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A modification, which is exact in the limit of long wavelength, of the nonlinear theory of Sjolander and Stott
of electron distribution around point defects is given. This modification consists in writing a nonlinear
integral equation for the Fourier transform y» (q) of the induced charge density surrounding the point
defect, which includes a term involving the density derivative of yi2 (q). A generalization of the Pauli-
Feynman coupling-constant-integration method, together with the Kohn-Sham formalism, is used to exactly
determine the coeNcient of this derivative term in the long-wavelength limit. The theory is then used to
calculate electron-density profiles around a vacancy, an eight-atom void, and a point ion. The results are
compared with those of (i) a linear theory, (ii) Sjolander-Stott theory, and {iii) a fully self-consistent
calculation based on the density-functional formabsm of Kohn and Sham. It is found that in the case of a
vacancy, the results of the present theory are in very good agreement with those based on Kohn-Sham
formalism, whereas in the case of a singular attractive potential of a proton, the results are quite poor in the
vicinity of the proton, but much better for larger distances. A critical discussion of the theory vis a vis the
Kohn-Sham formalism is also given. Some applications of the theory are pointed out.

I. INTRODUCTION

During recent years, interest in the calculation
of electron-density profiles around point defects
(vacancies and impurities) in metals has been
heightened because of the possibility of probing
the density distribution through the measurements
of the eharacterxstxcs of positron ann~hQati, on'
in vacancies and the electric field gradients' a.t
host atom sites. The problem under considera-
tion is a nonlinear one, since the perturbation of
the defect on the electron gas is large and as such
emnot be handled by a linear theory. An extreme
example of nonlinearity is the electron distribution
around a fixed proton in a. metal. In most situa-
tions of interest, one uses some sort of pseudo-
potential for the defect, which is supposed to be
weak. Even in this case, there has always been
the nagging question of whether or not the often
used linear screening theory is in fact adequate.
This question can be resolved only through nu-
merical ca,lculations.

In the past, statistical methods such as the
Thomas-Fermis and nonlinear Hartree4 have been
used to calculate the electron-density distribution
around a defect. None of these methods are satis-
factory since they do not take the important effects
of exchange and correLation into account. The
former does not even give Friedel oscillations,
which are an important feature of the polarization
charge distribution. For these reasons we shaD
not diseUss them here.

More recently the density-functional formalism

of Kohn and Sham' has been used. In principle,
this method is exact. In practice, one normally
uses the local-density approximation for the ex-
change-correlation potential in the Kohn-Sham,
equation. A fully self-consistent numerical calcu-
lation of the electron density profile in the Kohn-
Sham scheme is by no means a trivial matter.
Besides, in this scheme it has not been found pos-
sible to treat the case of a moving impurity such
as the screening of a positron in a metal.

An entirely different approach to treat the non-
linear problem at hand was given by Sjolander
and Stott. ' These authors derived an integral equa-
tion for the Fourier transform of the polarization
charge around an impurity in an electron gas by
extending the theory of electron correlations by
Singwi et al. ' to the case of a two-component
plasma. On the basis of their theory, they were
able to predict positron lifetimes in an electron
gas for densities x, ~ 4. For smaller densities
~, ~5 their method broke down because it gave a
very large pileup of electrons on the positron.
This defect was later rectified by Bhattacharya
and Singwi' but in an ad doc manner. For a fixed
proton the Sjolander-Stott method also gave an
unphysical pileup of electrons. This failure was
attributed to the onset of an incipient bound state
which the method could not handle.

The purpose of this paper is to generalize the-
Sjolander-Stott theory for a "two-component
plasma" consisting of a static impurity and the
electron gas such that it is exact in the long-wave-
length limit, i.e., q-0. This modified version of
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the theory is used to calculate the electron dis-
tribution around a monovacancy corresponding to
a spherical hole in a jellium. This distribution is
then compared with that calculated in a fully self-
consistent manner using the Kohn-Sham formalism.
It turns out that the two distributions are very
close to each other. This agreement, we find,
becomes poorer as the size of the "void" is in-
creased. A similar comparison is made for the
case of a pseudoion in jellium. A critical examin-
ation of the generalized Sjolander-Stott scheme is
made vis a vis the Kohn-Sham formalism. Al-
though the present generalization marks a definite
improvement over the earlier scheme and prom-
ises to be of wide applicability, it is still unsatis-
factory for treating a singular attractive yoten-
tial, e.g. , that of a fixed proton~in an electron gas.

II. MATHEMATICAL FORMULATION

For the sake of clarity and completeness, we
shall divide this section into four subsections.
In Sec. IIA we generalize the local-fieM factor
G»(q) in the Sjolander-Stott theory as applied to
a single-impurity problem. This is done by intro-
ducing a density-derivative term with an unknown
coefficient a» exactly in the same way as is done
in the Vashishta-Singwi' theory of a homogeneous
electron gas. In Sec. IIB we impose the require-
ment that the effective potentials appearing in the
multicomponent generalization of Kohn-Sham
theory be identical to those in the zero-frequency
and long-wavelength limit of Sjolander-Stott theory.
This gives us an exact relation between the small
q limit of G»(q) and the density derivative of the
correlation energy e, of a single impurity in an
electron gas. In Sec. IIC we derive an exact ex-
pression for the unknown coefficient a„ introduced
in Sec. IIA. -We close this section with a brief
description of the method by which a self-con-
sistent value of a» and the electron distribution
surrounding the impurity are calculated. In Sec.
IID we recapitulate the Kohn-Sham method for the
determination of electron-density distribution
around an impurity.

A. Extension of Sjolander-Stott theory

Consider a two-component system consisting of
electrons with density n, and of impurities (mobile
or fixed) with density n, on a uniform rigid posi-
tive background. Let us apply two arbitrarily
weak external potentials V,'„,(r, t), which act only
on the ith component of the plasma. Following
the linear-response theory, we can write the in-
duced density in the ith component as

where 6e, (q, (d) and V,'„,(q, &()) are, respectively,
the Fourier transforms of 5n, (r, t) and V,'„,(r, t),
and X,.~(q, ~) is the density-density response func-
tion.

In the spirit of the generalized random-phase
approximation (GRPA), the induced density is
given by

]g Q Ql) Q~ (0

where g, (q, (d) is the noninteracting polarizability
of the i' component and g, ,(q) is the static effec-
tive interaction between the components i and j.
The set of equations (2) can be trivially solved to
give explicit expressions for (6n, (q, (())) and

(5n, (q, (d)). By comparing these equations with
Eq. (I), we immediately obtain expressions for
the response functions X„, X„, and X„. The ele-
ments of the dielectric tensor e,,(q, ((!) are de-
fined by

where 4,~({q) is the bare interaction between the
components i and j. %'e also define the Fourier
transform of the static density-density correlation
function (nm q) and the structure factor y, ,(q)
which are related by the fluctuation-dissipation
theorem to the imaginary part of X,~(q, (d):

(mqm q)=()s, (a,, +~ y„(q))

K4 6. q (d

where Q is the volume of the system. The partial
pair-correlation function g, ,(r) is related to y, ,(q):

In Eqs. (4) and (5), n, denotes the number density
of electrons.

A fundamental assumption in the approach of
Singwi eI; a/. ' is now introduced:

V(,~(r) =g„(r)VC;, (r),

from which it follows that

y„(q) =4„.(q)[l. —G„(q)],
where the local-field factor G„.(q) is given by

1 1 dq q'Q
G),(q) = -„—

@ (-) (2 ). ,—C;(q')~);(q -q') .

(5n, (q, (u)) = Q X,,(q, (u) V~„, (q, (d),
/=1 In the limit of n, -0, i.e., small impurity con-
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centration, the expressions for X» and X» become

xl(q, ~)
Xll(qq ) 1 q (m) O(m )

x..(q, ~) = x„(q, ~)x;(q, ~)8,.(q)c,.(q)/c „(q)

(9)

(10)

(y» = }t„and (»-—(t» by symmetry). }I„is nothing
but the response function of the homogeneous in-
teracting electron gas. Combining Eqs. (10}, (3),
and (4) gives

+.,(q) 11,.(q) = —
~) 2,(q, tr) rm ~ )

—1)ll q. p E~~ Q~ (d

x d&u[1 —G»(q)] .
Define

/(q) = dtrq', (q, tr) rm —1) .p 1
fl g'2 p qr (2))

(12)

( )
[1/e„(q, 0) -1]422(q)[l-G„(q)]

( )&»q. =
4„(q)

Equations (15) and (8) together form an integral
equation for r»((q) which can be solved numerically,
and the electron distribution n, g»(r) around the
impurity can be determined.

So far we have presented the standard Sjolander-
Stott theory . The appr. oximation given by Eq. (8)
for G»(q) is a straightforward generalization of
the approximation introduced by Singwi et al. '
(hereafter referred to as STLS). In the one-com-
ponent electron gas theory it is now known that
STLS approximation can be made exact in the small
q region by introducing an additional factor pro-
portional to the deviative with respect to density.
We refer the reader to the papers of Vashishta
and Singwi' and Niklasson eg al."for a detailed
discussion of this point.

We introduce here the following form for the
local-field factor:

G„(q)=(1+a„rr, )
dq Q'q

n,c,„q - 2m ~
q

e-q'y 0-q
(16}

The free-particle response function X', is given
by

0 ~n 1 1
2 tr —2 '2qm/, + (qtrrqq'/qm, +rq) '

(13)
where m, is the mass of the impurity particle. In
the limit of m, —~ (i.e. , fixed impurity), it is
straightforward to show that

f(q) = —[1/~»(q, o) —1]

Analogous to the one-component electron gas
theory, we shall now impose the requirement that
the small q limit of G»(q) be exact, and use this
condition to determine the unknown parameter ay2.
This is done in the following section.

B. Behavior of GI (q) in the long-wavelength limit

The guiding principle in this section will be the
exact sum rule (which is a generalization of the
well-known compressibility sum rule) according
to which the long-wavelength limit of the static
density-density response function is related to a
thermodynamic quantity, namely, the second
(partial) density derivative of the total energy of
the system. We shall essentially generalize the
conclusions of Niklasson et al."to a multicom-
ponent system in this sectiOn.

We once again consider a two-component system
of electrons and impurities in the presence of an
external field V', 2(r), which is static. The ground-
state energy of this system can be written

E =T,[n„n,]

+2 dl 4r 4j r-r 8jr grj,j =1

+ dr, „, rn, r +E„,n„n,

where the first term is the kinetic energy of a
system of noninteracting particles, the second
term is the classical interaction energy, the third
term is the interaction energy with the external
fields, and the last term is the total exchange-cor-
relation energy. Both Tp and E„,are functionals
of n, (r) and n, (r) The exc.hange-correlation energy
is given by

d„.[rr„rr] = —g f d rdr'q„(r- r')(rr(r)rr(r')).
jj

+ T[n„n,] —T,[n„n,] .

( ~ ~ ), denotes the correlated part and T is the
interacting kinetic energy of the system. For a
slightly inhomogeneous system, the exchange-
correlation energy can be expanded in powers of
n, (r) =n, (r) -n', :

E„,[n„n,]=E„,(n'„n', }

+ —Q f .dr f dr'ZQ(r-r', r' r,')
j,g

xn, (r)I,.(r') + 0(I'), (19)

where E„,(n'„n', ) is the exchange-correlation
energy in the homogeneous system, and N& is a
function of tr —r'~ and is determined completely
by the properties of the homogeneous system. If
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the external potentials have a very long wavelength
variation, then we can write

E„.[n„.n, ]=E„.(n'„n', )
K.".(q) = -4 „.(q)G„(q) .

In the long-wavelength limit we have

(28)

where

r -g Z"(r'„r', ) f d rrr, (r)r, (r),
ij

(20) lim C,.&(q)G, ,(q) = -Z„'~(0) = ——

(29)

In a similar manner we can write

T,[n„n,]= T,(n'„n', )

+- d rd r'E,' r-r';+'„+',

x n, (r)n; (r') + O(n'),

and in the long-wavelength limit

To[nx) no] = To(n~i, n', )

rd Q K,"(rr'„r', ) f drd, (r)d,.(r).
ij

(21)

(22)

(23)

The above equation gives us q-0 limit of the local
field factor G„(q) and it is related to the second
derivative of the exchange-correlation energy with
respect to the densities. The above condition is
the generalization of the compressibility sum rule
to a multicomponent system and we seek to find

a» [Eq. (16)j such that G»(q) has the exact (q-0)
limit given by Eq. (29).

C. Derivation of an exact expression for a»

In this section we derive an exact expression for
the correlation energy of an impurity in the elec-
tron gas using the, familiar Pauli-Feynman method
and relate it to a» via Eq. (29).

The Hamiltonian of a system consisting of a
single impurity in the electron gas is written

According to Kohn-Sham theory the ground-state
density n&(r) is determined by minimizing the
energy functional (Eq. 17) with respect to n, (r),
1.e.y

6T,[n„n,] 6E„,[n„n,]

+ V,„,(r)+ V&„(r)=0. (25)

The above equation determines the induced den-
sities n, (r) and n, (r) under the influence of exter-
nal potential and we would like to compare it with
the GRPA expression.

After some simple arrangement of terms, Eqs.
(2) and (7) can be written in the form

@„Pa)O;,(i)rrr, Pa, ~))(
6n, (q, (o)

x&q (0

+ V',
& (q, (d) + V'„(q, (d) = 0 . (26)

Comparison of Eq. (26) for &v=0 with the Fourier
transform of Eq. (25) leads to the following identi-
fication:

+ Pf d r'd„.(r —r')r, (P) = 0 . (24)

We caQ the last term the Hartree potential, V'„(r);
Eq. (24), using Eqs. (19) and (22), can be written
in the following form:

Q f d r'[tC,"(r —r', rr'„r') r)'d','r(r —r', r'„rr')P, (r')

V(X„X,) =—Q X. . . + Q X~(r, —R) . (31)
ij ij

The ground-state energy E, is given by

Z, (X„X,) = (e, IH(X„X,) Ie,), (32)

where I@o) is the exact ground-state function of
H(A.„A,,). Differentiating with respect to A.„we
have

Id =(e.j,'„" [d,).(,'~ o d) .(e. o ,
'~

)
(33)

(34)

The second term on the right-hand side vanishes
because the normalization of Iko) is chosen to be
independent of ~„so that

BED j. e»' =
2 &+. I g t; I

I+) . (35)

d) Q' +—
P=[ [++M(r, —O), ($0)

where ug —R) (=—4„) is the interaction energy of
the impurity at the position R and an electron at
r. %e introduce two interaction parameters ~, and
~, such that

H= T+ V(l, 1),

&o'(q) = -6;~&X~(q o) (27) Similar. ly,
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in Fig. 1. First integrating from (0, 0) to (1,0), i.e. ,

FIG. 1. Path of integra-
tion in the interaction pa-
rameter space for a two-
component system. Point
(0, 0) represents the non-
interacting system while
(1,1) represents the fully
interacting system.

E(1,0) —E(0, 0)

=—n', e'Q d&, [g»(r; &„,0) —1], (42)
1 ~ ~

' dr
0 r

' = (e, l g ~(r,. —R) je,) .
BA.2

The ground-state expectation value of the potential
energy can also be written in the following form:

we get the interaction energy of the electron gas.
E(0, 0) is equal to the kinetic energy of free elec-
trons. Further, integrating from (1, 0) to (1, 1)
we get

E(1,1)—E(1, 0)

f~"tr~ ~1

+n,Q d rN r g„r —1 (37)

whereg»(r) andg»(r) are the partial pair-corre-
lation functions. They have been defined earlier by
Eq. (5); 1 refers to electrons and 2 to impurity.
These pair-correlation functions will depend on
the interaction parameters ~, and ~, in the system.
Comparing Eq. (37) with

1

=n,Q dX, d rgg)[g»(r;1, 4) —1]. {43)
0

We now know the total exchange-correlation energy
of the system, i.e. ,

E„,= —n', e~Q d&, [g»(r; &„0)—1]
dr

p r

+(@01g K(li R) l@0) (36)

1

+nQ d~ drmr g„r 1 &2 —1 . 44
0

and using Eqs. (35) and (36), we get

(
BE0 1 2 2 dr

', 'Q [g„( )-1],
X2 )r)

(39)

Iimzu(q)G„(q) = -K'„',(0) = ——1 BE„,
(g

~ p FLY S2
(45)

In Sec. II B we have derived relation (29), which
we rewrite

2

Now Ep the ground-state energy, is a unique func-
tion of the interaction strengths ~, and ~„so that

%e define ~„ the correlation energy of a single
impurity, as

dE, = ' at&, + ' d&, . (41) 1
=n, d~, dry r

0

We let the full interaction be switched on (&, = 1,
A.,= 1) and calculate the total interaction energy of
the system in the following way. In the interaction
parameter space (see Fig. 1) the point (0, 0) repre-
sents the noninteracting system and. the point (1, 1)
represents the full interacting system. The inte-
gral of dE, will depend only on the initial and final
points of integration and will not depend on the
path of integration. We choose the path as shown

Then the following relation holds good:

B&c
limau(q)G»(q) =-
4f ~0 BSl

{47)

We shall show later how to calculate e, numerically.
First we consider the left-hand side of Eq. (47),
which, on using Eq. (16), becomes
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wl w MI

limi»(i()G„(i()= —lim(1+a, ki, )
—

( ), a(i(')r, (i(-i(')

8 1 + 1
-lim 1+ a,2n 2 q' dq'y» q' dp, q qp, + q sp q' + q

' + 2qq'p, ' ' . 48
-1

It can be shown straightforwardly that

+ 1

lim — d p. (qq' p. + q')fv (q' + q" + 2qq'p, )"'
(k»0 q

2
k dfv(q ) ~( i) (49)= —q + Q

From this variational principle a set of self-
consistent one -body equations are derived invo lv-
ing an effective one-body potential v,ff [n(r) r]
given by

v ff [n(r); r]= fv(r)+, + "' . (55)
n (r ') d r' 5E„,[n(r)]

We define an integral

2, dk'*kk'r„(t)')
k

k' k, +ka(k')} (k())
0

8 wi ll depend on the density of electron gas . Using
Efl. (50), Efl. (48) becomes

The one -body Schrodinger- like equation

(- (+'/2fn)v'+ v,f, [n(r); r]]()), (r) = v, y, (r) (56)

generates a set of wave functions (l), (r) and energy
eigenvalue s e, from which the exact ground -state
density of the system is calculated using

lim fv (fl)G „(j)= —1 + a„n, a
(51) atr)= f Ik, (r)r('r. (57)

The above expression for a» forms an important
result of this paper . e, can also be written in the
following form:

1 oo

e,=, dA, , q' dq fv (q)rk2(q, &,)
0 0

(53)

We now have a11 the equations necessary to do a
self -consistent calculation, which we shall briefly
describe in Sec. III.

D. Kohn-Sham scheme

Ac cording to the density -functional for malis m
developed by Hohenberg-Kohn- Sham, ' the ground-
state energy of the electron gas in the presence of
an external potential (of the impurity) u(r) is given
by

k(a(r)1= f a(r)a(r)&r+&. (a(r))

+
2 -, d r d r'+E„,[n(r)]
1 n (r)n (r')

(54)

where n (r) is the electron density in the system,
T,[n(r)] is the kinetic energy of a system of non-
interacting electrons having density n(r), and

E„,[n(r)j is the exchange-correlation energy func-
tional. The ground-state density n (r) is the one
which minimizes the energy functional E[n(r)j.

Noting that (3ff'n, ) = 1»z' and using Efl. (47), we get
the following expression for a12

..

a„= 4»' k»
" —kk(k») k» k

—kll(k»)) .ae. 98(k~)

(52)

Although the formalism is exact up to this stage,
we need some approximation for the exchange-
correlation energy. For a slow ly varying electron
density the local-density approximation (LDA) can
be used:

Z„[a(r))=f a„(a(r))a(r)dr, (58)

For a point impurity (like an ion or a vacancy),
we can make use of spherical symmetry to write
down the equation obeyed by radial wave function
R„(r):

2 + v ff (r)+, [rR„,(r)] = ck[rR~, (r)] .1 d' l(l+ 1)

(60)

v ff (r) is chosen so that it is zero far away from

where e„,(n) is the exchange-correlation energy of
a uniform electron gas of density n . The correc-
tions to LDA have also recently received attention. "
In view of recent estimates, "which show that the
gradient corrections are not very significant in
cases where the total exchange -correlation energy
is not the dominant part of the total energy, we
shall use LDA in this paper. The experience to
date suggests that LDA gives good results even for
systems of rapidly varying density. We have used
the estimates of e„,(n) given by Vashishta and Sin-
gvi . In the LDA the exchange- correlation potential
is given by

gk [ (r) ] ( ( )) nd~„(59)
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the impurity. For continuum (scattering) states
c~ = —,'O'. Atomic units are used in the calculations.

The asymptotic form of the radial wave functions
ls

y„(q)=( -( 4, O„gq)+ (+a„a,1 q' d
&„q 4me' dsl

d'k %*q
(2 )3 q

+»%)y,.$ —q) . (66)

R„(r)- cosy» j,(kr) —sinrt»m, (kr), (61)

where j, and n, are the spherical Bessel and
Neuman functions, respectively, and g„, is the
phase shift. The induced charge density due to
impurity potential is given by

The linear theory result is obtained by letting

G»(q)=0, i.e.,
2

r;(s) , , =( )
—. () 4... @.(4)

ll
(69)

aa(r)= f )e, (r))'-n,
f=x

00

2 dk k' Q (2l+ 1) [R))g(r) -jg(kr)]. (62)
0 i=0

In practice it is only necessary to take V-a partial
waves. The Friedel sum rule, which states that
the total displaced charge should equal the impurity
charge for complete screening, is expressed

Z =- Q (2t+1)q,(k,) .
2"

(63)
0

III. METHOD OF CALCULATION

We have chosen two examples to illustrate the
present theory. The first one is a model of va-
cancy in which it is represented by a spherical
hole in the jellium, and the second is a metal ion
represented by a model pseudopotential put in an
electron gas of appropriate density. Both these
calculations are done at r, = 2.07 corresponding to
Al metal. We shall take up realistic monovacancy
calculations, positron annihilation rates in vacan-
cies, and electric field gradients in dilute Al alloys
in the following paper. "

The vacancy is described by a jellium density of
the form

After some simple manipulations Eq. (68) becomes

~„(q) = ~;, (q)+((-~„))"(a)f ) r„())&()q)dk,
0

+'" s(q)f ) ),, '
'„* x(), a)d). , (vo)

where

&q= -11 3
6»(q) 16)l'8 k~

(71)

Ot+ e)
A(k, q) =— [t' —(k' —q')t]4„(t) dt . (72)

)a -qt

The expression for a» is given by Eq. (52) com-
bined with Eql (53). The integral equation (70)
for y» is solved by iteration requiring 10-15
iterations typically. The constant a» is self-con-
sistently determined as follows: We begin with
a»=0, compute a new value of a», and then sub-
stitute it again in Eq. (70). Usually two to three
such iterations lead to a value of a„which is self-
consistent to 1/g. For evaluation of e, [Eq. (53)]
a coupling-constant integration is required and it
was found that the following method gives a very
satisfactory answer in cases where the nonlinearity
is not very large.

We'define

p, (r) =n, e(r R„,), -
where R~s is given by

~w R'„s =Z/n,

(64)

(65)

E.(X.) =2, q dq 4„(q)y„(qA)
1

0

such that

(73)

(s, is density of electron gas in this paper). The
potential of the vacancy is then given (in a.u. ) by

dh 2@2(I(.2) .
0

(74)

a), (r)=4', (R&& --,'r'), r~R»
Sw~, gs

&-&ws3 r
and its Fourier transform is

(66)

Io, (q) = (32&a,jq')[sin(qR)(„) —qR)v, cos(qR~, )] .

(67)

substituting Eq. (16) in Eq. (15), we have

[e,(0) + 4e, (-', ) + e,(1)] .0.5
(75)

It is found that e,(1)= 2~,(—,')+ 6, where 6 is about

We evaluate e, (0) (which is equal to zero, of
course), e, (

—', ), and e, (l). In evaluating s,.(—', ) we
approximate y»(q„-,') by y„(q, —,'). e,(1) is evalua-
ted using actual y» with full impurity potential.
Now we fit the three points e,(0), e,(-,'), and e,(1)
by a parabola and for c, use the expression
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FIG. 2. The behavior of y,2{q) as a function of q/k~
for an Al vacancy (in the spherical hole model). Curve

1 corresponds to a&2= 0, while curve 2 has a&2= 0.88, its
fully self-consistent value.

101-15%of e,(1), implying that nonlinearity is
not very large in cases we have considered.

The dielectric function e»(q) was taken from
Vashishta and Singwi. We have checked the num-
erical accuracy of our procedure by varying vari-
ous parameters in the computation, e.g. , the inte-
gration mesh, upper cutoff limits in the integrals,
4k~ in numerical differentiation of e, and 8 in Eq.
(52), etc. The self-consistency of a» was typically
1%, while for y„(q) it was typically 0.1/c-0. 2.

For the calculation of electron distribution
around an impurity ion, we have for simplicity
chosen the Animalu-Heine-model pseudopoteptial. "
We cut off" the large q components (which are es-,
sentially unknown from empirical fitting proce-
dures usually employed) by a suitable cutoff factor
(in the case of Al ion reported in this paper we
choose" e ' ""'~"&i as the cutoff factor) Am. ore
important reason for doing this was to ignore the
(unphysical) oscillations in the pseudopotential in

q space. These oscillations are solely due to a
sharp step in the r-space model potential.

An interesting feature of the calculations was
that the self-consistent value of a» was always
found to be in the range 0.8-1.0. (It was found to
be so for all vacancies and impurity ions we have
studied, and also for the case of a proton and a
positron in the electron gas. ) a» has very little
dependence on the nature of the external potential
and the density i.e., r,) of the electron gas.

Lastly, it should be mentioned that in doing
Kohn-Sham calculations we have followed the
method for solving the Poisson's equation sug-
gested by Manninen et al."in the appendix of
their paper.
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I I I I I I I

I I I I

~ ~
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04
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IV. RESULTS

In Fig. 2 we have given as an illustration the
behavior of y»(q) for a vacancy in Al as a function

of q for two cases: (i) when a»=0, and (ii) when

a» has its fully self-consistent value (0.88). The
value of y»(0) is eciual to -Z in this case, and in

order to bring out the large correction to the q'

and q' terms of y»(q), we have plotted [y»(q)+2]/
(q/k~) vs (q/k~). This behavior is quite typical
of all the cases we have studied.

In Fig. 3 we show the reduced electron density
around a vacancy (spherical-hole model) in a
jellium of r, = 2.07 as a function of distance in

a.u. for various theories. The inset shows Frie-
del oscillations on a magnified scale. The solid
circles are our results of a fully self-consistent
Kohn-Sham calculation. There are several points
to note: (a) Within the vacancy both the linear
theory and the Sjolander-Stott theory (a» = 0) give
results which are quite different from Kohn-Sham
results. (b) Present nonlinear results (a»-—0.88)

are quite close to Kohn-Sham results. It is to be
noted that with the present generalization of Sjol-
ander-Stott theory we achieve self-consistency of
the charge density in the sense of Kohn-Sham
theory. The "raw" Sjolander-Stott theory is clear-
ly not self-consistent in this sense. This was
earlier pointed out by Rasolt and Taylor. " (c)
Except for the Sjolander-Stott theory, the differ-
ences both in the magnitude and phase of the Frie-
del oscillations between different theories are in-
deed small. From our numerical work it is clear
that the slight differences between our results and

those based on the Kohn-Sham method could be

0.2,

0.0--- i I I I I I I

0 1 2 5 4 5 6 7 8 9 10

rlap

FIG. 3. The normalized electron density &(r)/+~
around an, Al vacancy in the spherical hole model @s a
function of r/ao. The radius of the vacancy is 3ao. The

dash-dot curve is due to the linear theory, while dashed
curve corresponds to Siolander-Scott theory (&&2= Q).
The result of fully self-consistent nonlinear theory with

a&2=0.88 is shown by the solid curve. Values deno'ted

by solid circles are based on a fully self-consistent
Kohn-Sham calculation. The inset shows the Friedel
osciBations on a magnified scale in each case.
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further reduced if we could push the numerical
accuracy in solving self-consistently the Kohn-
Sham equation. This we did not think necessary
in view of the large computation time involved.
However, some differences are bound to be there
and these should be attributed to the neglect of
the gradient corrections in the Kohn-Sham method
and to an approximate treatment of kinetic energy
in our scheme.

In Fig. 4 we have plotted similar results for the
case of an eight-atom void (rsdius, 5 a.u.). Frie-
del oscillations have not been shown. The effec-
tive potential (not shown here) is much stronger
(13.9 eV) and extends over a larger distance than
that in the case of monovacancy. It is clear that
the Sjolander-Stott theory gives a very poor den-
sity profile, which improves dramatically when a
self-consistent value of the parameter a„ is used
in solving the nonlinear integral equation (70).
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FIG. 5. Normalized electron density (&)/+p around an
Al ion represented by Animalu-Heine potential immersed
in a jellium corresponding to Al(~, =2.07). The labeling
of the curves is the same as in Fig. 3.
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FIG. 4. Normalized electron density &{&)/+p around a
spherical hole model of "eight-atom void" in Al {radius
=6p). Different curves are labeled in the same way as
in Fig. 3.

The density derivative term in this equation acts
as a negative feedback reducing the density within
the void and increasing it outside the void. Al-
though the present theory gives results which are
quite close to those based on the Kohn-Sham
method, the quantitative differences here are
more than those in the case of a monovacancy.
The linear theory gives an unphysical result near
the center of the void. If one disregards this, the
electron density in linear theory is reasonably
close to a nonlinear Kohn-Sham density. The same
situation persasts even for a void of radius 9 a.u.
for which we have performed similar calculations.
In the last two cases the height of the effective
potential is more or less the same (13.9 and 15.7
eV), the only difference being that the potential
in one case is more extended than in the other.

In Fig. 5 are shown the density distributions
around a positive Al pseudoion (Heine-Aberenkov
type with cutoff) in a jellium with r, = 2.07 in four
different theories. Again we see that the present
theory gives results which are different from those
of the linear theory and the Sjolander-Stott theory.
The differences between the results in Kohn-Sham
theory and our present nonlinear formulation are
greater than the corresponding situation in vacan-
cies. This could be due to the fact that while there
is no limit to the extent that charges can pile up
around an ion, the maximum charge repulsion in

the vacancy ease is always limited to no. Thus.
the effect of kinetic energy term may be more
important in the screening of an ion than a vacancy
and this term is not properly treated in the mean-
field approach.

In Fig. 6 is shown the reduced electron density
N(r)/n, around a proton as a function of distance
in three cases: (i) Kohn-Sham (local-density ap-
proximation), (ii) present theory (self-consistent
value of a» = 0.85), and (iii) Sjolander-Stott theory
(a»= 0). Here we wish to make several points.
Our Kohn-Sham results are the outcome of a fully
self-consistent calculation and they agree very
well with those of Popovic et aE. ,

"who used a
parametrized form for the effective potential in
the Kohn-Sham equation. Present theory gives an
enhancement factor n(0)/n„which is a i'actor of 3

smaller than that given by Kohn-Sham theory,
whereas the Sjolander-Stott theory gives a value
which is larger by a factor of 3. Thus in the vi-
cinity of the proton, results of both theories when

compared to those of Kohn-Sham theory are un-
satisfactory. We attribute this poor behavior to
two causes: (i) improper treatment of the kinetic
energy and (ii) incorrect form of G»(q) for large
values of q. It should be mentioned here that if
one is interested in getting only the correct en-
hancement factor, we can achieve this by treating
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FIG. 6. Normalized electron density around a proton
immersed in a jellium of r, =2.07. The dash-dot curve
corresponds to the Sjolander-Stott theory (&2=0), while
the dashed curve corresponds to the self-consistent non-
linear theory. The result of a self-consistent Kohn-Sham
calculation is the solid curve. The inset shows the
Friedel oscillations on a magnified scale.

a„as a parameter as was done earlier by Bhat-
tacharyya and Singwi. ' We have here refrained
from doing so. It may also be mentioned that al-
though Bhattacharyya and Singwi mere able to get
a reasonable value of n(0)/n„ their values of
hn(r)/n, in the region of Friedel oscillations were
quite poor. One also notices from the inset of
Fig. 6, where as(r)/n, is shown, that the present
theory results, except for a small phase shift,
are in reasonable accord with those of Kohn and
Sham, whereas the "ram" Sjolander-Stott theory
results are indeed extremely poor. The conclu-
sion then is that the present modification of the
Sjolander-Stott theory is still inadequate to treat
properly the electron-density distribution around
a singular attractive potential of a proton.

V. DISCUSSION AND CONCLUSIONS

From the results of Sec. IV, it is clear that the
present generalization of the Sjolander-Stott theory,
although only exact in the long-mavelength limit,
goes a long way to improve the results for the
electron-density distribution both around a vacancy
and a pseudoion in an electron gas. The agreement
between the Kohn-Sham and our calculated charge
densities around a vacancy is rather remarkable.
However, we have seen that as one goes to a bigger
vacancy (eight-atom void), i.e. , with increasing
strength of the perturbing potential, the quality of
this agreement gets somewhat poorer. This we
attribute to the fact th'at it is not enough to correct
only the small q behavior of the local field factor
G»(q); one needs to improve it for both intermedi-
ate and large values of q. Besides, as the void

gets bigger the density profile becomes much
steeper (in fact for a void of radius 10 A and big-
ger, it almost approaches the profile for a sur-
face) and in that case it is essential to treat the
kinetic energy exactly. In other words in Eg. (22)
one needs to take higher-order terms, of order
[R(r)]' and higher. This is not accomplished in
the present formulation, whereas in the Kohn-
Sham formalism the kinetic energy changes
arising as a result of rapid density variations are
properly accounted for through the V' operator in
the one-particle equation. This seems to be the
weakness of the present formulation. In fact it
is this inadequacy in the theory which leads to an
enhancement of electron density at the proton in
an electron gas (r, = 2.07), which is much smaller
than what we obtain using the Kohn-Sham method.
It should be mentioned here that in an earlier cal-
culation by Bhattacharyya and Singwi' the value of
the parameter a» was not a self-consistent one
[i.e., given by Eg. (52)] but was adjusted to fit the
experimental values of the positron lifetime for
r, = 6.

From our present study, we draw the conclu-
si.ons that the generalized version of the Sjolander-
Stott theory should be adequate in situations mhere
the density variation is such that one can neglect
terms of order [N(r)]' and higher in the kinetic
energy functional T,[s,n, ] of Etl. (22). In this par-
ticular situation, the present theory has the advan-
tage that it takes into account all gradient correc-
tions to the exchange-correlation energy function-
al. Present generalization can be easily extended
to a multicomponent plasma such as electron-hole
liquid in semiconductors and to a spin-polarized
electron gas, and me have done so. In the latter
case it should be possible to calculate the ground-
state energy beyond the random-phase approxima-
tion and also the gradient correction to the ex-
change-correlation energy functional. These re-
sults should be useful in treating the surface of a
spin-polarized electron gas within the Kohn-Sham
formalism. Hitherto, the calculations of the ener-
getics of the electron-hole liquid by Vashishta et al'."
have been based on the raw Sjolander-Stott theory.
It would be interesting to repeat those calculations
using the generalized version of the Sjolander-
Stott theory at least in the simplest situation of
Ge under a very large [111]strain. We do not
expect any significant change either in the. values
of the ground-state energy or the equilibrium
density, but mould not be surprised if there are
important changes in the value of the enhancement
factor and in the magnitude of the coefficients of
the gradient term of the exchange-correlation
energy functional. This needs to be confirmed
through a detailed numerical computation.
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