PHYSICAL REVIEW B_

VOLUME 18, NUMBER 6

15 SEPTEMBER 1978

InAs-GaSh superlattice energy structure and its. semiconductor-semimetal transition

G. A. Sai-Halasz and L. Esaki
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598

W. A. Harrison
Department of Applied Physics, Stanford University, Stanford, California 94305
(Received 23 March 1978)

We performed a band calculation, based on the LCAO (linear combination of atomic orbitals) method, for
the InAs-GaSb superlattice. Of possible semiconductor combinations the InAs-GaSb is of special interest
because of indications that at a heterojunction interface the bottom of the conduction band of InAs lies below
the top of the valence band of GaSb. Our results show that the InAs-GaSb superlattice is a semiconductor
when the layers of the constituent materials are thin, and becomes a semimetal when the layer thicknesses
are increased. The critical InAs thickness for this transition is approximately 115 A, over which the
electrons from the valence band of GaSb “flood” the conduction band of InAs. For the thick-layer limit, we

treat the problem in a Fermi-Thomas approximation.

I. INTRODUCTION

For a semiconductor superlattice in which the
crystal structure is continuous across the inter-
faces that separate alternate layers of different
semiconductors, there is no difficulty, in princi-
ple, in calculating the energy bands. Such a cal-
culation for Ge-GaAs and AlAs-GaAs has in fact
recently been completed by Pickett, Louie, and
Cohen.! There are, however, two complications
relative to the calculation for a homogeneous semi-
conductor. First is the computational complexity
arising from the alternate structure which effec-
tively increases the size of the primitive cell that
must be considered. This is not serious even for
traditional methods of band calculation (othogonal
plane wave, augmented plane wave, etc.) and
we will see that for the linear-combination-
of-atomic-orbitals (LCAO) method we use it
can be handled without problems. The second
complication is in the determination of a self-
consistent potential, or equivalently the pa-
rameters entering an LCAO calculcation. Super-
imposed atomic potentials are generally used as a
starting approximation to the potential and in fact
are usually a rather good approximation to a true
self-consistent potential in a homogeneous semi-
conductor. However, one would worry that charge
redistribution at the material interfaces would
introduce dipole layers and important corrections
to the potentials. Fortunately a more careful
look'™ has indicated that these corrections are in
fact less than 0.1 eV and of the order of experi-
mental uncertainities in the band positions. Thus,
it is not unreasonable to proceed to a calculation
of the bands using the same parameters which are
used for the homogeneous system.

We select for study what may be the most inter-
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esting combination of compounds, InAs-GaSb. A
comparison of electron affinities of various semi-
conductors with compatible lattice distances indi-
cates* that this combination has a conduction band
edge on one side (InAs) lying lower in energy than
the valence band edge on the other side (GaSb).
This same special feature was noted also in the
theoretical prediction of band positions for all pos-
sible combinations.® Recent measurements of I-V
characteristics in experimental junctions, .pre-
pared by molecular-beam epitaxy (MBE), are con-
sistent with such a crossing of the bands.? (The
comparison of electron affinities shows that GaP-
Si would also exhibit this feature but the theory®
suggests that the result is erroneous due to appli-
cation of electron-affinity arguments to a polar-
homopolar junction. The experimental test has
not been made.) The InAs-GaSb system then is
the most extreme case having the greatest variety
of behavior with interesting technical possibilities.*
We proceed to a calculation of the energy bands,
in the neighborhood of the fundamental gap, in
alternate layers of N atomic planes (each layer
has a thickness 3Na) with a the unit-cube edge of
InAs and N’ atomic planes of GaSb, stacked in a
[100] direction and will obtain the bands for vari-
ous thicknesses.

II. LCAO BAND CALCULATION FOR THE HOMOGENEOUS
SYSTEM

We begin with a minimal basis set (one s and
three p states on each atom) LCAO calculation in-
cluding only nearest-neighbor matrix elements. This
is sufficient to give a reasonable description of the
lowest conductionband at I" as well as the valence
bands for homogeneous semiconductors® and should
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be equally applicable to the heterogeneous case. A
universal set of parameters is available® which
would enable us to proceed directly to the calcula-
tion, but since the bands of both constituent semi-
conductors are quite well known it will be prefer-
able to “tune” the parameters to the known band
gaps and effective' masses of the homogeneous
materials.

We will perform the calculation for electrons
propagating perpendicular to the heterojunction
planes, in a direction which we will take to be the
z axis, a [100] direction. The energy bands for
the homogeneous semiconductor can be obtained
in analytic form for our minimal basis set, near-
est-neighbor LCAO description for propagation in
this direction. They have been given by Chadi and
Cohen,” with the neglect of spin-orbit coupling.
The upper valence bands consist of a doubly de-
generate heavy-hole band and a light-hole band,
degenerate with it at the center of the Brillouin
zone. Spin-orbit splitting drops one of the heavy-
hole bands to lower energy. The lowest conduc-
tion band is nondegenerate, with a minimum en-
ergy at the zone center. Since we will only be in-
terested in the bands nearest the gap we can re-
duce our basis set still further in the calculation
of the conduction band and the light-hole band by
discarding the p orbitals on the metallic atoms and
the s orbitals on the nonmetallic atoms. Their
energies are well removed from the region of in-
terest and any effect they have can be absorbed in
the parameters of the fit to the pure material.
This step is not essential, but it simplifies the
problem of the superlattice sufficiently to be worth
doing. In fact, because the bands are describable
in principle by as many Wannier functions as there
are bands, this is not really an additional approxi-
mation in the description of the two bands, but a
change in the importance of the neglect of more
distant-neighbor interactions.

In this context, the energy of the nondegenerate
bands can be written’

E=3(e,+€,) + (V3 +4VE sin®p)'/2, @
The wave number is related to ¢ by ¢ =tka, €, and
€, are the s-state energy on the gallium and the p-
state energy on the antimony in GaSb, for exam-
ple. Their absolute values are not important since
in the superlattice only the relative positions of
the bands have significance, and we take the rela-
tive values in the two materials from the more
complete calculation.® V, is a polar energy which
could be estimated from the difference in these
two atomic energies and the covalent energy; V,
is a matrix element which can be estimated from
the known internuclear distances.® However, we
choose to fit these to the observed band gap and
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FIG. 1. Energy bands for GaSb. The electron and
heavy-hole bands are shown as solid lines, the light-hole
band as a dashed line. The wave vector is given in units
of 2m/a. In the left panel we use the usual zone where
the edge is at 2n/a. The vertical line indicates -f‘;th of
the zone which is an artifical edge if the homogeneous
material is regarded as a superlattice of successive
layers, each 12 atomic planes thick. On the right-hand
side the bands are shown with the artificially introduced
superperiodicity of 12 atomic planes.

effective mass in order to more accurately des-
cribe the bands of the homogeneous material.

The heavy holes rigorously contain only p states
on the two atom types but will show dispersion (in
the nearest-neighbor approximation) if both are
included. They then are formally very similar to
the light-hole bands and are written

E=€+(V3,+4VZ,sin*¢)* /2. 2)

The relevant average energy € is the average of
the atomic p-state energies and we know® them
relative to the valence-band maximum of Eq. (1).
Again, the V,, and V,, could be written in terms
of the atomic-term-value differences and univer-
sal interatomic matrix elements but we instead
fit them to obtain the correct band position and
curvature. We then imagine the degeneracy lifted
by spin-orbit splitting such that the bands given
in Eq. (2) become nondegenerate.

The resulting bands, Egs. (1) and (2), for GaSb
are shown in the left-hand panel of Fig. 1, with
the zero of the energy scale at the vacuum level.?
This corresponds to a rather accurate energy-
band calculation for a limited region of energy with
parameters tuned to the experimental bands. The
necessary parameters for both GaSb and InAs are
listed in Table I. We will make the same band cal-
culation for the superlattice bands using the same
parameters.

Although these two equations give the band com-
pletely, we must note in detail where they came
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TABLE I. Parameters of the band calculation, All
values are in electron volts.

Gasb InAs
€ -8.69 -9.21
€ -7.88 -8.79
1A 0.405 0.21
V, 2.57 2.69
€ -6.07 -6.3
Van 2.62 2.91
Van 2.55 2.42

from if we are to make the same calculation for
the superlattice system. We show in Fig. 2 a pro-
jection of one of the lattices on a (010) plane. We
have assumed that the wave function of the nonde-
generate bands or the heavy-hole band can be
written as a linear combination of atomic orbitals.

IW>=;“jl‘I'j> ’ (3)

with a single orbital (p state or s state) from each
atom. The coefficients can be written in terms of
the wave number % of the state, which we have
taken to lie to the right. We have numbered the
atomic planes by n, increasing to the right, and
we see from the figure that all atoms in the odd-~n
planes are group-V atoms and are translationally
equivalent to each other, and all atoms in even-n
planes are group-III atoms, which again are trans-
lationally equivalent to each other. Thus the co-
efficients for every orbital in a given plane are the
same. We may label the coefficient u, of Eq. (3) by
the plane index ». Now to show that this is an eig-
enstate and to obtain its energy E, we substitute
Eq. (3) into the Schr8dinger equation, H |¥)=E |¥),
multiply on the left by a particular atomic state in
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FIG. 2. Projection onto the (010) plane and the number-
ing of the atomic planes for the host materials.

G. A. SAI-HALASZ, L. ESAKI, AND W. A. HARRISON 18

the nth plane (assumed orthogonal to all other at-
omic states), and integrate over all space: °

€yt 2Vn, ne1lner T 2Vn-1,nun-1 =Euu . (4)

€, is of course the energy (¥, |H |¥,) of the atomic
state in the crystal. V, .., is the matrix element
between nearest-neighbor atoms on the planes n
and n+1. The factor of 2 arises from the two
neighbors each atom has in the forward plane or
the backward plane. All orbitals may be taken
real so that V, ,,,=V,,, ,, but note from Fig. 2 that
because the p state on the group V is odd, the ma-
trix element with a group-III site to the right has
the opposite sign from that with the state to the
left. We write the magnitude of 2V, ,,, as V, to
accord with the notation of Eq. (1).

Now we may confirm that there is a solution of
the form

u,=ve"® for n even,

(5
u,=v,e'® forn odd,

with v, and v, parameters to be determined. (v’s
rather than u’s were chosen sincé though v,=u,, v,
=¢"#%,.) We substitute this form into Eq. (4) for
n=0 and for n=1 to obtain

€,0,— 2iV, sin(¢)v, =Ev, , ©)

2iV, sin(@)v,+€,0; =Ev,.

The same equations are obtained, by translational
symmetry, for all other even and odd n so if Eq.
(6) is satisfied, all other equations are satisfied.
The sign in the V, terms was chosen to accord
with Fig. 2, but changing the sign in both equations
does not affect the results. It is elementary alge-

-bra to solve for the energy E to obtain Eq. (1) with

Vi=3(¢,— €,).

We note that for real ¢ Eq. (1) has solutions only
over one band of positive energy relative to %(es
+€ p) and one band of negative energy. However,
continuing the equation to imaginary ¢ gives solu-
tions at all energies in the gap and continuing it
into the complex plane from 37 leads to solutions
at high and low energies. The corresponding ex-
ponentially growing or decaying solutions may be
ruled out in infinite homogeneous systems but
they become important when there are surfaces
and interfaces.

Before we leave the homogeneous system we
may reinterpret Eqs. (5) and (6) in a different way
which will be most useful for the superlattice sys-
tem. We may say that these equations allow us to
continue the solution at any energy from one part
of the crystal to another. For example, given the
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values of u, and %, we may obtain », and «,,,. This
is, of course, done by writing the general solution
as a linear combination of solutions propagating
(or decaying) to the right and to the left, e.g.,

u,=Avie ™ +Byje i"® for n even,

()
u,=Av?e’™ +Byje " for n odd.

(Note v; need not be the same as v;, etc.) A and
B are picked to fit a given u, and «, and then u,,
and u,,, are obtained immediately.

II.- CALCULATION OF THE BANDS FOR THE
SUPERLATTICE

We turn next to the superlattice system. Atomic
layers for 0 <z <N are imagined to be of one ma-
terial; those for N<n <N+N'’ are taken to be of
another; those for N+N’/<n <2N+N’, the first,
etc. (It is simpler to take N and N’ always as even
integers.) Translational periodicity told us that,
in the homogeneous crystal, states could be con-
structed with the coefficient for translationally
equivalent orbitals in planes %, and n, related by
ei2-m)p  where ¢ was given in terms of the wave
number. The reduced translational symmetry of
the superlattice tells us that states can be con-
structed with coefficients for orbitals in planes
with n, and »,, differing by an integral multiple
of N+N'’ related by a phase factor e #a("™)/4,

The wave number % in the superlattice is again in
the [100] direction but now is restricted to the
smaller Brillouin zone —47/(N+N')a <k <4u/
(N+N’)a and there are N+N’ times as many bands.

For the special case in which the two types of
semiconductors are, in fact, the same, this gives
a representation of the bands for the homogeneous
system in the smaller Brillouin zone. This is
illustrated for GaSb in the second panel in Fig. 1
for N=N’=12. Any measurable property of the
system calculated in terms of this representation
of the bands will be the same as for the usual rep-
resentation. In the left-hand side of Fig. 3 we show
the bands of InAs in this reduced zone; also note
that the conduction band minimum in InAs lies be-
low the valence band maximum of GaSb, as we in-
dicated earlier. )

A trick may be used to obtain the bands when the
two types are different. A solution within a single
layer is written in the form of Eq. (7), with » num-
bering the atoms within the layer, 0<n <N. This
solution can be continued into the next layer by
satisfying Eq. (4) with » corresponding to the last
atomic plane of the first layer and the first atomic
plane of the second layer. This leads to modified
coefficient A’ and B’ in the second layer. The
solution in that layer is given by Eq. (7) with A’
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FIG. 3. Band structure for superlattices consisting of
alternate layers each 12 atomic planes thick. On the side
panels both host layers are of the same material, GasSb
on the right and InAs on the left. These two are shown
for comparison with the middle panel which is the InAs-
GaSb superlattice. The energy scale is the same for all
three panels. k is in units of 2m/a. The light-hole bands
again are shown as dashed lines.

and B’, numbering atoms in the second layer O<#n
<N’. (Note that we now number from one in each
layer.) We similarly relate the coefficients A”
and B” in the third layer to those in the second
and, hence, also to those in the first. Thus we
have constructed a transfer matrix which contin-
ues the solution through the superlattice:

<An)=< T, 'T12)<A)=eu~+-m/4 <A>_ (8)
B” T,, T,,/\B B

The equality on the right-hand side results from
the fact that A” and B” are coefficients of an atom-
ic plane positioned exactly N+N’ planes to the
right from the plane of coefficients A and B. To
find a solution to the eigenvalue equation in (8) with
real or imaginary &, corresponding to propagating
or decaying states, the determinant of 7 has to be
1, and then the solution gives the superlattice wave
vector such that 2 cos[(N +N")ak/4] is equal to the
trace of T'.

Note first the properties of this matrix for the
special case in which all layers are identical,
corresponding to homogeneous material. Then it
is easy to see

PRIy AT 0
T=( o e_(m,w>. 9)

T obviously has a determinant equal to 1. The
trace is 2 cos[(N+N’)¢] if ¢ is real and 2 cosh[(N
+N") |¢|] if ¢ is imaginary, giving k=4¢/a, which
is just the definition of the wave vector for the
homogeneous case. Similarly, when the two semi-
conductors differ we may distinguish solutions
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which propogate from those which decay by eval-
uating the trace cf T'; when it is less than 2 we
obtain a propagating wave vector.

The procedure is now clear in principle, though
somewhat complicated algebraically. We select
an energy of interest and from Eq. (2) or (3), de-
pending whether we are dealing with the nondegen-
erate or the degenerate bands, and obtain ¢ in
each material which of course can be real or im-
aginary depending on the choice of the particular
energy. To perform this step we have to know the
relative energy scales in the hosts, that is, the
lineup of the bands at the interfaces. As mentioned
earlier, we take this parameter from the general
calculation of band lineups at heterojunction inter-
faces,® which places the bottom of the conduction
band in InAs 0.1 eV below the top of the Ivalence
band of GaSb. Next we solve Eq. (6) to obtain v,
and v, for each of the ¢’s obtained. Using these in
Eq. (7), we may satisfy Eq. (4) in the boundary
layers to obtain transfer matrices from AB to
A’B’ and from A’B’ to A”B’; multiplying these
two matrices we get the T matrix. We then obtain
the superlattice bands in the energy regions where
propagating solutions for % exist, that is where the
trace of T is less than 2. It is a straightforward,
albeit lengthy, exercise in algebra to verify that
the T matrix derived according to the procedure
given above has a determinant of 1. Generally we
carried out the procedures by numerical methods.
A resulting plot is shown in the center panel of
Fig. 3, along with the corresponding bands (see
Fig. 1) for pure GaSb and InAs—all are for N=N"
=12.

IV. DISCUSSION

We note immediately from Fig. 3 that for the
selected thickness, despite the overlap between
the InAs conduction band and the valence band of
GaSb, the overall picture is similar to the GaAs-
Ga,_Al As superlattice case. The InAs-GaSb su-
perlattice is a semiconductor with a well-defined
gap between the valence and conduction band states.
At the zone edge, at k,=4m/(N+N’)a, gaps are
opening up and the dispersion in the z direction
flattens out, indicating the tendency toward quasi-
two-dimensional states. The degeneracy at =0
of the light and heavy holes is lifted, with the light
holes shifting to lower energies. This behavior
can be understood in the same framework of elec-
tron confinement that was successfuly used in
interpreting® GaAs-Ga,_ Al As superlattices. The
lowest conduction-band states are strongly con-
centrated in the InAs and become shifted in energy
because of the confining effect of the GaSb. On the
other hand, the valence band states are concen-
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FIG. 4. Dependence of the superlattice bands on layer
thickness. E,, LH,, and HH,, are the mth electron,
light-hole, and heavy-hole bands, respectively. At the
bottom of the panels the number of atomic planes is
given for each host. Arrows indicate the motion of the
bands with increasing layer thickness. In each panel 2,
is in units of 4n/(N+N’)a. Note that for the 76-76 panel
the first heavy-hole and electron bands have crossed.

trated in the GaSb and the InAs acts as an effective
potential barrier. It is not surprising that for the
thin layers selected in Fig. 3 the InAs-GaSb super-
lattice is a semiconductor, since all combinations
GaAs, GaSb, InAs, and InSb are semiconductors
and any alloy might be expected to be, whether
ordered or not. At the same time, we know that
for thick layers the confinement effects become
smaller and in that limit, just as for bulk mater-
ials, elecirons must spill from the GaSb valence
band to the InAs conduction band. Our calculation
shows this trend toward a “metallic” state. The
results are shown in Fig. 4, where we plotted the
bands in a 300-meV energy region around the gap
as a function layer thickness. The arrows on the
figure indicate the progress of the bands between
panels. As can be seen, the lowest conduction and
highest valence bands approach until crossing oc-
curs. Beyond layer thicknesses of ~115 A the
superlattice, although composed of two semi-
conductors, becomes semimetallic as a re-

sult of the ordered structure.

V. BAND BENDING IN SEMIMETAL REGIME

Once the layers are thick enough that the system
is no longer insulating, our neglect of charge re-
distribution at the interface becomes serious. The
electrons which “flood” from the GaSb valence
band to the InAs conduction band produce a strong
dipole layer and a self-consistent calculation is
required. This has not been carried through com-
pletely for such a system, but an approximate sol-
ution, in the thick layer limit, can be obtained
rather simply using a self-consistent Fermi-Thom-
as approximation. The solution on each side of a
heterojunction plane is exactly the same as the
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solution Keyes'® gave for the Si surface. The band
edge, measured from the Fermi energy which is
constant throughout the system, is given by
g B
E =

b (1 +z/zo)4 ) (10)
where z is the distance from the junction, E} is
" the band-edge position at the junction (z=0), and
z, is a screening length given by

2o = (2257 5€%/8m e B/ 2, (11)

where e is the electron charge and € the dielectric
constant in the material. This assumes a single
band of effective mass m*; when two bands are
flooded (heavy and light holes of masses m, and
m,), m* should be replaced by (m3/2+m3/2)2/3,

We estimate the band shapes in the superlattice
by superimposing forms from each heterojunction
plane. This is not strictly valid, even within the
Fermi-Thomas approximation, but should be qual-
itatively correct. We first have to divide the band
discontinuity (between the valence-band edge in
GaSb and the conduction-band edge in InAs) be-
tween the two sides, that is, to determine the
position of the Fermi energy at the junction. This
is done by integrating the total electron charge
[Eq. (10)] in the InAs side and equating it to the
total hole charge on the GaSb side. Knowing EY
for each side, the corresponding z, may be found
from Eq. (11). Then all parameters in Eq. (10)
are fixed and it may be plotted. We have illus-
trated the result in Fig. 5 for layer thicknesses
of 500 A. The approximations are appropriate for
such thick layers; however, they become progres-
sively less accurate as the layers are reduced to-
ward the values at which the system becomes in-
sulating. The strong asymmetry between the two
sides, evident in Fig. 5, is caused by the large
mass difference of the carriers between the GaSb
side (where the heavy-hole mass dominates) and
the InAs side. As the result of the small effective
mass in InAs and the small overlap between the
opposite bands in the junction plane, the elecirons
that flood from the GaSb to the InAs are relatively
few. For the situation in Fig. 5 this number is
3.6 x 10''/cm? for each junction, which corres-
ponds to an electron density of 3.7x 10*"/cm® at
the interface on the InAs side, and 1.8 x 10'8/cm3
on the GaSb side.

As the layer thicknesses further increase we ap-
proach the regime where the system cannot be re-
garded as a superlattice but rather as a succes-
sion of independent heterojunctions. The electron-
ic structure is that of a set of conducting planes
(the junctions) separated by insulating regions

AN A AW
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FIG. 5. Band edges of the superlattice hosts as a func-
tion of distance with each layer 500 A thick. The shaded
regions are gaps of the hosts. The region between the
InAs shaded region and the Fermi level, for example,
corresponds to occupied electronic states. As indicated
by the position of the Fermi level the valence band of
GaSb and the conduction band of InAs are only partly
filled, showing semimetallic character.

(the host materials). In estimating the width of
the junction region, we have to deal with a well-
known defect of the Fermi-Thomas approxima-
tion, namely, that it does not give a cutoff in the
particle density. In our case it leads to an ac-
cumulated free-carrier concentration proportion-
al to (1+2z/2,)™® which falls very rapidly away from
the interface but remains finite everywhere. Con-
sequently, we estimate that approximately twice
the screening length gives the junction region.
This means that free carriers penetrate ~ 1000 A
into the InAs and ~250A into the GaSb side of the
interface. Finally, we note that the presence of
large thermal carrier concentrations or of dopant
impurities would significantly alter the profile of
the junctions, but discussion of these effects is
beyond the scope of the present paper.

VI. CONCLUSIONS

In a restricted energy region, around the funda-
mental gap, we have calculated by a simple pro-
cedure based on the LCAO method, the energy
bands of InAs-GaSb superlattice for electron wave
vectors perpendicular to the layers. Our calcu-
lation showed the existence of two distinct regimes
in the superlattice band structure depending on the
thickness of the layers. For thin layers confine-
ment effects dominate just as in the familiar
GaAs-Ga,_ Al As case. The superlattice in spite
of the direct contact of filled and empty bands of
the two host materials remains a semiconductor.
The conduction-band states nearest to the gap are
concentrated in the InAs and the corresponding
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states in the valence band are chiefly in the GaSb.
The bands exhibit quasi-two-dimensional behavior
as the layer thicknesses increase.!! In the thick-
layer limit, over ~115 A for each host, the con-
duction and valence bands cross resulting in a
semimetallic superlattice. We found that for the
very thick layer limit a Fermi-Thomas approxi-
mation described the situation adequately.

ACKNOWLEDGMENTS

We are grateful to L.. L. Chang and S. T. Pante-
lides for helpful conversations. This work was
supported in part under an ARO contract. One of
us (W.A.H.) was supported in part by the NSF
through Grant No. DMR77-21384.

lw. E. Pickett, S. G. Louis, and M. L. Cohen, Phys.
Rev. Lett. 39, 109 (1977).

%G, A. Baraff, J. A. Appelbaum, and D. R. Hamann, J.
Vac. Sci. Technol. 14, 999 (1977).

3W. A. Harrison, J. Vac. Sci. Technol. 14, 1016 (1977).

%G. A. Sai-Halasz, R. Tsu, and L. Esaki, Appl. Phys.
Lett. 30, 651 (1977).

°H. Sakaki, L. L. Chang, R. Ludeke, C. A. Chang, G. A.
Sai-Halasz, and L. Esaki, Appl. Phys. Lett. 31, 211
@977).

8see, for example, W. A, Harrison, Festkoerperprobleme
XVII, 135 (1977). A more complete discussion will
appear in W. A. Harrison, The Physics of the Chemical

Bond (Freeman, San Francisco, to be published).

'D. J. Chadi and M. L. Cohen, Phys. Status Solidi B 68,
405 (1975).

8For the purposes of the present work the energy scale
for the GaSb has only significance in relation to the
energy scale of the InAs. We have chosen the vacuum-
reference level consistently with Ref. 3. In Ref. 4 the
vacuum level as measured by the electron affinities of
free surfaces was used as reference level.

’L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).

"R, W. Keyes, Comments Solid State Phys. 7, 53 (1976).

1y, sakaki, L. L. Chang, G. A. Sai-Halasz, C. A. Chang,
and L. Esaki, Solid State Commun. 26, 589 (1978).



