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Electronic states of silicon vacancy. I. Covalent statess'
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(Received 28 February 1977)

Self-consistent generalized valence bond (GVB) and configuration-interaction calculations have been

performed for a cluster model of the neutral vacancy in silicon. Three low-lying states ('E, 'T„sA2) are
found to possess one electron in dangling-bond orbitals on each of the four silicon atoms around the defect.
Of these three covalent states, the 'E is found to be the ground state with the excitation energies to the 'T,
and A2 states being 0.17 and 0.60 eV, respectively. The shapes of the GVB orbitals for all three states are
found to be quite similar.

I. INTRODUCTION

The electronic structure of vacancies in silicon
has been the subject of numerous experimental'
and theoretical' investigations. From a conceptual
viewpoint, the most useful model of an isolated
vacancy is the Coulson-Kearsley' defect molecule.
This model has been used as the basis for a num-
ber of approximate calculations of the electronic
structure of the vacancy, as mell as used to ex-
plain the EPR spectra of the positive and negative
charge states of the vacancy. However, the model
is inherently a molecular orbital (MO) model and

as such contains inadequacies.
First, the calculations to date using the MO ap-

proach lack a predictive capability. That is, simi-
lar calculations give different orderings for the
electronic states, thus not conclusively predicting
whether the ground state of the vacancy is a singlet
or triplet. 4 Second, the resulting wave functions
provide little information as to the nature of the
states (e.g. , what the bonds look like). Further-
more, the effects of correlation are hard to in-
clude and interpret. These problems are inherent
in an MO description of virtually any system, but
can be eliminated by using a better description.

Our approach to eliminating these problems in
the MO description is with the generalized valence-
bond' (GVB) description. In the GVB method the
orbitals are solved self-consistently, while
simultaneously including the dominant electron
correlation effects. Inclusion of such correlation
effects self-consistently is most important for
cases, such as the silicon vacancy, for which
there are very weak or broken bonds. The GVB
wave function results in a description with local-.
ized dangling-bond orbitals at the vacancy, leading
to a simple valence-bond model that correctly pre-
dicts the nature and ordering of the states of the
vacancy.

First (Sec. II), we will present a qualitative de-
scription of the states expected for the neutral

vacancy based on the simple valence-bond picture.
Second (Sec. III), the computational details will be
presented. Then we present the results (Sec. IV)
followed by a discussion (Sec. V) and our con-
clusions (Sec. VI).

~(4.%san. 4s X)

(8 is the antisymmetrizer or determinant opera-
tor). This leads to two singlet states, three trip-
let states, and a quintet state. ' A typical singlet
state mill be represented' as

a b

C

indicating a bond between orbitals a and b (in the
plane of the paper) and a bond between orbitals c
and d (c above the plane, d below). A typical
triplet state has the form

a b

C

'( S'

where the wavy line indicates a triplet-coupled
pair of orbitals. The quintet state can be repre-
sented

II. QUALITAT1VE DESCRIPTION OF THE STA fES

A. Covalent states

In the valence-bond (VB) description of the va-
cancy there is a singly occupied "dangling-bond
orbital" on each of the four neighboring Si atoms,
pointed at the vacancy site. In the zero-order de-
scription of the vacancy, these four localized
orbitals, g„P„P„and Q„are combined with
an appropriate spin function X and antisymme-
trized,
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indicating high-spin coupling of all foux orbita3. S.
As d1scussed lRtex', for tetx'RhedrRl syDlmetx y

the two singlet states are degenerate, leading to
a 'E state; the three triplet states are degenerate,
leading to a 'T, state, while the quintet is R 5A„,

state. These six states are collectively referred
to as the covalent states, since each has one elec-
tron on each of the four silicon atoms surrounding
the vacRncy.

The overlaps of the vacancy orbitals are small
(S=0.08)' and hence the 'E, 'T„and 'A, states
are expected to be close in energy. However, the
overlap is large enough for the bonding effects to
dominRte the electx'on-electx'on exchange 1nterRc-
tions leading to a 'J. ground state, the 'T, state at
0.18 eV (relative to the 'E) and tbe 'A. , state at 0.60
eV. (Recall that the 'E state has two weak bonds,
the 'T, one, and the 'A, none. )

B. Ionic states

HetRlQlng the simple plctux'6 1n which there Rx'6

only four localized orbitals for the ejectrons, addi-
tional excited states must involve two electrons in
at least one dangling-bond orbital, e.g. ,

co ~ qd

There are 12 such singlet states, leading (in T~
symmetry) to 'A„'E, 'T, . 'T„and 'T, states.
Similarly, we obtain triplet states of the form

states with little effect upon the energy separations
among these covalent states. On the other hand,
for the ionic states the polarization effects should
lead to large corrections for some states, leading
to large effects upon the excitation energies, as
will be discussed in R subsequent paper.

C. Molecular-orbital description

The more common model for the vacancy in
silicon is the Coulson-Kearsley' MQ model.
Therein one constructs a hybrid orbital (pointing
at the vacancy site) on each of the four Si atoms
and combines these into four molecular orbitals
(a„ f,„,f„„f„)delocalized over the defect. The
Mo configuration for the singlet state, then is
8(&&f3npnp), where t, is some linear combination
of ity ty If y Thl s Mo conf igur ation is a mixture
of the states '.E, 'A„'T, . Since the MO singlet
state ts forced to contain components ('A, and 'T, )
corresponding to high-lying ionic states, whereas
the MO triplet state is properly described as a
low-lying covalent state ('T,), the MO picture can
be expected to predict a triplet ground state for the
VRc Rncy.

III. CALCULATIONAL DETAILS

Silicon occurs in the diamond structure, which
is a face-centered-cubic lattice with two atoms per
unit cell. The calculations in this work involve
clusters of atoms that extend only to the second-
nearest-neighbor position. Starting with the va-
cancy site at the origin, the nearest-neighbor
positions are —,'a(1, 1, 1), —,'a(l, —1, -1),
—,'a(-1, 1, -1), and —,'a(-1, -1,1) while the 12 second-
nearest-neighbor positions are —,'a(+ 1, + 1, 0),

H5

c(~O~ w d

leading to 'A„'E, 'T„'T„and 'T, states. There
are no corresponding quintet states.

Similar states with two doubly occupied orbitals
would be approximately twice as high in energy as
(4) and (5). Excited states involving 4s, 4p, or Sd
character are also expected to be high lying.
Neither of these types of states will be considered.

In this paper we will be concerned only wi)h the
covalent states of the vacancy. As noted, these
states are all essentially symmetric, having one
electron per center. Thus, any polarization ef-
fects from the interaction of the vacancy electrons
with the remainder of the crystal should provide R

slight uniform shift in the energy of the covalent

12
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FIG. &. Vacancy cluster for silicon as viewed from
the [001] direction. Si 0 is the vacancy site.
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TABLE I. Coordinates (in a.u-.) for the tetrahedral
cluster for silicon. Si 0 is the vacancy site. The cen-
ters are numbered with reference to Fig. 1. As de-
scribed in the text, Si 1, Si 2, Si 3, and Si 4 have all
been displaced by 0.084 A away from Si 0.

fective potential was used to replace the (ls)'
(2s)a (2p)' core of each Si."

The GVB wave function' for a bonding pair of
electrons is represented as

Si 0
S,i1
Si 2
Si 3
Si 4
H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H 11
H 12

(0.0, 0.0, 0.0)
(-2.65775, -2.65775, 2.65775)
(2.65775, 2.65775, 2.65775)
(2.65775, -2.65(75, -2.65775)
(-2.65775, 2.65775, -2.65775)
(4.23229, 4.23229, 0.96614)
(4.23229, -4.23229, 0.96614)
(—4.23229, 4.23229, —0.96614)
(-4.23229, -4.23229, 0.96614)
(4.23229, 0.96614, 4.23229)
(-4.23229, 0.96614, -4.23229)
(—4.23229. —0.96614, 4.23229)
(4.23229, -0.96614, -4.23229)
(0.96614, 4.23229, 4.23229)
(—0.96614, —4.23229, 4.23229)
(0.96614, -4.23229, -4.23229)
(-0.96114, 4.23229, -4.23229)

A. Basis sets

Two types of calculations were performed, one
type was to obtain geometries and qualitative in-
formation about states, while the second type was
to obtain quantitative descriptions of the various
states. For the former a minimum basis set
(MBS) was used while for the latter a "valence"
doubl-zeet basis was employed. In all cases the
bases were of contracted Cartesian-Gaussian
functions as given in Table II. The ab initio ef-

—,'a(+ 1, 0, +1), and —,'a(0, + 1, a 1). Here a is the
cubic lattice constant, a=5.43 A for silicon. In
the calculations reported here, the second-near-
est-neighbor atoms were replaced with hydrogen
atoms placed along the appropriate bond direc-
tions, but using an SiH bond length of 1.479 A.
This structure, shown in Fig. 1, retains tetra-
hedral symmetry.

With the removal of the central silicon atom to
form the vacancy, some displacement is expected
in the atoms ajacent to the vacancy site. For a
silicon atom on the (111) surface, calculations
using a Si-(SiH, )a complex" led to a relaxation of
the apical Si of 0.08 A toward the bulk. Forcing
the geometry of the vacancy to be tetrahedral, we
expect the same relaxation of 0.08 A away from the
vacancy site for each of the four Si atoms, leading
to the relaxed geometry of Table I. It is likely
that the 'E and 'T, states undergo other distor-
tions of lower symmetry (Jahn-Teller distortions);
however, such distortions are not treated in this
paper.

TABLE II. The basis functions for Si and H (each func-
tion is expanded in terms of ls or 2p Cartesian-Gaussian
functions with exponents and coefficients are given). All
functions are used in the double-zeta basis. The mini-
mum basis set is obtained by deleting the 2i and 2p func-
tions of the Si. Only a minimum basis for H was used
in either case.

Function Exponent Coefficient

Silicon

Hydrogen 1s

4.051
1.484
0.2704
0.09932
0.2704
0.09932
4.185
1.483
0.335
0.09699
0.335
0.09699
5.663728
0.857387
0.190504

0.0436619
-0.2748724

0.4527114
0.4247582

-0.2004077
0.4247582

-0.0047173
-0.0365421

0.3147023
0.1447246

-0.0307458
0.1447246
0.0871988
0.5046466
0.8087388

where P, and P, are solved for self-consistently
(they are allowed to be nonorthogonal). The form
for more than two electrons is

&(4sx4u4aa Isa ' ' ' X)

where there is one orbital for each electron and
the spin function X is a general-spin eigenfunction.
It is often computationally convenient to use a
more restricted form for the wave function as
follows: the spin function is taken as the product
of singlet spin functions and the orbitals of dif-
ferent singlet pairs are required to be orthogonal. 'a

These constraints are referred to as the perfect-
pairing and strong orthogonality constraints, re-
spectively, and the resulting self-consistent wave
function is referred to as the GVB perfect-pairing
(GVB-PP) wave function.

In solving for the GVB-PP wave function, it is
advantageous to transform each QVB pair,

Aiba+ 4'ale

to the natural orbital (NO) representation,

A%a+ 4a4i = &g4r4g ~u4u4.
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and &f „are referred to as the first and second
natural orbitals, respectively (C, &C„&0). After
solving for the self-consistent GVB natural orbitals
(9), we transform back to the usual GVB form (8),
in order to interpret and display the orbitals. Nor-
mally, the P, orbital has a form similar to a
localized Hartree-Fock (HF) bonding molecular
orbital while the P„orbital has a form similar to
a localized HP antibonding orbital. In terms of the
NO's, the GVB wave function can be thought of as
a genera1ization of the HF wave fonction where
each doubly occupied HF orbital is correlated (and
thus allowed to localize). On the other hand, using
the GVB form of the orbitals (6) or (8}, the GVB
wave function can be conceptualized as a general-
ization of the valence-bond (VB) wave function in
which each orbital is solved for self-consistently
and allowed to delocalize.

In our calculations, we have allowed only the
va1ence orbitals associated with the defect to be
correlated, that is, we did not correlate the doubly
occupied orbitals corresponding to the SiH bonds.
Initially a minimum basis set calculation for the
'A, state was performed. In this calculation the
four dangling-bond orbitals are quite distinct from
the SiH bonds. Subsequent double-zeta calculations
were first performed using the SiH bond orbitals
from the above calculation. Later these orbitals
were allowed full variational freedom in solving
for certain states.

After obtaining the optimum orbitals from the
QVB-PP calculations, we carried out several
types of configuration-interaction (CI) calculations
designed to remove any effects arising from the
perfect-pairing restriction and to include several
small electron-correlation effects not included in
the GVB-PP wave function. In describing the CI
calculations it is convenient to'consider three sets
of orbita, ls:

(a) The bulk (or band) orbitats. In our complex
these are the orbitals describing the Si-H bonds as
obtained from the GVB-PP calculation.

(b) The valence oxbitals of the vacancy. These
are the four correlated orbitals obtained from the
QVB-PP calculations; they can be thought as
dangling-bond orbitals on each of the four Si atoms
adjacent to the vacancy.

(c) The virtuaL oxbitals of the vacancy. We con-
structed eight orbitals orthogonal to all the oc-
cupied orbitals of the QVB-PP wave function,
which will be referred to as the virtual orbitals.
These orbitals were obtained by selecting two
orbitals on each of the four silicon atoms (the
more expanded 2s function of Table II and the
more expanded 2p orbital oriented along the axis
to the vacancy site} and orthogonalizing to each of
the occupied orbitals of sets a and b. These eight

virtual functions are suitable for allowing the
hybridization and spatial extent of the valence
orbitals of set b to change and are necessary for
describing the orbitals of the ionic excited states.

Three types of CI calculations were considered,
all of which kept the orbitals of set a fixed. That
is, the bulk or band states were not allowed to re-
adjust. For each state we constructed the domi-
nant configuration by allowing various appropriate
occupations of the orbitals of set b and then in-
cluded the following types of excitations.

(i) GVB-restricted CI (RCI}: Double excitations
are allowed within each of the two sets of natural
orbitals of the QVB-PP wave function. This allows
relaxation of the perfect-pairing form of the spin
function. (The orbitals of set c are not used. )

(ii) GVB-CI: All possible excitations among the
orbitals of set b are allowed. This serves to relax
both the perfect-pairing and strong orthogonality
restrictions of the GVB-PP wave function. (The
orbitals of set c are not used; QVB-CI includes
all configurations of GVB-RCI. )

(iii) SD-CI (singles and doubles CI): Starting
with each configuration of the GVB-RCI, all single
and double excitations among the orbital sets b and
c are allowed. In addition, all configurations of the
QVB-CI are included. This allows additional cor-
relation effects not included in the previous CI's.

The integrals were done using the Caltech ver-
sion of POX.YATOM incorporating effective poten-
tials. " The SCF calculations were carried out
using GVBTWO (Bobrowicz, ""Wadt and Goddard),
the integral transformations using the Bobrowicz-
Huestis-Qoddard transformation program"' "and
the CI calculations using CIONE (Bobrowicz, "
Winter, Ladner, ' Walch, Harding, Olafson, God-
dard). The properties were calculated using the
Ermler version of the NYU properties program
(Moskowitz).

IV. RESULTS

We found a 'E ground state with the 'T, state
slightly higher (0.18 eV) and the 'A, at 0.60 eV.
This is to be expected from (1)-(8) since the 'E
state has two weak bonds, the 'T, one, and the
'A, none. The lowest ionic state ('T,) was found
at 4 eV. (See Tables III and IV.)

The self-consistent orbitals for the ground state
are shown in Fig. 2. As expected, each of the four
electrons of the vacancy is associated with one of
the four Si atoms and is very similar to a dangling-
bond orbital of the (111) surface. " The overlap
between the two GVB orbitals of each bond pair
is S,~=0.23, indicating a very weak bond. Two
localized dangling-bond orbitals would have an
overlap of 0.08,"the self-consistent orbitals re-
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TABLE III. GVB calculations for the covalent states of the vacancy in silicon. All quantities are in Hartree atomic
units.

State SiH ~ Energy C ~
2 Comments

i@
iE
ig
Ti

Fixed
Fixed
Free
Fixed
Fixed

-21.476647
-21.471674
-21.491605
-21.470127
-21.460531

0.846215
0.862486
0.848504
0.871873

-0.532842
-0.506080
-0.529188
-0.489733

0.071860
0.065916
0.073275
0.062499

0.226495
0.260423
0.231775
0.280053

Relaxed Si positions
Tetrahedral Si positions
Relaxed Si positions
Relaxed Si positions

'Coefficients of the natural orbitals: f15, p&+ Q& $,= Cip f/2+ C2fIF)2/2.
"Energy lowering due to the presence of the second NQ. This is the amount the energy would inly'cage if the second

term in the NO expansion were deleted {to obtain a, HF pair) with the other orbitals held constant.
'Overlap of the GVB orbitals, S,~ = (7t7, I p&).
Fixed implies that the SiH bond orbitals come from a MBS calculation of the ~A2 state.

TABLE IV. Energy separations for the covalent states
of the Si vacancy. ~

Type of Total energy {8) Excitation energy {ev)
0alculgtion iE 'Ti

GVB

GyB-RCI
SD-CI

-21.47665
-21.49161"
-21.48546
-21.48636

0.177

0.171

0.439
0.846
0.678
0.605

'SiH bond orbitals fixed from the ~A
2 MBS HF calcula-

tion except as noted.
SiH bond orbitals relaxed.

adjust to maximize bonding leading to an increase
to S„=0.23.

Transforming-one of the GVB pairs to natural
orbitals leads to the two orbitals of Fig. 3. The
left one resembles a bondinglike HF orbital, while
the right one resembles an antibondinglike HF
orbital. In the GVB calculation the left orbital has
an occupation of 1.44 electrons while the right one
has an occupation of 0.56 electrons. Deleting the
second natural orbitals to obtain a HF description
of the bond pairs leads to an energy increase of
0.073 hartree= 2.0 eVt Thus electron correlation
is of great importance in describing the states of
the vacancy.

The self-consistent GVB orbitals of the 'T, state
are shown in Fig. 4. The bond pairs [Fig. 4(a)] is
very similar to that of the '8 state. The triplet
bond pair [Fig. 4(b)] appears to have changed
greatly from the singlet pair [ Fig. 2(b)] of the 'E
state. This change is mostly just apparent. The
two triplet orbitals can be recombined via arbi-
trary (nonsingular) transformations without
changing the total energy of the wave function and
could be recombined to obtain orbitals very simi-
lar to the bonding pairs. This can be seen by com-
paring the triplet orbitals [ Fig. 4(b)] with the
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FIG. 2. Amplitudes of the GVB orbitals for the iE
state of the neutral vacancy {silicon). The long dashes
indicate nodal surfaces. The spacing of the contour
lines is 0.03 a.u. with the dashed lines being negative.
This spacing is used for all of the silicon orbitals. The
centers are labeled according to Table I and Fig. 1.
These conventions are used for all other plots.

No's of a single bond pair (Fig. 3).
The dominant terms in the CI wave function for

the first two singlet states are given in Table V.
The two components of the 'E state correspond to
the two possible spin couplings for the orbitals.
The 'E(A, ) component corresponds to the case,
where the GVB orbitals are singlet coupled into
two bond pairs which are coupled together into an
overall singlet state.
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S ILI CON VACANCY

NEUTRAL (IE)

Si1-Si 2 NATURAL ORBITALS
9.0 / 4 144

/

.
'' '/~

', '---.:Si1 Sik'--. '

-9.0
-9.0 9.0[110]

, a/
PAIRI

/

I

I

I

I

I

I

I g
I

I I I 4, ~
1'

I
I

[110]

Si2
Si1

I

Si 4---—--~

$i3

0.56

g~ = 0.816X2—0.577Xg

in order to correspond exactly to this spin-cou-
pling).

ln addition, starting off with two triplet states,
we can couple them into a quintet state ('A,).

To a first approximation, the separations be-
tween the 'E, 'T„and '4, states are described
by the eigenstates of the Heisenberg-Hamiltonian

3C=-2Z Q (8/ 8~),
/&k=1

leading to

FIG. 3. The natural orbitals of one bond pair of the
~E state of neutral vacancy (silicon).

The 'E(A, ) component corresponds to the second
orthogonal spin coupling in which the GVB orbitals
of each bond are triplet coupled and then the two
triplet bonds are coupled into a singlet. This can
be seen most clearly by reordering the orbitals in
the dominant configuration to be o,o,*a,o,*. In this
case the spin eigenfunction becomes -(0.04',
+0.935g,)." In terms of VB structures, the 'E(A2)
state corresponds to the resonant combination
of two structures (10b),

In fact we find the calculated ratio to be 3.5, indi-
cating the validity of this simple description of the
states. The calculated exchange term is

K=0 09 e7=714 cm

V. DISCUSSION

Vfhile our calculations include the major correla-
tion effects involving the four vacancy electrons,
we have ignored several important effects. Only
symmetric relaxation of the vacancy was included,
and we used a small finite complex.

a c

c~,— d

(10a)

SILICON VACANCY

NEUTRAL (3TI)
Si2

Si1 Si1~Si2

$14——--- Si 4 Si 3
I

SI3

C r -,d (10b)

The dominant contributions to the CI wave func-
tions for the triplet states are also given in Table
V. The 'T,(B,) component is just the VB structure
(2) described in Sec. II.

The 'T, (B,) component is the similar state
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The 'T, (A,) component is more complicated.
Again reordering the orbitals as o,o,*o,o,* leads
to a dominant configuration for the 'T, (A,) of the
form

-0.07', + 0.809X2 —0.48ys,

which corresponds closely to coupling two triplet
pairs into one overall triplet state. (The coef-
ficients must be

[110]

B.$i 3-Si 4 TRIPLET PAIR
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FIG. 4. The GVB orbitals of the 3T& state of the neu-
tral vacancy (silicon).
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TABLE V. Dominant terms in the configuration interaction wave function for the covalent
states of. the neutral vacancy in silicon. The components of the ~E and 3T& are also denoted
(in parentheses) by their C» symmetry. Included are all configurations with energy lowerings
of ~ 0.001 hartree. The numbers 0, 1, or 2 indicate the 'occupation number for each orbital.

State configuration ~

0'go'20 g o'g Cxg Cx3

Spin eigenfunction
coefficient b

Cx2

Energy
lowering '

milbhartree "

13Tgg 2)

1 T((B2)

2200
0220
2002
0022
1102
1120
llll
0211
2011
llll
0211
2011
1210
1012
2110
0112
1201
1021
2101
0121
llll

0.682
-0.456
-0.456

0.277
-0.140
-0.140
—0.830
-0.245
-0.244

0.736
0.225
0.225
0.826

—0.504
-0.229
-0.088

0.826
-0.504
-0.229
—0.088
1.0

0.433

-0.344 -0.486

e e ~

68.9
68.9
31.0

5.4

16.5
16.5

13o3
13~3

66.3
11.1
2.4

66.3
11.1
2.4

'The orbitals are as follows: o.~, o.2, GVB 1st NO's, corresponding to P~+ P& and P~+ Pz,
respectively; o.&, 02 GVB 2nd NO's, corresponding to p, —

p& and p~ —ft)z, respectively. In
C2„symmetry, these orbitals o&, o2, o&, o2 have symmetries a~, a&, b&, and b2, respective-
ly.

The Spin eigenfunctious for four electrons are X&
——a(npnp- nppn —pnnp+ pnpn), X2=-(&/

~12)(2enpp- pot p(y —o,ppn+ 2ppo, o. —pnzp- (y p(y p), for singlet states; Xg=-(1/&2)(o.po. o,

-pnnp), X2=-(1/~&(2nnpn —npnn —pnnn}, Xq=-g/~12)(3 npnn- pnnnnpnn- pnnn),
for triplet states; and p&= 0,0.&0., for the quintet state.

The energy lowering is the change in the energy upon deleting a particular configuration
while all other CI coefficients are fixed. The contribution from the dominant configuration is
not meaningful.

1 millihartree=10 3 hartree= 0.0272 eV.

A. Nontetrahedral distortions

Given the character of the 'B state as in (1), we
expect that the complex would distort so as to move
atoms a and b closer and atoms c and d closer,
while moving 0 and 5 away from c and d. Thus in
the 'E state the system should distort to D„sym-
metry. This distortion, while lowering the energy
of the 'E(A, ), will increase the energy of the
'&(A,), thereby leading to a splitting of these
levels. Such distortions are referred to as Jahn-
Teller distortions.

Starting with the 'T, (B,) component of (2), one
would expect the optimal distortion to move a and
b closer together, while moving e and d farther
apart. This C,„distortion would stabilize the
'T, (Ba}component, destabilize the 'T, (B,) compo-

nent, but would lead to only second-order effects
in the 'T, (A,).

Recombining the 'T, (B,) and 'T, (A, ) states into
the form

(where Q„Q», and Q, are coupled into a quartet
and P, coupled to form an overall triplet) leads to
a state that could be stabilized by C,„distortions.
Here atom d wouM move closer to the other three
while atoms a, b, and c would all move farther
from each other.

Assuming that the Jahn-Teller splitting does not
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effect the average energy of a degenerate set of
states, the optimum direction for, distortion should
be the one for which one state does down while the
others all go up. For 'T„ this criterion suggests
that the C,„distortion is better than C,„.

B. Effects of a finite complex

The use of a finite complex can lead to large
errors if one is describing a system in which there
is a net charge or a large dipole moment contained
in the complex. However, for the covalent states
described herein there is one electron in each of
the four dangling bond orbitals associated mith each
of four silicon atoms adjacent to the vacancy.
Thus, the charge distribution is neutral and sym-
metric. Indeed, calculations of the shape of the
(111) surface dangling bond orbital have shown that
this orbital is insensitive to increases in cluster
size.' As a result, me believe the separations of
the 'E, 'T, and 'A, states should be accurate. Pro-
ceeding to infinite cluster size mould probably lead
to a slight decrease in the separations between
these states but without affecting the order.

Since our wave functions include many-body or
electron-correlation effects, me do not get a band
spectrum of states out of a single calculation as
one would in a molecular-orbital or standard-band
description. Rather, one must solve individually
and self-consistently for each electronic state to be
considered. Of course, with such a small complex
we moul. d obtain a quite inadequate description of
the band states should we solve for them. As a re-
sult, our calculations do not provide direct infor-
mation on the location of the vacancy states relative
to the band edges in silicon. In order to obtain such
information from finite cluster studies, we deter-
mine the ionization potential or electron affinity
for the finite complex description of the neutral
vacancy (as described within our many-electron
formalism) and compare with the ionization poten-
tial or electron affinity for the bulk electronic
states. This point will be discussed in conjunction
with the ionic states. " On the other hand, due to
the large localized electron-correlation effects in
the vacancy, a standard band-type calculation
should lead to large errors in the location of the
vacancy levels, despite the use of an infinite system.

C. Other calculations

There have been several calculations of the
silicon vacancy, using a variety of methods. Each
method, ours included, has both strong and weak
points. The calculations of Larkins4is close to ours
in approach, yet the results are dramatically dif-

ferent. A major difference is that we calculate all
integrals, ab initio, while Larkins used paramet-
rized integrals. For the neutral vacancy, the
Larkins calculation never obtains the 'E ground
state, a result we cannot understand.

Using a larger cluster but employing an extended
Huckel-theory-type MO approach, Yip" has
studied the vacancy for diamond, Si, and Ge. He
does not report ground states for any system but
finds very large symmetric distortions for the
vacancy. For the neutral (V'), his outward distor-
tion is 0.50 A, while we find a 0.08-A outward dis-
tortion. In addition, Yip finds Jahn- Teller coupling
coefficients an order magnitude less than the values
estimated from experiments by Watkins, ' leading to
a Jahn-Teller energy of 0.0025 eV for Vo as op-
posed to Watkins value of 1.5 eV. While Messmer
and Watkins" obtained good results using extended
Huckel theory on diamond, Yip's extended Huckel-
theory calculations seem suspect.

Recently, self-consistent empirical pseudopoten-
tial calculations have been performed by Louie et
al. ,

'4 based on an approach similar to the molecular
unit-cell approach of Messmer and Watkins. 25 For
the undistorted vacancy they find a triply degen-
erate MO at about the middle of the band gap.
They also study the effect of inward and outward
[100] distortions of the vacancy. While they do
find a splitting of the degenerate levels, their dis-
tortion is quite large (1.13 A in the [001] direc-
tion), and thus, may not relate to any physical
situation. Their calculation does show that such
large distortions of the vacancy leads to effects
upon the second-nearest bonds, and perhaps far-
ther. Their calculation seems to indicate that the
vacancy electronic states are well localized in the
vacancy.

VI. C(INCLUSIONS

The covalent electronic states of the neutral
vacancy V' have been studied using the generalized
valence bond and configuration-interaction wave
functions. We find that the nature and ordering of
the states of the system can be described a priori
using simpIe valence-bond arguments. These pre-
dictions are found to be correct on the basis of
GVB and CI calculations. Specifically, the ground
state of V' is a 'E with low-lying 'T, and 'A., states
at 0.17 and 0.60 eV, respectively. These numbers
should be insensitive to the use of a finite complex.

In addition to finding the proper ordering of the
states, me find that the Jahn-Teller distortions of
the system can be understood from the form of
the many-electron wave function in each case.
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