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Localized electromagnetic pulses in a co&hsional medium
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We investigate the effects of a velocity-dependent collision frequency on the nonlinear propagation of an

intense electromagnetic wave. It is shown that a velocity-dependent collision frequency produces a nonlinear

contribution to the current density and hence to the eave equation. Using a WKB-like approximation, we

show that the evolution of the wave electric field is governed by the nonlinear Schroding'er equation. The
efFective potential for the photon is found to be attractive and thus leads to modulation instability. The
threshold and growth rate are obtained. Possible final states of the instability are periodic or localized

envelopes of waves. The criteria for the occurrence of the N soliton are presented.

I. INTRODUCTION

The filamentation instability of an intense elec-
tromagnetic radiation in nonrelativistic and rela-
tivistic media are well known. " In nonrelativistic
media, ' the radiation pressure of the wave intro-
duces a nonlinearity by coupling with finite-amp-
litude ion fluctuations. As a result, unstable mod-
ulations occur which eventually lead to envelopes of
localized light channels' in the medium. %hen the
intensity of the light becomes fairly large, one'
cannot exclude the possibility of other nonlineari-
ties arising from relativistic effects. In particular,
relativistic modulations of Iight have been an in-
triguing problem. " For this case, the nonlinear-
ity arising from the relativistic mass variation
competes with the wave group dispersion to pro-
duce one' and multidimensional' localized pulses.
Furthermore, the nonlinearity originating from the
nonparabolic momentum-energy relation" can also
lead to the localized electromagnetic pulses in
semiconductors. However, the above-mentioned
investigations apply only to a collisionless med-
luDl.

In this paper, we consider the nonlinear prop-
agation of an intense electromagnetic wave in a
nonrelativistic, collisional medium. In particular,
we shall be concerned with the effects of nonlinear-
ity' arising due to the velocity dependence of the
coQision frequency. ' Such type of collision model
is appropriate to describe various phenomena in
semiconductors' and Ramsauer gases. ' It is of in-
terest to mention that Stenflo and Yu' have shown
that in semiconductors, the collision-induced non-
linear excitations may be more important than
those due to other mechanisms. ' On the other
hand, the nonlinear phenomena such as echoes' and
stimulated emissions' in a partially ionized gase-
ous plasma can successfully be explained by using
the Harp model' for the collision frequency.

The plan of this paper is the following. In Sec.

II. COLLISION MODEL AND'f HE NONLINEAR CURRENT

DEN Sr'
The collision model which we use is the simple

Lorentz collision operator, '"with the velocity-
dependent collision frequency represented by the
Harp model. ' According to the Lorentz model, the
electrons collide elastically with neutral particles
and produce a momentum transfer given by

C(E) =-vE+ — EdQ,
4n

(2.1)

where v(ve) is the electron-neutral-particle col-
)ision fretluency. The integration is over all solid,
angles 9 in velocity space. This model neglects
the electron-electron scattering, and assumes that
the collision frequency depends only on the mag-
nitude of the electron velocity. The Harp model' "
for the velocity dependence of the collision fre.
quency is

2 ( 2

( e) i r vp~

~p v &vop

(2.2)

where v, is chosen to be in the region where the

II, we present a brief description of the Lorentz
collision oyeratore'" with velocity-dependent col-
lision frequency. Using this collision model, we
then calculate the nonlinear response of the plasma
to a finite- amplitude continuous electromagnetic
wave train. Section IQ shows that, in the presence
of the nonlinear current density, the evolution of
the wave electric field is governed by the nonlinear
Schrodinger equation. ' The modulational instabil-
ity of a constant-amplitude wave packet is discuss-
ed in Sec. IV. The growth rate and threshold are
obtained. Section V shows that possible final states
of the unstable modulations may be localized wave
packets. The analytical results for the latter are
presented. A.brief discussion of the results is con-
tained in Sec. VI.
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(2.3)

actual collision frequency increases rapidly with
velocity. Basically, the Harp model emphasizes
the difference between the collisional character-
istics of high- and low-energy electrons. In par'-
ticular, it follows from Eqs. (2.1) and (2.2), that
the electrons with speeds less than v, behave as a,

collisionless gas, while those with higher speeds
behave as a collision-dominated gas. The widely
used" Harp model is actually realistic for gases
showing a strong Ramsauer effect, such as argon,
which exhibits a sharp increase of the electron-
neutral-particle collision frequency within a cer-
tain electron velocity range. For other plasmas,
the use of the Harp model can be questioned. The
reason is because the critical speed vp cannot be
uniquely, defined.

The distribution function F(x,v, t) of the electrons
in an unmagnetized, collisional plasma is governed
by

by

1 Vp

4„=-2me dv dP v PE0
-1 0

t
x v + — g

m x (2.5)

where
(2.6)

BEp v

Q Vp

where p, =v„/v, and the contributions of the elec-
trons with velocity v~vp are ignored to the current
density. The reason is that those electrons re-
main isotropic in velocity space due to the strong
scattering. For sufficiently weak electric fields,
Eq. (2.5) becomes'

8we4
J„=

where -e and m are the charge and constant mass
of the electrons, and E(x, t) is the total electric
field. The wave magnetic field is neglected. The
choice of the constant electron mass allows us to
exclude the nonlinearities arising from the rela-
tivistic mass variation, the nonparabolic momen-
tum relation, ' as well as energy dependence of the
relaxation of the carrier. "

In general, the integration of Eq. (2.3) is comp-
licated because of the fact that E depends on x and
t in the third term. However, if we examine the
phase in detail, we note that B(k r —&ot)/Bt
= -&v[1 —(v/c)k v]. Hence, consistent with the
neglect of the wave magnetic field we can neglect
the factor v/c and treat x as though it were con-
stant. This may also correspond to the assumption
that the spatial variation of the wave electric field is
slower than the fast time variation. We can then
approximately write down the lowest order solu-
tion of (2.3) in the form

eF ~v v Edt), v &v
F(v t)=

G(v', t), v'&v', ,

(2.4)

where G(v', —~) =F,(v), and corresponds to the
distribution of the electrons in the absence of the
electric field, say at t=-~. Thus, we may take
F,(v) to be isotropic in velocity space. The ap-
plication of a time-dependent electric field causes
the variation of the number of particles in each
region. Consequently, the distribution function of
the high-energy electrons turns out to be time
dependent.

The x component of the current density is given

4g "0
3 Bj'0

Np=- — v dv ~

3 0 Bv
(2.7)

III. NONLINEAR WAVE EQUATION

Inserting (2.6) into Ampere's law, one obtains
the one-dimensional equation for a.~linearly polar-
ized electromagnetic wave train

0
(3.1)

i —+P ~+u ~A
~

A=0,. BA B&
B7 Bg

(3.2)

where p =c'/2~, &0'=~'„+c'0', x=x- v,r, v, = Bur/

Bk, and n =4''v,'F "/15m'e, &u'.

IV. MODULATIONAL INSTABILITY

Let us study the stability' of a constant envelope
wave packet with respect to low-frequency long-
wavelength phonons (Q, K; A«v, and K«k). For
this case, the electric field A has a finite ampli-
tude A„ frequency +0= v~„and wave vector kp k
as x-+~. Accordingly, the term involving ~A

~

where E =E„, and ~—~=(Roe'/me, )' ' is the effec-
tive electron plasma frequency. Equation (3.1)
governs the propagation of an electromagnetic wave
in a weakly nonlinear dispersive medium.

We now use a modulational representation' and
accordingly express E =A(x, 7)e '"'+c.c., where
A(x, 7) is the slowly varying complex amplitude.
Then, from Eq. (3.1), we obtain the following equa-
tion for the evolution of the wave electric field
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Eq. (3.2) should be replaced by +(IA I IAo I
)A.

Qn separating the real and imaginary parts of A
as

A = [p(x, r)]'"exp[ie(x, r)j,
we obtain from (3.2),

(4.1)

(4.2)

P =Pp+Pe ~ P ~~Pp ~

e —g e 4Ex for-
t

and combining the resulting equations we find

(4 4)

(4.5)

gg g2 e2p C' ee ' &' &~P
'

(p p.)--~, +4» ~ sx 8&p'I, e

(4.3)
I.inearizing (4.2) and (4.3) in the form,

V. LOCALIZED ELECTROMAGNETIC PULSES

A. Stationary solution

Possible final states of the modulationally un-
stable electromagnetic wave is given by the solu-'
tions of the cubic nonlinear Schrodinger equation.
The most general stationary solution is the peri-
odic wave train

A(x ~) =It'~'e

where Rd@/dv =M, and

(5.1)

of A, =121 V/cm, we obtain re=1.25 x10" rad/sec.
Choosing a typical value of &o~ = 1.25 x 10" rsd/sec,
and &,=77'K, we find y=0.02~~, for vp 1 6 vt.
Our conclusion is that because the typical growth
rates are fairly large, the instability discussed
here should be observable in gaseous and semi-
conductor plasmas.

-iQ

lX —C K /4(dpo

-poc K /R
(4.6)

"(x)=C +(C.—C.)C'([ I&/6p
I (C, -c,)]"x K).

(5.2)

From (4.6), one obtains the following dispersion
relation:

Here K'=(C, —C,)/(C, —C,), and C, ~C, ~C, are
the three solutions of the equation

-0'+c4K4/4&v' —(c.c'K'/~) IA, I
=Q. (4.7) (2o /p)C'- (2n/p)C'+ PC+ 4M ' = 0, (5.3)

It follows from (4.7), that modulations are unstable
lf

c'Z'/4(o~ . (4.8)

Since v, &v„ the distribution function, I'
p—exp(-v'/v', ), can be assumed to be Mmoivellian.

Equation (4.8) thus becomes

e' IA, I' 15 vq& ' K'v3 tv'
2 2 2 4~1/2 ~2 P 2

)-
0 pe

(4.9)

where we used ~= ~~„and the relation

(vive e v -vp
(4.10)

the maximum growth rate is given by

and is attained for K,= (2a~/c')'~'. Thus, a per-
turbation whose wavelength X is longer than 2v/K,
becomes unstable.

Let us now estimate the magnitude of the growth
rates for both gaseous and semiconductor plasmas.
First, for an argon plasma, the use of relevant
parameters, namely, No =10'0 cm ~, (ur&, /&u)2= 1,
T, =10' 'K, IAO I'/8vn, T, = 10 ' yields a maximum
growth rate y=0.01&~ for v, =1.6v, . Next, we ap-
ply our results to the semiconductor and take a
pure sample of the InSb. For a peak field strength

A particular simple solution, ' which follows from
Eq. (5.1) is

A(x, ~) A„sech[@,(x- v t)] exp(-iWt), (5.4)
where @0=(n/2P)' 'A~, W=~ nA~~, andA„ is the
maximum amplitude of the soliton. We note that
the collision- induced nonlinearity competes with
the group dispersion of the electromagnetic wave
train, allowing for localized solitonlike solutions.

Wenowdiscussunder what conditions the envelope
solutions presented above persist. Because we are
chiefly concerned with the continuous excitations of
electromagnetic wave trains, the stable quasi-
stationary localized pulses will occur in a nonlinear
dispersive medium. The reason that this occurs is
because the energy dissipated in the perpendicular
direction (perhaps due to some instability) is count-
erbalanced by the energy fed into the quasistation-
ary solitons.

B. N-soliton solutions

Zakharov and Shabat" applied inverse scattering
method to solve the cubic nonlinear Schr5dinger
equation and obtained N-soliton solutions. In the
following, we use the results of Zakharov and Sha-
bat" to obtain the conditions necessary for the oc-
currence of localized electromagnetic pulses. In-
troducing the variables t'=v/P, q=x/P, in Eq.
(3.2) leads to
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9A. BA BA (5.5)

where p=np. I.et us consider the particular simple
excitation at t'=0, viz. ,

A(0, q) =A„sech(q/&q), (5.6)

and study the soliton production by this excitation.
To attain this goal, it is necessary to solve for the
discrete eigenvalue $ of the equations"

v,'+i$v, =qv, , (5.V)

(5.10)

where E is the hypergeometric function, "and

so= 2 (1-i $b,q), to= -gigEq,
a= s - (-,p)' 'A„b,q, s= 0.5 if',q-,

b=s+ (-,'p)'~'A„~q, d= 1. 5- ~i~ q.

(5.11)

In order that v, be finite at g ='-1 (i.e. , for ri = -~),
it is necessary" that a=-n, wheren=0, 1, 2. . .
Thus, Eq. (5.10) leads to the eigenvalues

]= i[-n-0.5+ (-',p)'~'A„aq]/aq. (5.12)

Since solitons are formed only if discrete eigen-
values exist. This happens for

(-,'P)'~'A„~q & 0.5.
Using bri=rhx/P and p= aP, Eq. (5.11) reduces to

(2a./P)" A„m &1. (5.14)

It should be noted that one can also obtain eigen-

vg —'L (v2 ——q vg, (5.8)

where q =i(sp)A(t '= 0, q), and the prime denote dif-
ferentiation with respect to g.

From Eqs. (5.6), (5.7), and (5.8) one obtains

EPOCH dvx
(1 —L') d]s

—& d]

+~& (A ~~)2+ ((™O'+Alan
( (59)l2 1 j

where t' =tanh(q/bq), and aq corresponds to the
width of the soliton.

Equation (5.9) admits a solution which is finite
at t'=1 (i.e., for g=+~). We have

values for various other functional forms of the ex-
citation. It is expected that condition (5.14) should
not change dramatically.

VI. SUMMARY

In this paper, we have considered the nonlinear
propagation of an electromagnetic wave in a par-
tially ionized collisional gas. The nonlinearity,
originating from the velocity dependences of the
electron collision frequency, gives rise to non-
linear modification to the wave dispersion relation.
The wave is found to be modulationally unstable
against the low-frequency perturbations. It is
shown that unstable modulations may evolve to
localized pulses. Our study of the N-soliton pro-
duction should be useful to the understanding of
nonlinear wave phenomena occurring in a collisional
medium.

To the best of the author's knowledge, envelope
solitons are observed in collisionless laboratory
plasmas. " However, we believe that the results
of this paper should apply to collision dominated
gaseous, as'well as semiconductor plasmas. De-
tailed comparisons with available experimental ob-
servations are, however, needed in the future to
verify the theoretical results presented here.

Finally, we mention some of the assumptions in-
valved in our investigation. In particular, we have
ignored the heating of the electrons in the low-
speed domain due to the electromagnetic radiation.
Usually, after a time of the order of the energy.
relaxation time, the thermal speed of the conduc-
tion electrons might rise and consequently the dis-
tribution function may flatten. A detailed study
accounting for this particular effect is beyond the
scope of this paper. On the other hand, to have a
better understanding of nonlinear wave phenomena
in collision dominated plasmas, one must also re-
fine the widely used' 'o Harp model for the colli~
sion frequency.
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