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It is argued that ions moving in hollandite crystals should not be significantly scattered by impurities. This
could lead to large conductivities for low ionic concentrations. Ionic conduction for high concentration of ions
occurs by motion of solitary-wave-like defects whose motion is damped by phonon radiation. An expression
for the electrical conductivity is found using models for th . motion of such solitary waves which were
previously applied to the study of dislocation motion under an applied stress. Comparison is made with
experiments on hollandite with the aid of an interrupted-strand model.

I. INTRODUCTION

Recently there has been a good deal of interest
in one-dimensional electrical conductors. ' Be-
cause of their one-dimensional nature, they can
exhibit unusual, often striking behavior in their
electrical conduction. There is also much inter-
est today in superionic conductoxs because of their
potential use as solid electrolytes in solid-state
batteries. ' Hollandites are superionic conductors
which exhibit one-dimensional character in the
sense that the mobile ions move in one-dimen-
sional channels provided by the other ions. ' Thus,
we would expect oriented single-crystal samples
of these materials to exhibit one-dimensional
electrical conduction. As will be discussed in the
next section, impurities do not significantly scat-
ter the potassium ions, essentially because the
ions behave as classical particles, and thus, once
they are thermally activated above the potentials
due to the impurities, they are not backscattered
in the channel.

In a previous publication, it was shown that
electrical conduction in potassium hollandite is
due to the motion of defects in the periodic order-
ing of potassium ions in the channel. For the
case of a nearly completely filled channel, the
conduction is caused by the motion of vacancies.
Since a vacancy and certain so|itary waves or
dislocations are identical in one dimension, we
may apply the one-dimensional Frenkel-Kontorova
model, proposed for the study of dislocations in
solids, directly to this problem. This model con-
sists of a chain of atoms connected by springs,
situated in a sinusoidal potential well. The pri-
mary mechanism for dissipation of the motion of
a vacancy in the potassium-ion system, once it
is set in motion, is the creation of lattice vibra-
tions among the potassium ions. This will be
discussed in Sec. III.

II. INTERACTION GF THE MOBILE IONS IN HOLLANMTE
W'ITH IMPURITIES

There is a theorem which states that the con-
ductivity of a one-dimensional conductor should
be zero if there are random impurities in it.' The
reason for this can be roughly understood on the
basis of the following simple picture: I et us rep-
resent the distribution of impurities by a row of
n potential barriers, each with a reflection coef-
ficient R,. Consider a particie incident on this
distribution of impurities from one side. The
transmission coefficient for the impurities is.
when we consider all multiple reflections from
the barriers, given by

q'= (1 —It,)/(1 —ft, + nP.,) .
We have neglected all coherence effects between
barriers, which is reasonable if their spatial dis-
tribution is truly random. Since n approaches in-
finity in the thermodynamic IjLmit, g" approaches
zero. ' If classical instead of quantum mechanics
had been used, we would find that g is zero for a
particle whose energy is less than, and 1 for a
particle whose energy is greater than the energy
of the highest potential barrier because a classical
particle is not reflected by an impurity if the
height of the impurity's potential barrier is less
than the particle's energy. This does not, of
course, predict infinite conductivity for a classical
particle in two and three dimensions because the
particle can always be deflected no matter how
high its energy. In reality, a particle whose ener-
gy is higher than all potential barrier heights will
suffer some scattering at each impurity (because
S PO) Rlld llellce 111 'tile tllel'lllodyllRIlllc 111111't EIl.
(1) wiH give q'=0. '

If the particle is classical enough, however
(i.e., if its de Broglie wavelength is short enough),
its nleRII fl'66 pRtll (i.e. , 'the dls'tR11Ce ovel' W111Cll
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where V, is the barrier height and 5 represents
the distance over which the potential varies. This
problem has an exact solution. ' [Equation (3)
could represent the potential barrier on one side
of an impurity. ] For E& V„ the reflection coef-
ficient is given by

where

sinhw(k, —k,)b

sinhw(k, +k,)b

(5a)

(5b)

Equation (4) is the same for the potential given by
Eq. (3) with x replaced by -x (i.e. , it also gives
the reflection coefficient for the other side of the
impurity potential barrier). In the semiclassical
limit (i.e. , k, b, k,b» 1),

I et us apply these arguments to potassium hollan-
dite. Consider a single potassium ion in an other-
wise empty channel. For E —V, = 10 ' eV, the
wavelength is already equal to 10 ' cm (i.e. , a typ-
ical order of magnitude for b) and is smaller for
larger E —Vo. For such a wavelength and for c
= 10% the mean free path found from Eqs. (2) and
(6) is already of the order of 0.1 mm.

Because the potassium ions are in fact quite
classical they cannot tunnel through the potential
barriers in the channel potential, and hence, they
must be thermally activated to an energy above
the top of these barriers in order for them to con-
duct. Once raised to such energies by thermal
excitation and set in motion by an electric field,
the ions will not be significantly scattered by im-
purities, as we have seen. Ion-ion interaction,
however, can dissipate the motion of a given ion

it can travel through a distribution of random im-
purities before its wave function decays to zero)
could be of macroscopic dimensions. The con-
ductivity could be, in such a case, for all purposes
infinite for any normal size sample. To estimate
the mean free path, consider Eq. (1) with n = rx,
where c is the impurity concentration and x is the
length of sample which the particle has passed
through. Equation (1) can only deviate significant-
ly from 1 when nR, = 1 from which we see that
the mean free path can be taken to be

(cfog,)-'.
In order to estimate R„we consider scattering

of a particle of energy + from a potential bar riel
of the form

by distributing its energy among the various ions.
Because of the channel potential, the total mo-
mentum of the ions is not conserved, and thus when
the energy of all ions drops below the height of
the barriers because of collisions with other ions,
the current stops flowing (since the jons cannot
tunnel through the barriers). Such mechanisms of
damping of the current will be discussed in Sec.
III. By growing crystals with very low concen-
trations of mobile ions in the channels, however,
this process can be minimized.

This leaves only phonon umklapp scattering as
a source of resistance. Nonumklapp scattering
will not dissipate current because of the phenom-
enon of phonon drag. ' Because of the high polari-
zability of the ions which comprise the channel,
the mobil-ion-phonon interaction should be weak,
and therefore, ordinary one-phonon processes
should dominate. Phonon umklapp scatterings
require the existence of phonons near the zone
boundary. The probability for the existence of
such phonons is -e, where T is the tempera-
ture and 6 is the Debye temperature which should
be of the order of 560 K or higher in 3, covalent
compound like hollandite. ' Thus, at temperatures
below 0, there will be little resistance to the flow
of such ions, if the activation energy for the mo-
tion of the ions over potential barriers is smaller
then k8 (because o ~e ~~'~e ~r, where dF is the
barrier height). Although the activation energy
for the conductivity of potassium hollandite mea-
sured on polycrystalline samples is 0.2 eV, ' this
need not be equal to the barrier height. Because
the samples are highly imperfect, the channels
could have finite lengths. Then, the only way that
an ion could traverse the length of the crystal
would be to move into a neighboring channel or
over a break in the channel. Thus, the measured
activation energy might be the activation energy
for getting into a neighboring channel as will be
discussed in more detail in Sec. IV. Beyeler„
Pietronero, Strassler, and Vfiesmann' find that a
dielectric constant of 6 is required in order to ob-
tain the observed x-ray diffraction peak widths
(if the dielectric constant is not position depen-
dent). With this dielectric screening of the inter-
ionic Coulomb interaction, they found that in order
to obtain the observed displacements of the ions
around a vacant site, ' the channel potential barrier
must be about 0.06 eV, which is comparable to
kO. This energy could be reduced still further by
substituting more polarizable ions in the synthesis
of the crystal. If we assume with Beyeler, Pietre-
nero et al.' that the high polarizability of the ions
which make up the channel is only effective inside
the channel, we might still expect high ionic mo-
bility because the inelastic phonon umklapp scat-
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tering should be relatively weak (because the elec-
tron-phonon interaction is weak).

Such phenomena can only occur in crystals with
a very low concentration of potassium ions. Sam-
ples grown to data have much higher ionic con-
centrations, and thus, for these samples, the pri-
mary mechanism for dissipation of the ionic cur-
rent is the creation of phonons among the potas-
sium ions, which will. be discussed in more de-
tail in Sec. III. In the high-ionic-concentration
regime, it is more appropriate to speak of vacancy
rather than ionic motion. As we shall see the
vacancy's motion is usually strongly damped be-
cause it radiates phonon excitations among the
potassium ions as it moves.

—,'n, x' for ixi &) (Va)

V(x) =
—,'n, ya — '

(—,'a —x)' for y (lxl (—,'a
a —2P

would almost certainly be destroyed by such high
currents long before we reached the lossless re-
gime.

At much lower velocities, defect motion pro;
ceeds by thermally activated hopping as shown
by Weiner and Sanders. ' Let us apply their meth-
od to study the thermally activated motion of va-
cancies in hollandite. Weiner and Sanders replace
the sinusoidal potential in the Frenkel-Kontorova
model by the piecewise continuous potential

III. DAMPING OF VACANCY MOTION IN HOLLANDITE

SY PHEON RADIATION

As was pointed out in Ref. 4, the electrical con-
duction in the samples of potassium hollandite that
have been grown to data, which have the channels
between V5/~ and 100/g filled with potassium ions,
must be due to the motion of defects. For ex-
ample, for a channel that is nearly full, the princi-
pal current carriers are vacancies. For potas-
sium vacancies in hollandite, there are very large
displacements of the ions on neighboring sites. '
In one dimension, such a vacancy is identical to a
dislocation or solitary wave in which N- 1 i,ons
are shared among N lattice sites.

Let us now consider the damping of the motion
of these defects by phonon radiation.

These vacancies undergo steady-state motion
above a certain speed under an applied field' (the
electric field in our case is equivalent to a shear
stress in previous work on dislocations). It has
been shown by Earmme and Weiner in a modified
Frankel-Kontorova model that such dislocations
can move without any phonon radiation damping if
they move at certain speeds' (about —,

' of the speed
of sound in this model). Unfortunately, in order
to set the vacancies into such motion it is neces-
sary to apply a stress (in the dislocation problem)
above the Peierls stress, which corresponds to an
electric field, in the application of this model to
hollandite, comparable to typical electric break-
down fields [i.e. , of the order of 10' V/cm —which
is obtained by dividing the activation energy for
defect hopping found in Ref. 4 by a lattice con-
stant]. Furthermore, vacancy velocities compar-
able to a quarter of the sound velocity are equiva-
lent to enormous current densities. For example,
if the vacancy concentration were 10"cm ', the
current density would be of the order of 10' A/cm'.
Clearly, in accelerating the vacancies up to such
high velocities in an electric field, the sample

where 0., is the force constant and x is the dis-
placement of an ion from the bottom of the well.
That is, they replace the sinusoidal potential by
parabolic and inverted parabolic potentials. We
will arbitrarily take P =-,'a in our calculations
(i.e., we will take the potential to be symmetric,
like the sinusoidal potential). As in the Frenkel-
Kantorova model the atoms interact with each
other by a harmonic potential

(na+ n2) uo+ niui = nla ~

n, uo —(2n|+ n, )u, + n, u, —0,
n~u| —(2n| + n2)u2+ nous —0

(Qa)

(Qb)

(9c)

with the symmetry relations u, =-u~ » u, = -u„»
etc. Assuming u, to be negligible and solving the
resulting simultaneous equation for u„u» and u„
we obtain

u, = a{n,[(2n, + n,)' —n,']/D),

u, = a [n', (2n, + n, )/D],

(10a)

(10b)

where x,. is the displacement of the jth ion from the
bottom of the jth potential well. The lattice will
be taken to have only one vacancy, which is a good
model for the case in which most potassium sites
are filled. Far from the vacancy, the ions will
be assumed to lie at the bottom of the nearest min-
imum in the periodic channel potential, which is
correct if the spring constant a, is not too strong
compared to n, (i.e., if the chain is not too stiff).
The displacements of the ions surrounding a va-
cancy are illustrated in Fig. 1, where the u's
signify displacements of the various ions from the
bottom of the nearest potential minimum, when
they are in equilibrium. Assuming that all the u's
are less than —,g, the equilibrium equations in this
model become
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FIG, 1. (a) Equilibrum
configuration of the ions
around a vacancy. (b) The
unstable equibbrium con-
figuration of the ions when
one neighboring ion has
moved to the top of the
barrier separating it from
the vacant site in the con-
figuration of (a).

u, = a(n,'/D),

where

D= (nl+ n.)[(2ni+ n.)'- ni)+ ni(2ni+ ni) ~

(10c) niui —(2ni+ ni)uz+ niu3 = 0
p

n, u, —(2n, +n, )u3+niu4 0

with

(11b)

(llc)

+0 105 ~ s +1 105 ~x +2 105 ~ ~

In the model with Coulomb interactions studied in
Ref. 4, although the near-neighbor Coulomb inter-
action of ions was chosen to be about 13 times the
sinusoidal potential well depth, the interionic force
constant and the force constant of the sinusoical
potential near the bottom of' the well mere of the
same order of magnitude. Thus, the present mod-
el calculations should give semiquantitatively cor-
rect results. It is expected, homever, that the cal-
culations may underestimate the conductivity due
to defect motion and overestimate the activation
energy because the chain of ions should be stiffer
than we have taken it to be.

Defect hopping occurs by u, in Fig. 1(a) increas-
ing until it is equal to 1.5a (i.e., the ion rests on
a peak in the potential). The resulting equilibrium
configuration [shown in Fig. 1(b)] is unstable, as
we wiD see later in this section. The equilibrium
equations are

1
+2+1 +1 2 2 +1+ (11a)

If we instead solved Eqs. (Qa) and (Qb) simultane-
ously, neglecting u„our results for u, and u, dif-
fer by less than 1%. Thus, our truncation
procedure appears to be reasonable. Calcula-
tions of the equilibrium ionic positions for
the Frenkel-Kontorova-like model with Coulomb
interactions studied in Ref. 4 for the single-va-
cancy case give displacements of the ions neigh-
boring a vacancy equal to about 35% of a lattice
constant. It was found by solving the equilibrium
equations that in the present modified Frenkel-
Kontorova model, it is impossible to have stable
equilibrium solutions with near-neighbor displace-
ments greater than 0.25g. Let us take n1 3Q2p
which gives us

Here me are measuring u0 from the top of the peak
in the potential. The solution if we assume u4=0,
is

u, = -,'an, ([(2n, + n,)' - 'n]/D'],

u, = ,'n, a[n, (2-n, + n, )/D'],

ui=knia(ni/D )

where

D = ni(2ni+ ni) + 2ni,
1For ~1= 3~2,

N, =~a

+2 =154~

+3 =154~ ~

(12a)

(12b)

(12c)

(13a)

(13b)

(13c)

The activation energy, the difference in potential
energy between the stable and unstable configura-
tions, calculated by substituting these calculated
equi1ibrium displacements in the expressions for
the potential energy of the lattice, is found to be

aE, = 0.243m y„ (14)

where AV0 is the barrier height of the channel po-'

tential, equal to 16 o.,g' in the present model.
The hopping rate of the defect found by Weiner

and Sanders' is given by

1 (~) t hE, + — EI
2n ~m~ I, kT j ' (15)

for small applied field, mhere v is a dimepsionless
quantity, E is the applied electric field (which plays
the role of the stress o in Weiner and Sander's
notation), m is the ionic mass, f, is the rate of
hopping along, and f is the rate of hopping against
tQe field. The electric current density due to de-
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feet motion is given in the weak-field limit (for
which it is rea, sonable to assume that thermal
equilibrium is reestablished between hops) by .

Z= sea(f„-f ),
from which we obtain the conductivity

g2$2 ] ( g 1/2

0 pe- &E~/aT
kT 2w!(m)

(18)

—Q+j+ 2Q~Q j6j p y

where m is the mass of a potassium ion,

(18)

and

q. =x- —Q-j j j

This equation has a bound-phonon mode of fre-
quency given by

1- (2o.,/m)G((u),

where
-
Q, Q

-1
G(&o) =— dk —' +~(1-coska) -&u' . (],9)2p /y m m

This integral can be done exactly to give

(Q Q
2 Q2 t

1/2

G( )=!—"—'- ' — '.
~m m m' (20)

The resulting bound-state frequency is given by

( 2 2 Z/2
2 Q2 ~ ~& Q2 Ql~ =—+ —i'4 .+

m m i&m2 m'

We find that co' is negative if
3

Qg& 2Q2

(21)

which it is in our case. Thus, the bound-state
phonon is unstable. Following Weiner and San-
ders' methods using this expression for the fre-
quency of the unstable mode, we obtain

p = ]..5656

for Qy 3Q,. The resulting expression for the con-
ductivity in (0cm) ' for a 1% concentration of de-
fects is

o = (0.11725/kT)e (22)

with kT in eV. To obtain this expression, we have
.taken

where n is the number of defects per unit volume.
The dimensionless parameter v can be found from
the decay rate (i.e., imaginary frequency) of the
unstable mode in the unstable configuration [i.e. ,
Fig. 1(b)]. The equation of motion for the lattice
vibrations for the unstable configuration is

mls = Dg(—2(j —
lg~ g

—g +g)

IV. BROKEN-STRAND MODEL APPLIED TO HOLLANDITE

The dc conductivity in a sample with one-dimen-
sional conducting properties such as hollandite
should depend critically on both the degree of
orientation and degree of perfection of the crys-
tals because the conductivity is high only along
the length of an unbroken channel. If there is a
break in a channel, the ions will have to either hop

into a neighboring channel or hop over the poten-
tial barrier of the blockage of the channel in order
to conduct electricity. " Thus, we would expect
the activation energy of the dc and low frequency
ac conducti~ri. ty to be determined by these poten-
tial barriers, and not the much lower energy acti-
vation processed discussed in Sec. III and in Ref.
4

To calculate the conductivity for a system with
breaks in the chain, we may estimate the frequen-
cy with which a defect striked the barrier at the
end of a channel (i.e. , the mean speed of a defect
divided by the distance from the barrier) by

f.a&LO ~
(23)

where Lp is the average distance of a defect in a

where V, is the amplitude of the sinusoidal poten-
tial in Refs. 3 and 5, and we have taken V, = 0.4
eV. This is the value obtained for V, by assuming
that the barrier height 2V, is ~» of the bare nea. r-
neighbor Coulomb repulsion of the ions. The
activation energy AE, was ta,ken to be —,

' of 2Vp,
implied by Eq. (14). Since the Coulomb potential
is actually screened, V, is probably smaller than
this and hence o should be larger than the value
that we have found. Also, since there are thermal-
ly activated defects at room temperature, o should
be still higher. Nevertheless, using the values
for the parameters that we have quoted, we find
a room-temperature conductivity of 0.086 (Qcm) '.
What we have found is the ideal conductivity for a
single-crystal sample with channels that run
across the sample and without any complications
caused by the attachment of electrodes. The ef-
fects of having breaks in the channels will be dis-
cussed in Sec. IV.

Of course our estimates for the conductivity are
based on a single-vacancy model which assumes
that the vacancies do not interact. Thus, our re-
sults are only numerically applicable to hollandite
samples with very dilute vacancy concentrations.
Our method should only give rough order-of-mag-
nitude results for the conductivity away from the
low-vacancy-concentration limit.
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channel from the barrier for defects incident in
a direction along the field [for the (+) signt and
opposite the field [the (-) sign]. The probability
of scaling the barrier by a defect is e ~~&/'"~,

where hE, is the height of the barrier which must
be scaled in order to get around the blockage.
Then, the current density is given by

4=neLO[(f, —f )b/Lo)e

which is just ne multiplied by e ~&" and by the
velocity, which is (f, f )b—/L, multiplied by I,
Thus, the effect of a break in the chl, nnel is sim-
ply to increase the activation energy by hE,. We
expect that the activation energies measured in
dc and low-frequency ac-conductivity experiments
are probably determined mainly by blockages in
the channels which provide large barrier heights
and not by the processes discussed in Sec. III and
in Ref. 5. Replacing ~, in Eq. (17) by hE„, as-
sumed to be the experimental activation energy,
o is found to be two orders of magnitude smaller
than the value found in Sec. III, in agreement with
Rbau et al. '

Although imperfections in the crystals which
produce breaks in the channels will severely limit
the dc conductivity, we- would still expect higher
ac conductivity at sufficiently high frequency. "
To estimate the frequency at which the ac conduc-
tivity falls oQ because of interruptions in the
channels, let us apply a classical free-particle
model to the motion of potassium-ion vacancies:

(24)

dv t' n e m
m—=e ~E- ', ddt

dt ( BIO
(25)

~e2 ~2 ( . 2 l-1
o, =Ren, ev = ' —~&u'-m, e'/m Lo +&a'/z'

which for u»»z, e'/m Io reduces to the usual
Drude form

(26)

(27)

Assuming a 1%%ua concentration of ions, m equal to
the potassium-ion mass, J., equal to 100 lattice
sites, and taking the lattice constant from Ref. 2,

where m and v are the vacancy effective mass and
drift velocity, E is the electric field, n, is the
number of vacancies per unit length, v is a phe-
nomenological damping time, and c is the dielec-
tric constant. The second term in the large paren-
theses represents the reverse Coulomb electric
fieI.d produced by the buildup of charge at a break
in the channel. For a harmonically oscillating
electric field, we solve for the strand conduction
defined as

we estimate that ideal carrier conductivity that
we have predicted in Sec. III should occur for +
greater than a frequency (m, e'/mI. ,')' ' of the order
of 10-100 sec '. For about 100 times the ionic
concentration and for Lp equal to only 10 lattice
sites (as might occur in highly imperfect crystals),
we obtain values of (n, e'/mLzo)'~' comparable to
the frequencies used in the measurements made
in Ref. 9. This is consistent with the speculation
that we made previously that the measured low-
frequency conductivity for polycrystalline sam-
ples be primarily thermally activated with activa-
tion energy equal to the energy to make an ion hop
into a neighboring channel.

The ideas expressed in this section can be tested
by doing ac-conductivity measurements on good
single-crystal samples of hollandite as a function
of frequency.

V. CONCLUSIONS

We have shown that the motion of a dilute con-
centration of mobile ions in hollandite should not
be damped by the presence of impurities in the
sample, as long as the ions have been thermally
excited to an energy greater than aQ potential
barriers in the crystal. Since single crystals with
such dilute concentrations of ions have not been
grown to date, this idea has not been confirmed
experimentally. At larger ionic concentrations,
ionic conduction occurs by motion of defects among
the ordered potassium ions. The motion of such
defects is damped by phonon radiation, just as the
motion of dislocations in one-dimensional models
is damped. At slow speeds, defect motion occurs
entirely by thermally activated hopping, as does
dislocation motion. ' The one modified dimensional
Frenkel-Kontorova model frequently used to dis-
cuss dislocation motion has been applied to the
calculation of the conductivity of potassium hollan-
dite. The conductivities found were generally
higher and the activation energies lower than those
found in experiments on polycrystalline samples. '
Breaks in the channels were shown to have the ef-
fect of raising the activation energy and lowering
the dc and low-frequency ac conductivity, but at
sufficiently high frequencies, the conductivity and
activation energy should become the ideal values
predicted in Sec. III of this paper.
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