 4 we plot &o, and e, as a function of U, /V',
in units of Q, , the value of Q at U, =U,'[Q,

(2x2 pc /~ y2 )1/2 ]
We study the long-wavelength limit of the spec-

trum in detail. The bottom of the lower branch
corresponds to y=K(P', ). We consider small de-
viations around this value. For y =K(P', ) —5 we

obtain to first order in 5 the following relations:

iZ[K, +i(K', +6)]= +5 1+m EI,

C ix Q Kg

ff(g + ~ ) 0-s-i(m /2'~)z g' rz
0 2K,

'll'Z

&exp i5 —ln33
J a

(4.12)

where s, and e, are theta functions; K, =K(P,},
K', =K(P', ), E,=E(P, ), and E', =E(P', ). K and E are
complete elliptic integrals of first and second
kind, respectively. The eigenfunction Q mill then
be given by

G(z, K, +i(K, +6)}=- ' -
' exp i5 Ine, — — exp i'm 1+6,(wg/2K, ) —. |i m . . w E',

2K,K' K', (4.13)
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1.0

0.8—

further study.
The amplitude of oscillation of the nth atom is

given by the absolute value of the eigenfunction Q

at this position. Using the expansion in terms of
the nome q, [see Eq. (3.15)] for the theta func-
tions, ' we obtain, for long wavelengths

WO

~D

0.6—

0.4—

(4'I =1+4q.'+4q. cos ' c)
2m'A. ~

b

4gX.+4q' cos 'n + ~ ~ ~ .a
b

(4.16}

0.2—

0
0

I

0.2
I I

0.4 0.6
I

0,8 1.0

The wave vector of excitation is

y2 2 2g gl gt

(4.14a)

From Eq. (4.11a) we find that to first order in 5

FEGe 5 o v g /v p is plotted as a function of Ut2 /U,', for
the case A. b=b and for different values of the ratio a/b.
The solid line represents a/b = 0.8; the dashed line a/b
= 0.9.

Thus the amplitude of oscillations of atoms be-
longing to A chains exhibits periodic variation
with period Ab Similarly atoms of B chains will
oscillate with amplitudes that vary periodically
with period X, .

Ying, e in his study of a submonolayer film ad-
sorbed on a solid surface, has calculated the
phonon-dispersion relation via a second-order
perturbation expansion. His calculation was done
for a discrete lattice under the inQuence of a rigid
periodic external potential with period 5. After
correcting algebraic errors, we can derive the
sound velocity, which in our notation is given by

v, b, c ' s 11, ' 1+coo'(vb, /b)

I
1- 1 ——

v, a b 16 U', sin'(vX, /b)

(4.1V)

where A., in the discrete case, is given, to lowest
approximation in U, by

I

(o, =P, 5&v, (2w'U, /p, Z,'P', }"'. (4.14b)

Consequently, the sound velocity for propagation
along the chains of sublattice A is given by

a ' n'U, ' sin(2'/b)
b 32U' sin4 (na/b) ''

(4.18)

d~, A,,P,'&u,

dk, 1+w/2K, Kq E', /K', '- (4.15)

We note that for P, approaching zero lima, Ov, =vo
(=a&so) is the sound velocity of an independent
chain. The sound velocity along the A chains as a
function of U', /U', under the assumption that 8
lattice is rigid (A,, =b) is shown in Fig. 5. Note v,
depends only weakly on b/a through the factor X, .
Calculations similar to those outlined above yield
a sound velocity

~~ pl ~o
1+v/2K, K,' E', /Kt '-

with &/, =(p, , /m, )"', for sublattice &. From our
analysis it is obvious that for q„qb«1 we have
two different sound velocities for propagation
parallel to the direction of the chains. This an-
alysis assumes infinite chains and ignores the
effects of long-range Coulomb interaction and for
these reasons is not applicable in the true long-
range wavelength limit. This problem requires

I.00

0 98—

0.94—

0.90

0.2 0.4
Ua

U~a

I

0.6
I

Os8 'l.0

FIG. 6. A, , /b as a function of U, /U,'. The solid line
is the result of perturbation expansion for a discrete
lattice )Eq. (4.18)]; the dashed line represents the re-
sult of the continuum Inodel [Eq. (3.16b)].

where U', = —',w'p. , (a —b)'. Results for calculations
of X, /b and v, /v, for a/b =0.9 are shown in Figs.
6 and V. For comparison we also include in these
figures the results of the continuum model. We
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0.8—

(4.21)

6,, for the simple cases of 2:1 and 3:1 commensur-
ability is calculated in Appendix B, the results
being

and

g2:~=(p '/m )~/2 v2IT /p (4.22a)
'

ai o

0.4

02—

\
\
\
l
l
l
l
I

I
I
I

I

I

0.2 0.4
I

0.6
I

0.8 1.0

FIG. 7. e~/yo as a function of U~/U~. The solid line
is the result of perturbation expansion for a discrete
lattice [Eq. (4.17)];the dashed line is the result of the
continuum model [Eq. (4.15)], for the case A, &=5.

note that the exact result in the continuum limit is
in good agreement with the second-order pertur-
bation theory in the discrete model except for
U, =U', . Near the critical potential the renormali-
zation in v, is large and thus the results of the
perturbation expansion are not reliable.

In our study of the excitation spectrum using the
continuum approximation, we found that the spec-
trum has no gap at &, =0 when the final periods X,

. and X~ are incommensurate. In the long-wavelength
limit this leads to two different phonon modes on
the A and B lattices, respectively. However, as
discussed, our analysis neglects long-range Cou-
lomb forces and also the Peierls potential" due
to the discreteness of the lattice. Both of these
approximations require further study in this limit.

We turn now ko the case where X, and X~ are com-
mensurate. For 1:1registry the phonon spectrum
has a gap b, =(u, (2v'tT, /p, ,X~)'/' at k, =0. As we
discuss in Sec. DI, besides the 1:1commensur-
ability, higher-order commensurate states, e.g. ,
M:L exist. In that case the potential energy of the
system is given by Eq. (3.31), and the equilibrium
condition is

(4.19)

Then considering small oscillations around the
equilibrium position, we get that the phonon ex-
citation spectrum of the A sublattice has a gap
equal to

~3:1 (~ /m )1/2 (v2 U /~ I 2 )3/2 (4.22b)

With regard to the B sublattice, in the general
case,

b, ~(p. , /m, )"' exp(-mdiv/X, ) . (4.23)

Since MX, =LA~, 4, is of the same order of mag-
nitude with 4~. In the actual case of the two in-
terpenetrating sublattices there is only one acou-
stic mode and an optical mode with an energy
gap which decays exponentially with the commen-
surability order. We note that Lee, Rice, and
Anderson" in their study of the electron gas with
the Fermi vector commensurate to the lattice,
proved that the mode involving rigid motion of the
CDW against an external periodic potential has an
excitation gap A ~V,„,(U,„,/t)s/', where t is the
bandwidth and M the commensurability order, a
result similar to ours.

V. STRUCTURE FACTORS

i' (x -x- ) I -gK u~ {o) +jTc~u ~ (t)~

The intensities of x-ray and neutron scattering
will be determined by the static and dynamic struc-
ture factor. In this section we study the structure
factor for each sublattice treating the effect of the
other sublattice as a rigid external potential. For
this purpose we need to know the equilibrium posi-
tions of the atoms, the amplitude of oscillations of
the atoms, and the dispersion relation. All these
quantities have been calculated previously in the
continuum approximation. In our subsequent cal-
culations of the structure factors we assume that
the formulas which give the equilibrium positions
of the atoms as well as their amplitude of oscil-
lations are those of the continuum model, with the
restriction that n, the atom index, be discrete.
We also consider that the dispersion relation is
that of the continuum model, with a cutoff in the
phonon spectrum at the Debye frequency.

The scattering cross section is proportional to
the structure factor, the latter being the Fourier
transform of S(Tc, t)

b, = (V„' /m, X,' )"' .
Using Eqs. (2.9) and (3.32) we obtain

(4.20)
( ) denotes thermal average, g =k,. -k,. is the mo-
mentum transfer, fxy j the equilibrium positions
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of the atoms, and fu &(f)] the deviations from
equilibrium at time t. We wish to study the effect
that phonons with polarization along the direction
of the chains will have on the structure factor.
Let (u ) (f )] be the dispiacements along the chain
axis. In that case u, (t} can be expanded as

"'")=I;(2 . ()')~)
x [@()e-4 ((dl )t(s + @ + ( f) 8 k()(Tic)tsar]

(5.2)

with 4g(1) =A exp[i(k, a, 1~+k, a, l, )]G),, (13), where
A is the normalization constant. The parameters
a~ and a, have been defined in Sec. IV [Eq. (4.V)].

Combining Eqs. (5.1) and (5.2) leads to

8(& f) g e+ j)( {x)-xj')e(K/2)((() (0);w&(t))

1)
)( (e

IKEY(M$

(()) I( j (t)3 ) (5.8)

For small oscillations around the equilibrium
position we can consider the motion as harmonic,
so that

(expI-ix, [u;(0) -u {(t)]I&

=expI-(I{', /2)([u (0) -u-;(f)]')I. (5.4)

The quantities ([u-, (0) -u) (f)]') and [u) (0), u-;(f)]
can be calculated straightforwardly, and the Qnal
form of S(Tc, f} is given by

I 2

g(», g) = »'"' i»i
i

i »»p — ' [(((T)r)»(() +rp-"„(j) r)-„()H(2(» i ) + &))2m, N

()-»(i) i)"(i)»'"i "(»-„)), (5.5)

where (Ng) is the average number of phonons in
state k and N the number of crystal sites.

[(j jI (1){j'g(1)+ gg ( j ) (j) j(( j )]
k

(2(nI) +1) . (5.6)

The spatial modulated parts of Eq. (5.6) modify
the satellite intensities. In the long-wavelength
limit we have

y",(I)y;(I) = „„,.I(:(I.)i'

2n'Xe=) 1»Sq»o» ' l,)X~

A. Debye-Wailer factor

The contribution W~, to the Debye-%Mer factor
of the main Bragg peaks of the sublattice, from
phonons polarized along the direction of the chains
is given by the position-independent part of the ex-
pression

g 1 ], 1 2ng+1

2'~ 4~x.= Q"~ 1+8q cos ' l 3 + 16/ cos 13
b

where the Debye-%'aQer factor
I 2

2W, = ' g (2(ng) +1) . (5.8)

In the long-wavelength limit (()( k) can be written as

(()'(k) =e,'k', + v,'k', +v,'0', , (5 9)

where v,. is the sound velocity in the ith direction.
Then TV~ can be calculated straightforwardly. For
uncorrelated chains v, = v, =0, leading to W,
This implies that uncorrelated chains will have
short-range order at finite temperatures. In this
particular case our approach needs modification,
and we shall not consider it here.

B. Elastic scattering

The structure factor corresponding to elastic
scattering is

+ 16$ cos $3 ~ (5.7)

The amplitude of oscillations is independent of %

in the long-wavelength limit, and we shall assume
that this continues to hold for all k although some k
dependence may be present near the gap. Then

&2)(»gj 8 (k f ) g esK' x$
1

2m'~
&exp -8qW, cos

4m'.q'W, cos
A,~

(5.10)
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is approximately given by

~0 2Kb . 2gX, 1 2 . 4nA,qsjn ~ j' + —q2sjn1 1
b b

with $xT] the positions of the average periodic lattice, and e~ the unit vector along the z direction.
Using Eq. (5.11) and the generating function for Bessel functions we obtain

(5.11)

e'"'"T exp -8qW, 2nx. , 4~x,cos — ' $, —16/'W, cos ' l33 1 . g 3

N Q Z„(z, ' Z„z, ' J„(iBqW, )J'„()16q'W'))'"""'2Kb q A, b q

G, Cge2CC3C4

X 5 g3+ ~~ ~3 + ~2 ~4 -Q3 5 g~-G, 5 g2 —62 . 5.12
2g 4p

The first-order satellites wi11 appear at ~3=@3
+2m/X, . We consider the following cases:

(i) G, =O. lnthat caser, =+ 2m/X~. Theinten-
sity of the satellites relative to an ordinary Bragg
reflection is

I ~~' '= 4q'(1+2W~)'. (5.13)

We note that both satellites have the same inten-
sity. This is in agreement with the symmetry
requirement that the intensities remain invariant
under the transformation a3--x3.

(ii) G,&0. Here x, =IG, I +2m/', andI„' is
given by

I P q'[A., IG, I/ k(2+4W, )]'. (5.14)

From Eqs. (5.14) and (5.15) we see that satellite

From Eq. (5.14) we get that the intensity of the
two satellites in either sites of Q3 is not the same.
This asymmetry comes from two sources: first,
the static periodic modulation of the position of
the atoms, and second from. the fact that atoms
oscillate with different amplitudes, the space de-
pendence of the amplitudes being periodic with

period that of the external potential. The asym-
metry is stronger for large S",, that is, when v~
is small. Small values of v~ mean that we are
close to the temperature for which the chains be-
come uncor related.

(iii) G,&0. In that case x3=-(IG, I +2m/&, ) and

I,P =q'[IG, I (X, /r) +(2+4W, )]'. (5.15)

spots at+(IG, I+Sr/A') have the same intensity as
required by symmetry. The same is true for the
satellites at+(IG, I

—2w/X, ).
A general remark for the satellite intensity at

+2m/A. , is that the latter is proportional to q'. A

similar analysis for satellites at +4m/X' shows
their intensity to be proportional to q4.

C. Inelastic scattering

We wiQ study the inelastic scattering structure
factor near the Bragg reflections which correspond
to phonon emission, the analysis for the case of
phonon absorption being similar. Evaluation of
the inelastic structure factor for every k is a
complicated process and will not be carried out in
the present work. Instead we chose to examine
the contribution to the structure factor from the
region of long wavelengths as well as from the gap
edges.

2. Long-)/t'a)'elength limit

In this limit the contribution to the phonon amp-
litude G of the term exp[i6dln8, (m/2E, )/dz] [see
Eg. (4.13)] is unimportant. Also to calculate the
structure factor up to second order in q, we need
only the first harmonic of Q. Thus

G = (1+4q'+4q cos[(2m', /X„) f, ])e'"""',
and the contribution to the structure factor is
given by

Qf y(X2

~0i(K- k) 'X~ +i N&(2g), g/ gb)l3g- ja2(2Vrgg/ gb)$3I

x [1+4q2+'2q(e((2'Q" 5 3')e ((""a"y"3)] e "(k"((yg~)+1) (5.10)

Since we are interested for the main Bragg reflections only, we have to consider the following four com-
binations as regards n, and e2: n~ = +2=0; cy, =o.2=+1; e~ =0, +2=+1; @2=0, o.'~=*1. Then we obtain,
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that the contribution to the structure factor from long wavelengths for both one-phonon emission and ab-
sorption is given by

h««3 1+2q' [4 —(««, X~ /««)'+ 16W« —16W~]
1+16q2

X g [5(««-k —Q) e «"'""((ng) +1)+5(««+k-G) e' «""(ng)], (5.17)

where V,* is the volume of the reciprocal unit cell.
This expression applies only to phonons with long
wavelengths along the chain axis. For polarization
along the chains we have a&( k~ =0, kli =(2i«/X, ) n) =0.
Similarly for the phonon spectrum of the g lattice
+(ki =0, k« =(2i«/A. ~) n) =0. We note that the phonon

frequency for the A sublattice vanishes at differ-
ent points of the reciprocal lattice than the fre-
quency of the B sublattice.

2. Gap edges

The wave vector at the gap is 0, = ««/A, , —««/A,

For such a wave vector the wave function, to first
approximation in q, is

x(e««'3 xz i ye-«ks xa lg )
ei(iig ay ly+k2 a2«2)

with the plus (minus) sign corresponding to the
lower (upper) edge of the gap. The contribution
from k, =««/A. , —««/X~ can be calculated in a way
similar to that used in the long-wavelength limit.
The result is the following:

G -2W g 3' 4m, N (1+2q)

x —— 5(««, +k, —G~)
1

-„-, ~,(k)

2~2 Uc 1/2

=8+ Uc- (5.19)

VI. SUMMARY AND CONCLUSIONS

In this work we studied the static and dynamic
behavior of a crystal consisting of two ionic, in-

where S~ and g correspond to lower edge and S+~

and g+ to upper edge. Formulas (5.19) give a good
description of the behavior of the structure factor
for k~ =0, provided that U, /U', 60.8 since in this
region q, %0.16, and therefore higher-order cor-
rections in q„which are not included in (5.19),
are unimportant. The variation of g, with U, /U',
for k~ =0 and under the assumption that & is rigid
(X~ =5 =c notsatn) is shown in Fig. 8. From this
figure we see that g, remains practicaQy unchanged
while g increases as U, approaches O', . For

T«~ 0 0 the variation in g«will become smaller as
%~ increases. Our results show that the structure
factor at the gap edges are appreciable magnitude
and thus the gap in the phonon spectrum should be
observable in neutron-scattering experiments.

&& [5(Tc, -k, —G, )e «"~' "((nT)+1)

+5(~, +7, -C, ) e«" &I'&'(ng)],

(5.18)

where +, corresponds to upper edge and + to the
lower edge of the gap. For k~ =0 we obtain that
the structure factor at the gap edges is propor-
tional to

1+2q. 1- '. U. ~- V'

I

0.2
0
0

I I I

0.4 0.6 0.8
Up/ Up

C

FIG. 8. g' andg, defined in the text fzq. (5.22)],
as a function of U,/U, .

1,0
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terpenetrating sublattices. Each sublattice is
under the inQuence of an external potential created
by the other sublattice. Evaluation of the potential
showed that it decays exponentially with the dis-
tance between nearest-neighbor chains belonging
to different sublattices. Also, the sublattice with
the biggest period produces the biggest potential.

We treated the problem within the EPA, i.e., we
allowed each chain to distort independently due to
the presence of an external periodic potential from
the other chains. The study of a single chain in an
external periodic potential was considered for dis-
crete atoms and also by passing to the elastic-
continuum limit. The latter problem is identical
to that solved by Frank and Van der Merwe' in
their study of epitaxial layers. We further anal-
yzed their solution by expanding it in terms of
harmonics. The behavior of the expansion as a
function of the potential is such, that in the whole
region U& U,„, we need only a few harmonics to
describe the atomic positions z„, except for a very.
narrow region close to U„;, where a large number
of harmonics is needed. A discrete chain of atoms
can undergo transition to states of higher-order
commensurability and we show that the driving
potential decays exponentially with the order of
commensurability and that the transition
to such states can be approximately described by
passing to an appropriate continuum limit which
can then be solved exactly.

In the general case where both sublattices are
allowed to distort, the rapid convergence of the
harmonic expansion enabled us to treat the problem
as that of two independent sublattices, each under
the inQuence of an external potential. Then, solv-
ing self-consistently we obtained expressions for
the final average periods of the sublattices.

We next examined the excitation spectrum of
phonons polarized along the direction of the chains.
If we consider each chain within the EPA and pass
to the continuum limit then the problem reduces
to one solved analytically by Sutherland. ' The
solution reveals a linear dispersion at long wave-
lengths and a gap at a finite wave vector. We cal-
culated the sound velocity along the direction of
the chains and found that the sound velocity for
propagation along the A chains is different to that
along the B chains. The exact result in the con-
tinuum limit is in good agreement with second-
order perturbation theory in the discrete model
except for U=U -, . In a commensurate state there
is only one acoustical mode and an optical mode
with energy gap which decays exponentially with
the order of commensurability.

Finally we analyzed the structure factor and de-
rived the weight factors of these acoustical pho-
nons in the dynamic structure factor. We con-

eluded that these phonons should be observable in
inelastic-neutron-scattering experiments.

The theoretical results derived in this paper
are expected to be applicable to materials such as
TTF halides and Hg, «AsF, . A detailed account
of these latter applications will be the subject of a
separate publication.

APPENDIX A

We are interested to calculate the quantity 8,
defined by Eq. (3.22). Making use of the mathe-
matical identities"

2m't . 2@X,cos sin ' n+2P'

='(' )"j'(' )
2gA, ~

&& cos 2s ' n+ 2P', (A1)
5

2m't . 2'~sin sin n + 2$

=2+ &„+~ ~
~sin (2s+1) ' n+2Q'(2nt I . '

2@A.,
a=0 b

(A2)

we obtain

xcos [2M/'+2(Q —Q')]+0~ Z„„N+& b ~
~

(A3)

where z„ is given by Eq. (3.21). Then the potential
energy per atom is given by

8, = —p„(X,—a) p, ,+t sin 2' + 2'
1 2 2 . 2 mA. U~

Jg cos 2

+ 2' J„, cos[2MQ'+2(Q —p')].U~ 2mt

(A4)

The ground state is characterized by

P —P'=0 (mode),

y =w/2M,

and by t, which in the weak-coupling limit can be
obtained, to M —1 order in U, /gb~, from the equa-
tion
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U, d 2mt

4p, sin'(wX, /b) dt ' 5

To first order in U, /p, 5', f is given by

mUg

4p, b sin'(mX. /5)
'

(Ae)

(AV)

2 4 5 6

APPENDIX B

Consider a chain under the influence of an ex-
ternal periodic potential. Suppose the period a
of the undistorted chain, and the period 5 of the
external potential satisfy the relation jfa =I,b,
with M and I. relative prime integers. We cal-
culate the gap in the excitation spectrum of the
chain for the special cases: (a) M =2, 1,=1 and
(b) waif =3, z, =l.

A. 2:1 Commensurate state

The configuration of this state is shown in Fig.
9. We define

1Z2-Z, = -, b -Z .
Then

FIG. 10. Configuration of the 3:1commensurate state.

linearized equations of motion are

4~'U.
2mgB+ 2 sin 8 =0

q (aea)

w U~ . mzo—m, t'+ 2p, ,+ 2 sin — K=U,

withe =)~ —g, and R= 2($~+$, ). The solution of
Eq. (a6a) gives that the gap in the lowest branch
of the phonon spectrum, to first order in U„ is
given by

a, = (p. /m, )"'v' V, /p. b' .
1z, -z, —25+z,

and the potential energy of the system is

(a2) We can also obtain the same result starting from
Eq. (3.30).

B. 3:1Commensurate state
g = p, U ] (as)

The value of z at the equilibrium position is given
by the equation

The configuration of this state is shown in Fig.
10. We define

(as)
z, =(mV, /2p, ,b) cos(vz, /y) . (a4)

For small displacements from the equilibrium
position, the potential energy is

xfh. =
2 l&V. (z+4-(.)'

1
Z3 ~Z2 2$ Z

Thus~

z, -z, = 25+2z .1 (a10)

.V. 1 s ~
" ".'-'

2 2

2n, +,

with $„$,the dispiacements of the first and sec-
ond atom of the supercell, respectively. Then the

2 4~='WV'=~ = 'Wv'='V

FIG. 9. Configuration of the 2:1 commensurate state.

The value of z at the equilibrium position, ob-
tained by minimization of the potential energy,
is the solution of

rU~ . 2m 2ma (a11)

For small oscillations around the equilibrium
position the equations of motion are

(a12)
~0 2m' Uom, g, —$, + 2+,', $, —$, =0,

p, gQ

~ 2m' U, 2m 2mom, g, —$, —$, + 2+,' cos — ' $, =0,
p, g5

(als)

(a14)

2m' U 2m 27t'z
m, g, + 2+,' cos — 0

$~ —$2 —$, =0,
p Q2 3 Q

I 2 3
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with 4, 4, $, the displacements from the equili-
brium positions for the first, second, and third
atom of the supercell, respectively. From the
equation of motion me obtain that the gap in the

lowest branch of the spectrum, to first order in
U„ is given by

& =(p. /m, p'(~'v. /p. p)'~'.
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