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Electron distribution around point defects (vacancies, voids, and impurities) in a number of simple metals

has been calculated using linear and generalized nonlinear-response theories and compared with that obtained

from a self-consistent calculation based on the density-functional formalism of Hohenberg, Kohn, and Sham.

Using these electron-density profiles, positron lifetimes, and angular correlation between annihilation

photons in vacancies and small voids are calculated. We have also computed the distribution of electric-field

gradients due to several impurities in Al. The results are compared with experiment.

I. INTRODUCTION II. POSITRON ANNIHILATION IN VACANCIES

AND SMALL METAL VOIDS

In the preceding paper', hereafter referred to
as I, we have given a modification, which is exact
in the limit of long wavelength, of the nonlinear
theory of Sj51ander and Stott of electrondistribu-
tion around point defects in simple metals. To test
how good this theory is, we have compared the
electron-density distribution around a vacancy, an
eight-atom void, and a pseudoion in an electron
gas of density r,= 2.07 with that given by a fully
self-consistent calculation based on the Kohn-
Sham density-functional formalism. ' The density
profiles in all these cases have also been calcul-
ated in a linear response theory and in the original
Sj51ander-Stott theory. The purpose of this paper
is to make use of the results of the electron-den-
sity distribution around impurities and point de-
fects in simple metals to calculate quantities
which are experimentally observable. The pro-
perties considered here are (a) characteristics of
positron annihilation, such as the lifetime of posi-
trons and angular-correlation between annihila-
tion photons in vacancies and small metal voids,
and (b) electric field gradients in cubic metal
a11oys. Experimental investigation in these bvo
areas has begun during recent years and data,
although scarce, are now available for compari-
son with theory.

This paper is divided into two main sections.
In Sec. II we discuss the positron annihilation in
vacancies and in small metal voids, and in Sec.
III we calculate electric field gradients at Al-host
lattice sites due to Mg, Ga, Ge, and Si impurities.
The results are summarized in Sec. IV.

A. General considerations

dr ' r 'P n r

where

I'(n) = (2+ 134 n) &&10' sec ' (2)

is the annihilati. on rate for a homogeneous electron
gas of density n. Formula (1) was given by
Brandt and is in the spirit of a local-density
approximation. g'(r) is the wave function of the

positron in the bound state and is given by

g'(r) = &„;(r)/r F, (r),

It was first observed by McKenzie4 that at ele-
vated temperatures the lifetimes of positrons in-
creased in metals. This result can be interpreted
in terms of the trapping models of Bergersen and
Stott according to which the increased number of
vacancies produced by the thermal excitation of
the solid trap the positrons, which then annihilate
with the inhomogeneous distribution of the electrons
around the defect. And since the electron density
inside the vacancy is less than the average density
of the host, the lifetime of a bound positron is
usually larger than that of a free positron anni-
hilating in the bulk. Thus the positrons can be
used to probe, although in an average sense, the
electron density around a vacancy in solids. The
same is true for a void in a metal.

The annihilation rate & of positrons in an in-
homogeneous electron gas can be written
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where U'(r) is obtained by solving the following
radial Schrodinger equation for bound states:

f(f+1)l
2+ V. (~)-,

~
U„',(r) =- e'f.l;(r).

V, (x) and &",' are, respectively, the effective
positron-defect potential and the binding energy
of the positron in the nl quantum state. The effec-
tive positron potential V, (r) is given by

V, (~) =-V, e(~- a)

+ [V„„(n(~))—V„'„(n,)]+4 (n(~)), (5)

where. V, is the zero-point energy of a positron in
a perfect lattice and V' „is the positron-electron
correlation energy in the local-density approxima-
tion. The positron-defect electrostatic potential
4 is simply the negative of the electron-defect
potential described in I. The zero-point energy
has been taken from the work of Hodges and Stott'
and the positron-electron correlation energy from
the work of Bhattacharyya and Singwi'. a is the
radius of the defect. Thus knowing V, (r) from
E(l. (5), E(l. (4) can be solved numerically to
compute the bound-state wave function of the
positron.

The wave function of a positron in a shallow
bound state extends to large distances from the
defect, and, therefore, an appreciable part of the
positron can annihilate with the core electrons of
the host. The annihilation of positrons with elec-
trons outside the defect radius can be taken into
account by scaling the electron density outside
the defect in a manner suggested by West,
namely,

n'(r) =n(r)(1+ r, /r„),
where I", and I; are annihilation rates with core
and valence electrons, respectively, and are es-
timated from angular correlation measurements:

where g, (r) is the electron wave function in the
occupied state i. The angular- correlation curve
can then be computed from the expression

1(p, ) f=dppp(p), (9)
Pg

where p, is given by

e =p, /m, c,
8 being the angle between the two Z-ray quanta.

In order to calculate the electron charge density
around a defect, we have considered two models:
(1) a ". hole" in a jellium and (2) pseudopotential
model.

(10)

l. Jel/ium model for a defect

In this model a vacancy is created by digging a
hole of radius a corresponding to the Wigner-.
Seitz radius. Thus small voids of radii 2a and

3a would correspond, respectively, to the removal
of 8 and 27 atoms. The external potential corres-
ponds to an ion density,

n, (r) =n, 8(~ a), -
where n, =Z/0, is the electron density of the homo-
geneous electron gas with Z electrons in volume 0,.

Electron-density profiles around a monovacancy
and around 8-atom and 27-atom voids have been
computed using linear and nonlinear response
theory, the Thomas-Fermi (TF) model, and the
density-functional formalism of Hohenberg-Kohn-
Sham (HKS). Comparisons of these profiles has
already been made in I. In Fig. 1 we have plotted
the various contributions (Thomas-Fermi, elec-
trostatic, and exchange-correlation) to the self-

r,/(r, +r„)= 0.8&, /(w, +x„), (7)

where A, and A„are experimental areas under
core and valence electron parts of the angular-
correlation curve, respectively.

Interesting experimental information on the elec-
tron density can also be obtained from the study of
angular-correlation between two annihilation
7-ray quanta. Since the linear momentum of the
thermalized positrons is small compared with the
Fermi mome~turn of electrons, this measurement
furnishes information on the distribution of elec-
tron momentum. In the independent particle model,
the momentum density of the electron-positron
pair is

p(p) p flare @+ ~(.(r}t},(r})~',

0.4

0.4 0.8
r/Rli
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FIG. 1. The Hartree (curve 1), the exchange-
correlation (curve 2), and the total effective (curve 4)
electron-void potentials for a 27-atom void in Al vs
Y/ 8y Curve 3 is the effective potential in the Thomas—
Fermi case. The potentials are in a.u. and R„ is the
radius of the void.
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which is -1.85, 2.20, and 3.98 eV, respectively,
for a monovacancy and 8-atom and 27-atom void
in Al (r, =2.07). W in the surface problem has the
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FIG. 2. (a) The electron-defect potential for a mon-
ovacancy {curve 1), and 8-atom void (curve 2), and a
27-atom void {curve 3) in Al vs ~/Rs. Rs- is the
radius of a monovacancy (Bs =2.98 a.u.). E& is the
Fermi energy. (b) The normalized electron charge
density n (r)/no around a monovacancy (curve 1), an
8-atom void (curve 2), and a 27-atom void (curve 3) in
Al vs x/A~. The curves have been displaced with re-
spect to each other vertically for clarity.

consistent potential due to a 27-atom void in Al.
Relative importance of the various terms is simi-
lar for all other sizes of the defect. It is inter-
esting that the exchange-correlation potential is as
large as the electrostatic potential. Since the ex-
change- correlation potential is obtained in the
local-density approximation, one naturally wonders
about the importance of higher-order gradient
corrections to exchange-correlation energy in de-
termining the electron-density distribution. The
effect of these corrections has been studied by
Jena and Singwi" to first order in the nonlinear
screening of hydrogen in simple metals and by
Gupta and Singwi" to second order in the calcula-
tion of surface profiles. The gradient corrections
were found to be rather small. The total electron-
defect potential at the origin is greater than the
Fermi energy. Thus the charge densities computed
in the linear response theory (where the effective
potential is considered to be weak) cannot be re-
liable.

In Fig. 2(a) we have compared the total effective
potential of an electron for a monovacancy and
voids of 8 and 27 atoms in Al. Not only the range
of the potential increases linearly with the defect
radius, but the effective potential at the origin of
the defect is larger for increasing defect size.
At this point, it is interesting to compare the
quantity,
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FIG. 3. (a) The positron-defect potential for a mono-
vacancy (curve 1), an 8-atom void (curve 2), and a 27-
atom void (curve 3) in Al vs r/R+s. (b) The 1sbound-
state positron wave function g&~ (r) in a monovacancy
(curve 1), an 8-atom void (curve 27), and a 27-atom
void (curve 3) in Al vs r/Rs.

significance of a work function. Lang and Kohn's
value" of S" for r, = 2 is 3.89 eV.

In Fig. 2(b) the electron-density distribution
normalized to the average density of Al metal is
plotted for three sizes of the defect. It is inter-
esting to note that n(r)/n, is about 0.2, 0.01, and
0 for a monovacancy and for 8-atom and 27-atom
voids, respectively, . indicating that the strength
of the potential increases with the size of the de-
fect. Furthermore, the electron-density profile
near the surface of the defect gets increasingly
sharper as the defect gets bigger. Comparison
with the calculations of Lang and Kohn" for a
jellium of r, = 2 indicates that for a void of radius
10 A or more, the electron profile for all prac-
tical purposes, would resemble that for a surface.

To calculate the positron-annihilation charac-
teristic, we have first computed the effective
positron-defect potential using the self-consis-
tent electron density inthe absence of a positron
from Eq. (5). The results for Al are shown in
Fig. 3(a). There are two main features to be
noted. The positron-defect potential is attractive
and its strength increases with the defect size.
Secondly, the potential seen by a positron is maxi-
mum attractive at the center of the defect im-
plying that the positron would prefer to reside at
the center of the void. However, as the voids be-
come very charge, considerations of image poten-
tial could influence this situation.
With this positron potential, we have solved the

Schrodinger equation (4) for negative energy states
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TABLE I. Positron bound states and lifetimes in a
monovacancy, 8-atom void and 27-atom void in Al.

Size of
the defect

Bound
state

Binding
energy (eV)

Lifetimes
(ps ec)

Monovacancy
8-atom void

27-atom void

is
is
2s
is
2s
2P

—1.75
-6.31
-0.07
-7.87
—3.91
-1.52

243
399
210
465
386
331

to locate the existence, if any, of bound states.
The quantum states of the bound positron along
with the corresponding binding energies are given
in Table I. It is seen that the positron potential for
larger defects becomes strong enough to bind more
than one positron, the positrons with higher bind-
ing energies becoming more localized. Lifetimes
of positrons in these bound states are computed
using the positron wave function in respective
bound states from Eq. (1). The results are given
in Table I.

Although there are multiple bound states, be-
cause of the low flux the positron would always
prefer to go into the lowest bound state. It is for
this reason that in Fig. 3(b) we have plotted the
positron wave function in the 1s bound state for
three defect sizes. We find that while 35%%uo of the
positrons lie outside the vacancy radius, only S%%uo

and 1% of the positrons lie outside the radius of
8- and 27- atom voids, respectively. Thus the
effect of core electrons on positron annihilation
rate plays an insignificant role in voids. The cal-
culated lifetime of positrons (in Table I) in a
monovacancy is in good agreement with experi-
ment. Unfortunately, lifetimes of positrons in
small Al voids are not yet available. When
small voids of controlled size could be produced,
it would be interesting to check our theoretical
values against experiment.

It is, however, interesting to note that the life-
time of positrons increases markedly with the
increase in the size of avoid. This is an impor-
tant observation since it links the size of small
voids to the positron life. Positron annihilation
characteristics can therefore be used to momtor
the nucleation and growth of small voids where
conventional electron microscopy is found to be
inadequate. For large voids, the positron lifetime
as computed from Eq. (1) would tend to saturate
to a value of 500 psec (spin-averaged positronium
lifetime}. The use of the Brandt-Reinheimer for-
ula to compute the positron lifetime in the inhomo-
geneous electron gas implies that the positronium
would be formed in large metal voids. Although

there is fragmentary experimental evidence' '"
that the trapped state in large voids has some pos-
itroniumlike properties, and recent calculations
indicate" that such a state is energetically favor-
able, experiments done under strong magnetic
fields" fail to show any sign of positronium form-
ation. MacKenzie and Ben" have recently cau-
tioned their readers against using the later exper-
imental result as conclusive evidence that posi-
troniumlike states are notpossible in large metal
voids.

For very large voids (mean diameter 40 A )
lifetimes up to 595 psee have been measured by
Cotterill et al." in irradiated molybdenum. Re-
cently-, Cheng et aE."have measured positron
lifetimes in voids of molybdenum by varying the
temperature and dosage of irradiation and they
found that the lifetimes saturated to a value of
about 453 psec. The discrepancy between these
two sets of data in molybdenum is now believed
to be due to the presence of impurities around
which vacancies tend to cluster to form voids.

As shown earlier, the electron-density profile
at the internal surface of voids (whose diameter
& 20 A) resembles closely that of a metal vacuum
surface. Thus for voids as large as 20 A in dia-
meter, the image potential would form a major
fraction of the positron trapping potential in Eq.
(5). Calculations" show that positrons are trap-
ped at internal surf aces of large metal voids.
Thus for voids whose internal surfaces resemble
metallic surfaces, the positron lifetime would be
smaller than 500 psec (spin-averaged positronium
lifetime} notynly because the electron densities
in the region of void surface are bigger than
those in the center, but the core electrons of the
host ions would participate in the annihilation
process. The relative importance of image po-
tential as a function of void size is an interesting
problem for a future study since it would provide
an understanding of how positron lifetime behaves
as we approach the critical size, at which the void
resembles a surface.

In Fig. 4 we present the angular-correlation
curves normalized to equal areas for a mono-
vacancy, an 8-atom void, and a 2V-atom void in
arbitrary units. We find that the full widths at
half-maximum (FWHM) of these curves are 8.8,
7.3, and 6.5 mrad, respectively. TrifthKuser
et al. '~ have measured the angular-correlation
curves in a monovacancy and in a large void in
Al. Experimental values of FTHM for a mono-
vacancy and a large void are, respectively, 8.8
and 6.5 mrad, which are in good agreement with
our calculated values. Not much significance
can be attached to the agreement of FWHM be-
tween theory and experiment for a large void,
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A vacancy is created by removing one such
pseudopotential from the origin. Thus the total
Hamiltonian containing one vacancy at R„=0 is

H=T+Q nr(~ R„-)=H, -ur(r).

I 6
0
L

Q)
C 4

~ ~
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0 2 3 4 5

e [mrad)
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FIG. 4. The angular-correlation curve for a mono-
vacancy (dashed curve), an 8-atom void (dash-dot-dash
curve), and a 27-atom void (solid curve) in Al vs
8(mrad). All of the curves have been normalized to
the same area. The vertical scale is in arbitrary units.
Experimental points from Ref. 15 are shown as solid
do~

The response of the conduction electrons to such
an external potential is obtained by treating the
ps eudopotential nonperturbatively within the
framework of the generalized nonlinear response
theory for a two-component plasma, described
in I.

We have used the model pseudopotential of
Animalu and Heine" as tabulated by Harrison. "
To eliminate the large unphysical osciQations in
the pseudopotential form factors w(q) for large q
we have used a cutoff factor exp[-0.03(q/2k~)"].
Such a cutoff produced pseudopotential form fac-
tors that agree well with those determined empiri-
cally and are essentially zero for q/2k+)1. 5.

We have then extracted the bare -ion pseudopo-
tentials tag (q) by descreening the Animalu-Heine
form factors through use of the Hubbard dielectric
constant since it was used in the calculation of
Animalu and Heine. In real space, the bare-ion
potential for the vacancy in the jellium model is
found to be maximum repulsive at the center of

since we have not considered surface trapping.
However, the narrowing of the peak of the an-
gular correlation curves with the size of the void
is consistent with experimental data" in Al. The
decrease in FWHM with increasing size of the
void in molybdenum" is also consistent with our
results in Al, although the, broadening of the an-
gular-correlation peak"' "with increasing void
diameter still remains a puzzling result.

Using the jellium model, Manninen et a/. "have
computed the lifetimes of positrons in a large num-
ber of metal vacancies using both HKS and TF
methods for the calculation of n(r). In the follow-
ing, we describe another model of a vacancy in
simple metals —the pseudopotential model.

1.0

0.8

0.6
0

C

L

0.4C'

0.2—
r

2. Pseudopotential model for a vacancy

In this model, the electron Hamiltonian for the
solid is written

H, =T+Qm(r-R, ), (12)

where T is the kinetic energy of the electron and
the total electron-lattice potential is assumed to
be a linear superposition of the electron-ion
pseudopotential ze, centered at each ion site R„.

FIG. 5. The normalized electron density n(r)/no
around an Al vacancy in two different models vs x/ao.
The solid curve corresponds to the pseudopotentials
model of the vacancy. The dot-dash curve corresponds
to a "spherical-hole" in the jellium model. The solid
dots are the results of Kohn-Sham calculation for a
spherical-hole model.
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the vacancy, while in the pseudopotential model,
the potential is maximum repulsive for the elec-
tron at the surface of the pseudoion core.

To appreciate the influence of these potentials on
the distribution of conduction electrons around the
vacancy, we have plotted n(r)/n, for Al in Fig. 5

for these two models. While for a jellium model
the maximum number of electrons are repelled
from the center of the vacancy, in the pseudopo-
tential model the maximum number of the elec-
trons are repelled from a region around the radius
of the pseudoion core. This behavior is a mani-
festation of the precise form of bare-ion poten-
tials mentioned earlier.

In order to calculate the positron lifetimes in
vacancies in the pseudopotential model, we again
need to know the positron wave function. For this
purpose, we have replaced the positron-defect
potential by a square-well of radius a of the defect.
Such an approximation is not unreasonable in view
of the positron-defect potential presented in Fig.
3(a). The depth of the square well is then chosen
so that it reproduces the binding energy of posi-
trons in metals given by Hodges and Stott. We
find that the positron lifetimes are not sensitive
to the precise choice of the positron well depth.
Using the positron wave function thus computed
from a square-well model and the electron den-
sity in the mean-field approach, we have cal-
culated the positron lifetimes from Eq. (1). The
results are given in Table II for several simple
metals and are compared with the jellium calcula-

tions of Manninen et al. '3 Although the electron
densities in both the jellium and pseudopotential
models are very different, the lifetimes in the
two models compare favorably with each other.
Since the positron annihilation rate is an integrated
quantity, it is not very sensitive to the precise
nature of the electron distribution. The results
are in semiquantitaive agreement with experimen-
tal values in Table II.

B. Effect of lattice relaxation

It is to be noted that our computed positron
lifetimes in metal vacancies are generally
larger than the experimental values. So far we
have neglected the effect of lattice relaxation
around a vacancy on the positron lifetime. Al-
though this is difficult to treat from first princi-
ples, we can estimate its effect by following the
prescription of Blatt", who suggested that the
charge Z corresponding to a pseudoion due to
lattice relaxation reduces by the same amount the
volume contracts. In other words,

where Z, and 0, are the valence and v.olume per
atom in the unperturbed state. Q is the volume
occupied by the vacancy after lattice relaxation
and Z* is the charge contained in the relaxed
vacancy. Thus we have taken this effect into
consideration by reducing the strength of the
bare-ion pseudopotential by 0/0, and repeating

TABLE II. Positron lifetimes in monovacancies of metals in point-ion model.

Metal Expt.

Lifetimes in psec

Pseudopotential model
With No

relaxation relaxatien

Jellium model
without

relaxation
(Ref. 23)

% e' inside
vacancy

Na
Cs
Mg
Zn
Cd
Al
Ga
In
Tl
Pb

338
4i8
255"
240 c

232
243
260'
240'
230'
274'

389
433
277
224
250
204
2i0
235
247
258

405
462
3i5
249
277
243
249
302
3i3
304

39i
452
307
233
276
237
248
289
302
29i

32
4i
57
56
5i
65
5,7
6i
56
62
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the calculation of both n(r} and the positron wave
function.

The results are compared with experimental
values in Table II. Since the external potential
due to lattice relaxation is now weaker, the
electron density n(r) does not deviate from n, as
strongly as that inthe unrelaxed case. This causes
the lifetime to decrease, a result that brings theo-
ry into better agreement with experiment.

The results in alkali metals deserve some
special consideration, since the measured life-
times of positrons in vacancies are found to be
almost the same as those in perfect metals,
whereas the theoretical values even including lat-
tice relaxation effects indicate that the lifetimes
in vacancies should be higher than those in the
bulk. To understand this anomalous behavior we
note that for the lifetime of positrons in vacancies
and bulk to be different, the following three condi-
tions have to be satisfied: (i}The positron should
be bound to the vacancy, (ii) the trapping rate of
positrons should exceed the annihilation rate, and
(iii) the rate of escape of positrons from the bound
state should be less than the annihilation rate.

The first two conditions are satisfied for all
metals we have studied. In alkali metals, the
positrons lie in a very shallow bound state with
binding energy of 0.01 eV. In order to estimate
the frequency v with which the positrons knock on
the vacancy wall, we make use of the uncertainty
relation, hx aP=K. Taking hs to be the Wigner-
Seitz radius of the vacancy, we estimate this
frequency in Na to be 3.54@10"sec '. Thus the
escape rate given by e ~~~"rv (where AE is the
binding energy, 0.01 eV) is 6x10" sec '. This
is much larger than the annihilation rate, which is
typically 3 @10'sec '. Thus in alkali metals the
positrons escape the vacancy before they have @n

opportunity to annihilate with the inhomogeneous
distribution of electrons. This qualitatively ex-
plains the anomalous positron annihilation char-
acteristics in alkali metals.

We now turn to the discussion of electric field
-gradients in cubic metal alloys that provides in-
formation on the large r behavior of the electron
charge density.

III. ELECTRIC FIEI,D GRADIENTS

IN CUBIC METAL ALLOYS

The rapid loss of intensity of nuclear-magnetic-
resonance (NMR) signals in cubic metal alloys has
been attributed to the interaction of the nuclear
quadrupole moment of the host nucleus with the
electric field gradients produced by impurities at
the host sites, It is well known that the electric
i'ield gradients (efg) -at a nuclear site in a cubic

x dr~' s''
(

P,(cos 8rr) (15)

g»(r) is the Bloch wave function for the host con-
duction electrons, 8»r is the angle between fc„
and r, and y(r) is the Sternheimer antishielding
factor." dn(r) is the difference between the elec-
tron-density distribution around the impurity ion
in the host lattice and around the host ion, namely,

hn(r) =n, (r) —n„,„(r). (16)

Note that the Bloch enhancement factor in Eq. (2)
is independent of the impurity potential and de-
pends only on the band structure of the host. The
difference in the charge density, b, n(r) is, how-

ever, strongly dependent on the nature of the im-
purity.

Recently, Stiles and Williams" have studied the
efg due to Mg, Ga, Ge, and Si in Al and measured
the field gradients up to four near-neighbor sites.
They obtained the striking result that the efg at
the second near-neighbor site due to all these
impurities are small. Assuming that this may be
due to the property of the host, Holtham and Jena"
carried out a full band-structure calculation of
the anisotropy of the Bloch enhancement factor,
o. (kz) with Ps' along [110] (first neighbor), [100]
(second neighbor), [211](third neighbor), and [111]
(fourth neighbor) directions. They found that al-
though a (kr) along the second-neighbor direction
is small by about 20%%uo of that along first, third,
and fourth neighbor directions, the enhancement
was not small enough to explain the experimental
data.

Fukai and Watanabe" have calculated b n(r) using
Ashcroft pseudopotential'4 and linear-response
theory as outlined in I. Using the values of n(%r)

metal vanish due to symmetry considerations.
However, introduction of impurities destroys this
cubic order and gives rise to electric field gradi-
ents that extend as far as the fifth neighbor sites.
Experiments" on both powder and single crystals
have been performed and electric field gradients
at several host sites due to various impurities
deter mined.

The theory of the origin of the efg has been

discussed by both Bladin and Friedel" and Kohn
and Vosko." They show that for a single impurity
the asymptotic form for the efg distribution around
the impurity can be written

eq(r) =3 n eo. (Rr)an(r), (1

where n(kr) is the so-called Bloch enhancement
factor, "

[]yy(y)]P aoss Y

Ap r
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FIG. 6. The displaced electron-density distribution
m (r)/no surrounding a Mg ion placed in a jellium cor-
responding to Al metal (r, =2.07) vs r/ao. The indent
shows the charge distribution near the impurity ion
while the Friedel oscillations in the screening charge
density are shown on a magnified scale. The solid line
is the result of a nonlinear self-consistent calculation,
while the dot-dash line is the result of the linear-
response theory. The solid dots represent the results
of the self-consistent Kohn-Sham calculation. The
positions of the first and second near-neighbors of the
impurity are also shown.

of Holtham and Jena and the linear-response re-
sult for hn(r) from the work of Fukai and Watanabe,
one finds that the theoretical estimate of eq(r) is
as much as an order of magnitude smaller than
the experimental value. This discrepancy could
be due to two main reasons: (i) The theory of
Bladin and Friedel and Kohn and Vosko is inade-
quate to treat the efg problem even for the first four
neighbor sites or (ii) the charge-density distri-
butions around the impurity and host ions in the
linear-response theory are not reliable.

We have already emphasized that the charge-
density distribution around pseudoions in the non-
linear response theory is very different from that
of the linear-response theory. It is therefore im-
perative that a full nonlinear-response calculation
of the charge density around impurities in Al be
carried out to determine the electric field grad-
ients. Comparison of these theoretical results
with experiment would then yield reliable infor-
mation regarding the validity of the existing
theories of efg in dilute cubic metal alloys.

Using the bare-ion model potentials with appro-
priate cutoff factor (described earlier), we have
calculated the electron-density distribution around
Mg, Ga, Ge, Si, and Al ions immersed in a
jellium of r~ = 2.07 (AI density) in linear-response
theory, nonlinear-response theory for a two-com-
ponent plasma and the density-functional formal-
ism of Kohn and Sham as described in I. To
illustrate the differences in charge densities in

these formulations, we have plotted n(r)/n, around
Mg, Al, and Qe in Figs. 6, 7, and 8, respectively.

The electron densities in nonlinear- response
theory without. density derivative terms are found
to differ considerably both in magnitude and
phase and are not shown in the figures for com-
parison. While the nonlinear-response results
with the density-derivative term are closer to the
linear-response theory, both these charge den-
sities differ considerably from the Kohn-Sham re-
sult. Most likely reasons for this are already dis-
cussed in I and will not be repeated here.

Using the Bloch enhancement factors, c.(k~) of
Holtham and Jena, we have presented in Table III
the electric field gradients up to the first four
Al-neighbor sites due to Mg, Ga, Qe, and Si im-
purities. It is surprising that as far as compari-
son of calculated efg with experiment is concerned,
there does not seem to be much difference between
linear and nonlinear results. We shall comment
on this in Sec. IV.

Vacancies in Al can also be regarded as impuri-
ties that can give rise to efg at Al sites. Our esti-
mation of eq(r) at the first Al neighbor site due to
a vacancy using the calculated densities in the
Kohn-Sham formulation is -7.0x10" cgs esu.

In our calculation, the effect of lattice distortion
—a quantity whose magnitude is difficult to esti-
mate, —has been neglected. Carbotte" has esti-
mated that due to Mg impurity in Al, the first
neighbors move outward by 2%. This small dis-
placement would cause the first-neighbor efg to
change from -18.4 to -18.0 (using our Kohn-Sham
values).
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FIG. 7. The displaced electron-density distribution
n(r)/no around an Al ion placed in a jellium correspond-
ing to Al metal vs r/ao. The rest of the legend is the
same as that for Fig. 6.

IV. SUMMARY AND CONCLUSION

We have calculated electron-density distribution
around monovacancies, voids and impurities in
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TABLE III. Electric field gradient in 10'3 cgs esu at host neighbor site in Al alloys.

Impurity
Neighbor
location

Linear
response

eq(~)
Nonlinear
response Kohn-Sham

J zxpt.
f

(Ref. 32)

Ge

Si

-S.4
+ 1.4
-0.3
+4.2
-2.3
+ 0.9

+ 8.6
-1.2
+ 1.0

+ 3.6
+ 1.0
+ 2.5

-11.1
+ 1.7
-0.5
+ 5.9
-2.6
+ 0.8

+ 9.9
-1.3
+ 1.1

+ 5.0
+ 0.9
+ 2.6

—1S.4
+ 2.2
-0.6
+ 5.8
-2.6
+ 0.8

+ 9.8
-0.5
+ 0.2

9.2
0
3.1

10.8

15.5
2.2
3.8

13.3

2.8

several simple metals both in the linear- and non-
linear-response theories, and have compared
these results with those obtained from a fully self-
consistent calculation based on Kohn-Sham
scheme. We find that there is a considerable dif-
ference in both magnitude and phase between the
results of linear and nonlinear theories. The in-
escapable conclusion is then that even for the so
called "weak'* pseudopotential, the linear-response
results are not very reliable.

As regards positron lifetimes in monovacancies,
the agreement between simple theory and experi-
ment is reasonable. To obtain a more quantitative
agreement, the influence of positrons on the elec-
tron-density distribution and the effect of lattice
relaxation around the vacancies must be consider-
ed. The former can be treated within the modi-
fied Sjdlander-Stott scheme but at the expense of
considerable numerical' work. Being an average
quantity, the positron lifetime does not depend on
the precise electron-density distribution and as
such cannot be used to probe the latter.

Concerning the electric field gradients in pubic
metal alloys, the results are found to be very sen-
sitive to the precise form of b, n(r), which in turn
depends upon the nature of the pseudopotential for
the host and impurity ions. For example, as men-
tioned earlier, using Ashcroft pseudopotentials
and linear-response theory, the computed electric
field gradients are about an order of magnitude
smaller than experiment. On the other hand,
using still the linear-response theory and Heine-
Aberenkov model potentials with appropriate cut-
off factors, one gets a more reasonable agreement
with experiment in Table II. While there does not
seem to be a clear distinction between linear- and
nonlinear-response results for eq(r) in Table II,
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I I I I
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I I
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8

FIG. 8. The displaced electron density distribution
n (r)/no around a Ge ion placed in the jellium correspond-
ing to Al metal vs ~/ao. The rest of the legend is the
same as that for Fig. 6.

the near similarity must be regarded as fortuitious
in view of our results in Figs. 6, 7, and 8. The
effect of lattice displacement around impurities
could be important. The contribution to eq(r)
caused by lattice strain is not included in our
present calculation. Thus we feel that with a pro-
per choice of pseudopotential and, perhaps, lat-
tice displacement effects, it should be possible to
achieve agreement between theory and experi-
ment. The theories of Kohn-Vosko and Blandin-
Friedel give reasonable description of the electric
field gradients in cubic metal alloys. The separa-
tion of the efg into a Bloch enhancement factor (a
solid-state effect) and the response of a nearly-
free-electron system seem to be reasonable for
distances as close as the first-neighbor site.

So far our calculations have been done in the
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jellium approximation for the solid. The periodic
arrangement of ions in a solid is expected to mod-
ify the calculated electron-density distributions.
This effect can be incorporated, without too much

difficulty, within the spherical solid model intro-
duced by von Barth and Ambladh. 36 It could lead
to significant changes in the calculated efg but is
not expected to modify positron lifetimes.

*Work supported by the NSF through Northwestern
University Material Research Center and NSF Grant
No. DMR73-07659.
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