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Improved Pauli Hamiltonian for local-potential problems
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A recently published scheme for obtaining an approximate solution of the Dirac-Hartree-Fock equations for
an atom is adapted and applied to the related Dirac-Slater problem. For a given nl, one solves explicitly
only for one large component orbital instead of the four determined in the Dirac-Slater calculations. The
equation for this' single component is closely akin to the Pauli equation. [We find that the Pauli mass-
velocity and Darwin operators are accurate to only zeroth (instead of first) order in (E- V)/c . We present
forms which are accurate to first order for cases in which the expansion in (E Vl/-c' is valid. ] Atomic
calculations for uranium and plutonium demonstrate that this approximate method yields eigenvalues,
eigenfunctions, spin-orbit parameters, and excitation energies in close agreement with the Dirac-Slater
results. The method can be incorporated into existing nonrelativistic molecular and energy-band computer
programs (such as those for the molecular scattered-wave method and the KKR and APW energy-band
methods). This would then permit nearly relativistic solutions of the related problems without the
complications introduced by the four-component-type solutions. We discuss implementation of the method for
the scattered wave and APW methods.

INTRODUCTION

Cowan and Qriffin' have described an approxi-
mate method of solution of the Dirac-Hartree-
Fock equations for an atom. Here we apply their
methods to the Dirac-Slater atomic problem. ' In
solving this latter problem exactly, one computes
two radial wave functions G„» and E„» for each
set of the one-electron central-field quantum num-
bers n, f, and j . (Pictures of these functions ap-
propriate to the central-field Coulomb potential
may be found in Rose's book. ') The so-called
large component G„» approaches the nonrelativis-
tic central-field radial function P„, for small
atomic numbers. The radial electronic charge
density R(r) is given by the sum over occupied
orbitals

R(r) =g (2j+ 1)[Gs&&(r)+E'„,&(r)].

Taking the Dirac-Slater solutions for the uranium
atom as an example and integrating this equation
fromm=0 to r=~, we find that the integral over
the large components yields 91.25 charge units
and that over the small components gives 0.75
charge units. That is, only about 1% of the total
charge is described by the small components-this
strongly suggests that some sort of approximation
scheme is feasible. Vfe find that the Cowan-Qrif-
fin method, in which only the large components G
are explicitly treated, provides such a scheme.

d
2 1+—'ix'(e —V) dr

t' d is&

n(e —V) «dr r&

where V is the central-field potential, & is the ei-
genvalue (less the rest energy of the electron) and
where the quantum number k is related to the more
familiar E and j -according to 0 =1 for j= $ -& and
0= —(1+1)for j=l+ , . The seco-nd-order equation
used by Cowan and Griffin (and also derived in the
work of Choo and Pratt') is obtained by substitut-
ing E from the first of these equations into the
second:

dG, =(g+f)G,

with

g = -e+ l(l+1)/r'+ V,
and with

dV (d 1& ik+1~ dVf= -ff(e -V)'-fCR —
i

—--
I -ffRI

dr &dr rj '( r jdr
=II.(r)+a, (r)+ a..(r),

where

K= tx'./4 and B= [1+ ct'(e —V)]'—.
The operator f is the sum of the mass-velocity,
Darwin, and spin-orbit coupling terms. Equation
(3) of Cowan and Griffin, '

APPROXIMATION SCHEMES

The equations for the Dirac central-field prob-
lem' written in rydberg atomic units' are

—
d s+, +V+H„(r)+He(r)

~ G„i =a„,G„i,(
ds l(l+ 1)
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follows by dropping the spin-orbit term; following
those authors, we propose to handle spin-orbit
effects by first-order perturbation theory.

The difference between these results and what:
is usually called the Pauli theory4 is the presence
of the factor B in the Darwin and spin-orbit opera-
tors. The Pauli expressions arise from expanding
B according to

B= [1++ n'(e —V)] ' = 1 ,' n—'—(c—V)+ ~~en'(c —V)'

and although it is generally claimed' that the first
two terms of the expansions are retained in the
Pauli expressions, we see that only the first
term is retained —that is, B is set to 1; this mat-
ter is pursued in Appendix A. As Cowan and Grif-
fin have shown, use of the expansion is unneces-
sary. Its employment leads to fairly serious er-
rors for high Z atoms. The expansion is valid
only for K(e —V)(1 and if for small r we approxi-
mate V as -2Z/r and neglect e, the requirement
is x& 2.7 x 10 'Z which for uranium yields x& 2.4
x 10 ' a.u. [If the standard Herman-Skillman
radial mesh (see Appendix B) is used, this value
of r corresponds to the sixth mesh point. ]

We could get an approximate (because of the
neglect of the spin-orbit terms} solution of the
Dirac-Slater (DS) problem by a self-consistent
treatment of the second-order equations (5) for
the large components G and the first-order equa-
tions (2) for E. However, following Cowan and
Griffin, ' we go further and ignore the contributions
of the E to the self-consistent field V (which here
is that of the Xo. method') and solve only the equa-
tions for the G self-consistently. In so doing, we
require the various G' to have unit norm; in the
true DS calculations G'+E' is required to have
unit norm. As a check, at the end of this proced-
ure, which we call the relativistic Xn(R Xa}-
method, we used the self-consistent G and the
first-order equations (2) to generate a set of E„»,.
as we shall show, these approximate small-com-
ponent functions turn out to be surprisingly close
to those of the exact DS method.

Koelling and Harmon' have also discussed ap-
proximating the solution of the DS problem and
have given particular attention to spin-orbit ef-
fects in a spin-polarized system. The major dif-
ference between their approach and the present
treatment is in the method of solving for the large
components. Instead of solving Eq. (5}, Koelling
and Harmon solve two coupled first-order equa-
tions from which the effects of the spin-orbit op-
erator of Eq. (3) have been removed; these equa-
tions determine the large component 6 and an aux-
iliary function P and the small component E is

easily recovered (if desired) as a combination of
G and Q. The main advantage of this procedure
is that derivatives of the potential V are not re-
quired as they are in the present treatment (Ap-
pendix B). However, we have not encountered
any problems in calculating or using these deriva-
tives and, as we argue in the following section,
we obtain accurate self-consistent fields without
including the small components. The present
method, being a Pauli-like scheme, also has a
certain conceptual appeal as the relativistic effects
appear in the form of operators added on to the
conventional nonrelativistic operators. For prac-
tical calculations, the choice of the present scheme
or that of Koelling and Harmon would seem to be
largely a matter of taste and convenience.

NUMERICAL RESULTS FOR ATOMS

Table I contains a comparison of the eigenvalues
for the uranium atom as determined by the DS
method with those foun/ by various approximate
methods. 'These are the present R-Xn method, the
Pauli-Choo-Prattmethod (PCP) of Ref. 6which solves
the conventional Pauli equation for the Xn poten-
tial, the nonrelativistic Xn method"" corrected
by first order perturbation theory (P-Xn) for
mass-velocity and Darwin effects, and the uncor-
rected nonrelativistic Xn method. In Table II we
compare the R-Xn results with Dirac-Hartree-
Fock (DHF) one-electron energies. " It is known'
that Hartree-Fock (HF) and Xn eigenvalues have
different meanings and should not be directly com-
pared. In order to afford a comparison, we have
used the orbital, s from a R-Xo'. calculation to com-
pute DHF one-electron energies" (labeled R-Xc.—
DHF in the table); it should be noted that the R-Xo.
calculation for this comparison did not include the
Latter correction to the one-electron potential
function. These one-electron energies may then
be properly compared with the HF results; in
Table II, these latter are the exact DHF results
and the Cowan and Griffinapproximation' [Hartree-
Fock-relativistic (HF-R}] to the DHF method.
(Roughly, the HF-R method bears the same rela-
tion to the DHF method as the R-Xn method does
to the DS method. )

Table I demonstrates that the R-Xa method af-
fords an excellent approximation to the Dirac-
Slater method. The other approximations fail
most severely in their description of the valence
levels (Fig. 1). The solution of the Pauli equation
(PCP approximation) is the best of these but it,
too, fails to produce the proper ordering of the
valence levels. This appears to be an indirect
effect of the poor description of the 1s and 2s
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TABLE I. Comparisons of eigenvalues for various cal-
culations on U(f3d s ). Exchange parameter @=+3 and Lat-
ter potential cutoff used in all calculations. Negatives of
eigenvalues in rydbergs.

TABLE II. Comparisons of relativistic Hartree-Fock
one-electron energies for U(fad s ) with various approxi-
mations thereto. Negatives of energies in rydbergs.

nl DS R-Xe b PCP P-Xe d
nl DHF HF- R R-Xn-DHF Experiment

ls 8507.3
2s 1588.8
2p 1344.6
3s 401.0
3P 332.0
3d 261.7
4s 102 ~ 1
4P 79.2
4d 53.2
4f 27.3
5s 22.7
5p 15.5
5d 7.24
6s 3.52
6P 1.78
5f 0.253
6d 0.205
7s 0.356

8505.9
1590.2
1324.4
401.5
327.6
262.7
102.2
78.0
53.5
27.4
22.7
15.2
7.28
3.53
1.73
0.266
0.207
0.358

7235.8
1372.8
1334.7
349.7
330.5
264.6
88.3
79.0
54.1
27.9
19.3
15.2
7.47
2.89
1.82
0.366
0.243
0.314

8202.3
1523.9
1354.8
388.6
337.9
275.0
99.7
81.8
57.5
40.0
22.5
16.5
8.41
3.58
2.04
0.816
0.335
0.368

7378.6
1279.5
1238.1
322.2
301.9
263.9
81.0
71;7
54.2
30 ~ 0
17.6
14.0
7.71
2.64
1.64
0.716
0.286
0.297

ls 8559
2s 1612
2p 1365
3s 413.2
3P 342.5
3d 270.1
4s 108.6
4p 84.8
4d 57.5
4f 29.9
5s 25.2
5P 17.5
5d 8.29
6s 4.25
6P 2.24
5f 0.641
6d 0.373
7s 0.394

8591
1619
1357
415.0
340.8
271.6
109.0

84.3
57.8
30.1
25.3
17.4
8.37
4.28
2.17
0.663
0.376
0.403

8572
1616
1346
414.4
338.4
271.4
109.0
83.8
57.9
30.2
25.3
17.3
8.42
4.31
2.16
0.669
0.362
0.408

8497
1599
1374
407.8
337.9
266.3
106.0
82.4
55.5
28.4
23.8
15.9
7.3
5.2
2.67

DS total energy, -56118 Ry;
DS total kinetic energy, 68 868 Ry;
R-Xn total energy, -55 854 Ry;
R-Xe total kinetic energy, 65536 Ry.

SCF calculation performed with the Liberman,
Cromer, and Waber program, Ref. 2. Configuration
(5fgg2)' (5fVg2) "(6d3/2)' (6d5(2) ' (7sf/2) Eigenv»ues
quoted are centers of gravity of j doublets.

Radial mesh x&= 0.00125 (see Appendix B).
In this calculation we have used the r&-type starting

values (see Appendix B).
Xn eigenvalues from column 6 corrected for the mass-

velocity and Darwin effects by first-order perturbation
theory; in this calculation we have used the conventional
Pauli form for the mass-velocity and Darwin operators.

These results of relativistic Hartree-Fock calcula-
tions supplied by J. B. Mann (private communication).
Centers of gravity of j doublets are tabulated.

Reference 1 and R. D. Cowan (private communication).
These energies calculated from the R-Xn orbitals us-

ing formula from Ref. 12. SCF calculation as in Table I
except Latter cutoff was not used.

K. Siegbahn et al., ESCA-Atomic, Molecular, and
Solid State Structure Studied by Means of Electron
Spectroscopy (Almqvist and Wiksells, Uppsala, 1967).

the poorer agreement (especially noticeable for the
inner core levels) as compared with the uranium
calculations which used x, = 0.00125. Allowing for
that, we believe this table reinforces the conclus-
ions drawn from Tables I and II.

levels and this, in turn, we believe to be due to
improper use of the expansion of Etl. (6). The R-
Xn p levels are in worst disagreement with the
DS levels; the 2%—3% difference is most likely
traceable to the omission of the spin-orbit opera-
tor from the radial differential equations. Table
II illustrates that the 8-Xn -DHF description pro-
vides alMost as good an approximation to the DHF
results as does the approximate HF-R method of
Cowan and Griffin. ' Vfe had not anticipated this
aspect of the calculations and regard it as a bonus
of the R-Xn approximation.

Table III compares calculations for the plutonium
atom. AProPos of our previous remarks, column
3 is to be compared with column 2 and column 5
with column 4. In the R-Xn calculations, we em-
ployed the standard Herman-Skillman mesh" with
x, = 0.0025 (see Appendix i3). This accounts for

DS RXe pep PXa

Sd-0.2
5f
7s

6d

7s

-0.6—

LLI

-0.8—

\

l
1

l
5f

-I.5—

-l.9—
6p

6p

FIG. 1. Comparison of eigenvalues for upper levels of
neutral uranium. Data and notation from Table I.
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TABLE III. Comparisons of eigenvalues and one-electron energies for Pu(f as2). Exchange
parameter .o. =+3 and latter potential cutoff used for DS and B-Xn calculations.

DS R-Xe b HF-R R-X+-DHF d Experiment

1s
2s
2p
3s
3p
3d
48
4p
4d
4f
Gs

5p
Gd

6s
6p
Gf
7s

8967.7
1688.4
1420.4
429.0
353.7
278.5
110.5
85.5
57.8
30.4
24.7
16.8
8.06
3.60
1.73
0.154
0.340

8882.8
1673.2
1397.1
425.5
348.6
279.8
109.5
84.2
58.1
30.7
24.4
16.4
8.13
3.55
1.66
0.166
0.337

9055.2
1720.0
1431.1
443.7
362.3
288.8
117.7
90.7
62.5
33.4
27.4
18.7
8.98
4.37
2.10
0.554
0.376

8950.6
1700.1
1419.5
438.9
359.9
288.8
116.7
90.3
62.8
33.7
27.3
18.7
9.19
4.46
2.20
0.687
0.398

8957,2
1698.7
1430.9
436.3
359.6
283.5
114.6
88.7
60.3
31.0
25.9
17.2
8.04

DS total energy,
B-Xn total energy,

-59334 By.
-58 813 Ry;

DS total kinetic energy,
B-Xo'. total kinetic energy,

73729 Ry;
68 945 By.

See footnote a, Table I. Configuration (Gf5y2)
'

(Gfv)2)
' (»g]2) .

b Radial mesh x&=0.0025 (see Appendix B).' R. D. Cowan (private communication).
See footnote c, Table II.
See footnote d, Table II.

Experimental and calculated spin-orbit para-
meters for neutral uranium and plutonium appear
in Tables IV and V. The usual (Pauli} form of the
spin-orbit operator for a central-field problem is
given by4

where -l refers 'to J = E+ p and E+ 1 to J = E -z. The
C owan-Griffin approximation provides the expres-
sion

and we regard this form as more nearly correct.
[The Pauli form is a consetluence of cutting off
the expansion of Eq. (6).] For a central-field j

TABLE IV. Spin-orbit parameters (Ry) for uranium (fadis2).

DS DHF HF-R b Exper iment ~ Xo.d ICP'

2p
3p
3d
4p
4d
4f
Gp

Gd

Gf
6p
6d

187.5
43.2
5.26

11.3
1.24
0.23
2.68
0.24
0.017
0.44
0.012

185.2
43.3

5.43
11.3
1.28
0.24
2.68
0.25
0.018
0.43
0.012

187.8
43.7

5.29
11.5
1.29
0.25
2.76-
0.33

0,54

199.1
46.2
5.33

12.0
1.26
0.22
2.70
0.23
0.017
0.43
0.014

185.3
43.0
5.17

11.2
1.23
0.23
3.2
0.2
0.016
0.49
0.011

134.8
30.4
5.09
7.83
1.20
0.24
1.86
0.24
0.023
0.30
0.016

257.6
63.5
5.7

16.8
1.4
0.24
4.0
0.26
0.019
0.65
0.016

From Eq. (9). See footnote a, Table I.
As quoted in Ref. 1.
See footnote d, Table II,
Operator defined in Eq. (10) used in these computations.
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TABLE V. Spin-orbit parameters (Ry) for plutonium
(f6S2)

TABLE VI. 5f spin-orbit parameters (cm ) for as-
sorted actinides.

nl DS~ HF-R Experiment Configuration Label Experiment DS R-Xn ~0.

2p
3p

4p

4f
5p

5f
6p

208.08
48.4
5.82

12.8
1.40
0.27
3.12
0.28
0.021
0.49

205.4
48.4
6.02

12.7
1.44
0.27
3.10
0.29
0.022
0.47

222.3
51.9
5.9

13.6
1.43
0.25
3.15
0.27
0.02
0.48

206.3
48.2

5.74
12.6
1.41

3.28
0.32

' See footnote a, Table IU.
R. D. Co@ran (private communication).' See footnote d, Table II.

1dV
g (r)=uC-—r dr (10)

and

g(r) = ar, (r)

The spin-orbit parameters quoted for the DS and
DHF methods were computed from Eq. (9). In the
computation of the nonrelativistic Xo. values we
used the operator t;r(r) while for the R-Xn rela-
tivistic approximation we used the more accurate
f(r). The values quoted for the HF-R method are
due to Cowan and Griffin' and result from applica-
tion of the many electron Hartree-Fock treatment
of Blume and Watson. "

We see again that the R-Xn results match the
Dirac-Slater results (and, indeed, experiment)
very well. The nonrelativistic Xn results are in
error because the core functions are too difuse and
(as a consequence) the valence functions are too
compact; had we used the operator f(r) instead
of f~(r) for these calculations, the comparison
would be even worse. The PCP calculations, for
which the operator t;z(r) was used, yield parame-
ters that are no better than the Xn values; when
the Xa parameter is too small the PCP parame-
ter is too large by about the same amount, and
vice versa. [Use of the operator Lr(r) instead of
t(r) in the R-Xn calculation of the spin-orbit
parameters produces core spin-orbit parameters
about 20%%uo greater than those tabulated; it is im-

doublet, the spin-orbit parameter f„, is

2
~nl 21+ 1 ( nil+ nlrb )-

where the c's are the central-field eigenvalues.
The appropriate operators to be used in perturba-
tion theory applied to approximate levels which are
j degenerate are

Th+ f d s

Th" f's'
Th" f2

Th" f'
U fades

U f3d2s~

0+f3 2

U+ f4
U+2 f4
U+3 f3
U+ f2
U+5 fi

Pufds
Pu f's2

D

1195

1240

1035

1236

1773

2150

1290 1332 1858

1374 1396 1887

1134 1650

1426 1418 1904

1856 1945 2481

1832 1936 2470

1905 1990 2508

1682 1737 2280

1725 1757 2286

1977 2017 2525

2212 2261 2758

2442 2500 2988

2590 3159

2232 2372 2949

2264 2380 2951Pu' f's' 0 ~ ~ ~

Pu+ fe2 P ' ~ ~ ~

Pu' f'3
Q ~ ~ ~

Pu' f4 R ~ ~ ~

For purposes of identification in Fig. 2.
See Ref.- 14.' See footnote a, Table I.

2594 2394 2957

2550 2650 3200

2808 2898 3438

portant to use the proper f(r).] While outside the
purview of this paper, it may be that the too large
values of the HF-R 2p and 3p parameters arise
because the Blume-Watson theory" is nonrelati-
vistic —a relativistic generalization might include
the analogue of B in Eq. (6).

To illustrate the performance of the R-Xo. meth-
od for excited and ionic configurations, we give
in Table VI and Fig. 2 the 5f spin-orbit parame-
ters for a number of configurations of thorium,
uranium, and plutonium. The maximum disagree-
ment between the R-Xa and DS numbers is about
5'%%uo. Again, the nonrelativistic Xn values are too
large although, as Fig. 2 shows, their behavior
with change in configuration closely follows that
of the relativistic values. The deviation between
the calculated relativistic values and experiment
is largest for the f' configuration of Th". There
are some indications that there is appreciable con-
figuration interaction" here (probably with 6P'6d').

To check the usefulness of the R-Xn total en-
ergies, we have calculated the excited-state spec-
trum of Th", using ASCF methods (changes in
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I

5.6x 1(P-
& EXPT.
o DS
~ RXa

3Q — o Xo

I I I I I I I I I I I I 2.8

2.4

E
O

2.2—

2.6—
Th

2.0

l,6

l.2

'
A 8 C D

I I I I I I I I I I I
'I

I

E F G H I J K L M N 0 P Q R

SPECIES

0.8

self-consistent-field method in which the thres-
hold energy is taken as the difference in total en-
ergies of two SCF calculations); these results
are seep in Fig. 3. Both the R-Xat and HF-R re-
sults' were obtained by determining the energy
differences between the averages of configuration
for the ground and excited states and then shifting
by the spin-orbit energies. The R-Xn results
generally compare well with the DS results, al-
though the 6d excitations are in error by about
5000 wave numbers. However, we here see a big
difference between the predictions of the Hartree-
Fock and X~ methods. The former predicts the
6d- level to be below the Sf+ level, in disagree-
ment with experiment, while the latter yields the

EXPT. R-Xa D S
75xlO —7p+

3
HF-R DHF XQ

65—
7p"

55—

25
w

/
/

/
/

/

l5 —6d+/'
/

/
/

/
/—6d- /

/

5 —5f+

7s

\
'

', 'i 6d+

', 5fy
'i 6d-

6d+—
I

I 6d-—
II

I I

II
Il

Il
I

fg
II

II

II
I

I

I

II

II
II

IJ

I
II
II
II
II 5f+

I r
L.
I
I

FIG. 3. Excitation energies of Th ' as determined by
experiment, the present R-XQ. method, the Dirac-
Slater (DS) method, the Cowan-Griffin approximation
(HF-8) to the Dirac-Hartree-Fock (DHF) method, the
DHF method itself, and the nonrelativistic Xo.' method.

FIG. 2. Comparison of 5f spin-orbit parameters for
a number of actinides. Data and labeling from Table VI.

0.4

00 0.02 a04
r(a.u. )

0.06 0.08

FIG. 4. Small component F&
&

(y) for uranium.
Solid curve is Dirac-Slater function, dashes and dots
represent "after the fact" R-Xn function.

l.2—

0.8

. 4 I

0.04
I

0.08
r(a.u. )

2
I/2

I

0.12
I

O,I6

FIG. 5. Small components I"2& &&2(x) and I"2&
&

(r)~3&2
uranium. Solid curves are Dirac-Slater functions,
dashes and dots represent "after the fact" R-XG, func-
tions.

correct ordering. Presumably, correlation cor-
rections (or, what is the same thing, configura-
tion interaction) are necessary to correct the
Hartree-Fock results. The nonrelativistic Xn
method is clearly unreliable here —errors of as
much as 500% are found.

We now turn to a comparison of wave functions
and radial charge densities. Although the R-X&
calculations omit any direct computation of the
small components I', a measure of the agreement
between the large components G found by the R-Xn
method and those from the DS method can be de-
termined by employing Eg. (2) and the self-con-
sistent R-XG 6„, to obtain approximate I"„». We
anticipate the greatest disagreement for the inner-
most functions and in Figs. 4 and 5 we present the
calculations for the 1s and 2p shells of neutral
uranium. The agreement is surprisingly good;
the somewhat larger errors in the 2p functions
are, no doubt, associated with effects of the spin-
orbit potential, which is absent from the R-Xa
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calculations. (In the Ps calculations, the function
E f f is determined from G r y+ and F r s- from 6„»
in the R-Xn calculations both F's are determined
from the single G„,.) This determination of the
E's for the R-Xn calculation involves a renormal-
ization so that f,"(E'+G')dr=1. Hence, as well
as comparing plots of the functions we are able
to compare the norms of the small components
with those of the DS calculation. For uranium,
the largest difference occurs for E„,~,—the DS
norm is 0.128 while the R-Xn value is 0.125. With
these approximate E„,~ and G„„we defined a total
radial charge density Rs x (r) according to Eq.
(1). We then computed the integral of the square
of the deviation from the DS radial charge density,

(12)

For the uranium calculations, 4 = 0.6. Using the
R-Xn SCF charge density from the function 6 alone
yields a value of 2.0. Replacing B„x with the
nonrelativistic charge density Bx gives ~ = 45.1 t

APPLICATION TO MOLECULES AND SOLIDS

Pratt, "Hemstreet, "and Choo and Pratt' have
published work in which the Pauli forms of the
mass-velocity and Darwin operators have been in-
corporated into the molecular scattered wave
method of Johnson. " We would only suggest that
the corresponding operators for Eq. (3) should be
used instead. This change is formally trivial and
amounts to nothing more than multiplying the
Pauli form of the Darwin operator by the factor B
from Eq. (4). The necessary computational
changes to existing nonrelativistic scattered wave
computer programs can be handled by the meth-
ods of Appendix B. Our present experience with
the free-atom calculations suggests that these
changes will greatly improve the accuracy of such
semirelativistic computations when compared
against computations made by the fully relativistic
scattered wave method of Yang and Rabii." The
general methodology for iterating to self-consis-
tency is, of course, the same as in the nonrela-
tivistic case. As with the free-atom calculations,
the spin-orbit splittings should be accurately ob-
tained by use of first-order perturbation theory.

The method of Yang and Rabii is fully relativis-
tic in the same sense as the DS atomic method;
it has the advantage that all the relativistic effects
are included from the beginning with no necessity
for carrying out a perturbation calculation for
spin-orbit splittings at the end of the SCF process.
The disadvantages are that the elements of the
secular equation are somewhat more complicated
and that the construction of the charge density

needed for the SCF process is more difficult.
These disadvantages are a consequence of the form
of the basis functions employed in the method.
The method assumes a muffin-tin potential for
which the molecular orbitals within the muffin-tin
spheres are expanded in partial wave sums over
four component central-field wave functions
whose radial parts are the E and G of Eq. (2); in
the regions between the spheres where the poten-
tial is a constant (generally adjusted to zero), the
molecular orbitals are expanded in solutions of the
free-electron. Dirac equation. Considering R-Xo.
results for the free atoms, it may well be that
one could develop a viable two-component version
of the Yang and Rabii theory in which the central-
field wave functions would be taken as Pauli cen-
tral-field spinors whose radial parts would be
solutions G&(r) of Eq. (3) (which includes the spin-
orbit operator) while the exterior basis functions
would be solutions of the free-electron Pauli equa-
tion. The absence of the small components E
should lead to less complex matrix elements for
the secular equation and should simplify the
process of constructing the charge density.

We next consider application of the R-Xn meth-
od to a relativistic-augmented-plane-wave (RAPW)
energy-band calculation. " If we choose the per-
iodic potential to be of the muffin-tin form, then
the matrix elements of the energy-dependent
RAPW secular equation include the effects of the
locally spherically symmetric potential function
V within the muffin-tin spheres via a certain com-
bination of the functions E and G of Eq. (2). Using
the notation of Mattheiss, we write this combina-
tion as

q~ = (2/+), E"I,(R„E)/G~(R „R) (k+ 1)/R—, , (13)

where E and G are evaluated at the radius R, of
the muffin tin sphere and for energy E (which re-
places the eigenvalue c in Eq. (2)). As Dimmock
notes, "this expression is given more simply as

q, =g,'(R„Z)/g„(R„R), (14)

where g~(r, E)=G~(r, E)/r and gr(R„E)=dg~(r, E)/
dr~ s,. [This follows from substituting the first
of Eq. (2) into Eq. (13).] We ean, then, calculate
the g» directly from the exact second-order differ-
ential equation (3) and need not calculate the small
components E». By changing notation from the
quantum number 0 to the pair / and j, Mattheiss2'
shows that the g enter the RAP% matrix elements
in the two combinations,

+(7+1)gr and rf, —q, ,

where g correspond to solutions g with j= la &.
If we fo1.low the approach used in the R-Xa atom;-
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ic calculations and omit the spin-orbit operator
from the equation (3) for 6, then the distinction
between j values disappears and we have a single
q, =g,'(R„E)/g, (R„E)which includes only the
mass-velocity and Darwin effects. The first of
the expressions (15) then becomes (21+ l)q, and the
second vanishes identically. The structure of the
HAPW secular equation collapses to that of the
nonrelativistic APW method with the gf /g, re-
placing their nonrelativistic analogs, which are
generally called u,'/u, . The solution of this non-
spin-orbit (NSO) secular equation will then yield
Bloch functions and eigenvalues that include mass-
velocity and Darwin effects; the spin-orbit split-
ting can then be obtained by the use of first-order
perturbation theory or by solution of the exact
RAPW secular equation.

This omission of the spin-orbit operator in a
"first pass" at the band-structure determination
is very close to a procedure outlined by Mattheiss,
but it has some calculation advantages over his
scheme. Mattheiss suggests that spin-orbit effects
in the RAPW secular equation may be dropped by
setting the various q, -g, null. If this is done, the
structure of the RAPW secular equation again
reverts to that of the nonrelativistic APW
method" with the quantities [lg, +(1+1}g,']/(2l+1)
replacing the N,'/u, . [This can be only an
approximate neglect of spin-orbit effects for,
as we have 'seen, full neglect results in

qr while in Mattheiss' procedure pi and g
are still to be evaluated from Eqs. (13) or (14).]
To illustrate the differences between using g,
=g,'/g, and [lq, + (l+ 1)rp]/(2l+ 1) in the NSO prob-
lem, we have evaluated these quantities for /=1
using the potential function determined in the
course of the DS atomic calculation reported in
Table I and an arbitrarily chosen sphere radius
R, of 2.834 Bohrs (1.5 A}. (We might imagine that
this is a starting potential for a SCF band calcula-
tion on metallic uranium. ) The energy range
chosen is that appropriate to the 6p bands; that is,
the functions g have four nodes within the sphere.
In Fig 6 py is represented by the dotted curve
which has a zero at —2.13 Ry where g,'(R,}= 0 and
an asymptote at -1.34 Ry where g, (R,) = 0. (On
the right-hand side of the asymptote, g has five
nodes within the sphere, so the asymptote delimits
the 6p from the 7p region of energy. ) The j=—,

' and

j= ~ curves in the figure represent q, (j=—,) and

rp, (j= 2); their zeroesareat-2. 52and-2. 03Ry, re-
spectively, and the asymptotes are at -1.99 and
-1.12 Ry. The curve labeled Avg. represents the
weighted average (q, + 2n', )/3. In the energy re-
gion below the 2 asymptote, the difference between
the curve for g, and that for the weighted average
is not great (compared to the spin-orbit splitting
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FIG. 6. gg (j =~), gg(j=~), weighted average (Avg. )
and q ~(l = 1) computed for DS uranium atom potential.
R~= 2.834 bohrs.

-l.5

of roughly 0.5 Ry); the latter curve is "pushed"
below the former by the presence of the —,

' asymp-
tote with the difference between the curves in-
creasing as this asymptote is approached from be-
low. One would get plausible 6p NSO energy bands
in this region from the use of either curve although
we would prefer using that for q, . Qur concern
is not so much with this energy region as it is with
the region between the —,

' and 2 asymptotes (where
the functions g are formally 7p, &, and 6p,~,) where
the curve for the weighted average has an extra
branch. This branch results from combining very
large negative values of q', and very large positive
values of q, . (The latter are off scale on Fig.
6.) This branch is physically meaningless but
unless it is artifically removed from considera-
tion there is the very real possibility that the so-
lution of the corresponding NSO secular equation
will yield (false} energy band eigenvalues in this
interasymptote region. (These extra branches are
present for all nonzero l. Qur choice of /=1 for
illustration was made because the large spin-or-
bit splitting makes the differences more visible
on a plot. ) We conclude that if we wish to carry
out a RAPW NSO band calculation„ the use of a
single n, for each I value is preferable (as well as
simpler) to the use of the weighted average of n',

and n, . Koelling and Harmon' have tested this
procedure in a sample band calculation for gado-
linium and find good agreement with the fully rel-
ativistic RAPW results.

If we were to consider a self-consistent RAPW
NSO band calculation, we believe it is reasonable
$o proceed, as in the atomic case, by neglecting
any explicit computation of the small components.
Also, while we have confined this discussion to
use of a muffin-tin potential, we think it likely
that the suggested procedures would also be ap-
plicable to the more elaborate self-consistent
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non-muffin-tin HAPW problem treated by Elyashar
and Koelling. "

CONCLUSIONS

We have shown that application of the Cowan-
Griffin approximation to the Dirac-Slater method
gives results very close to those of the DS method
itself, even for atoms as heavy as the actinides.
The approximation omits explicit determination
of the small components of the central-field or-
bitals and treats spin-orbit effects by first-orQer
perturbation theory. These attractive features
make the approximation a candidate for inclusion
in molecular or solid-state programs and the suc-
cess with the atomic calculations augurs well for
such applications. Suggestions for incorporation
of the approximation into the molecular scattered
wave method" and the augmented-plane-wave
method" have been outlined. In the latter case,
we believe the approximation leads to a more trac-
table secular equation than does the original pre-
scription of Mattheiss. " We find that the Pauli
approximation (PCP) and the completely nonrela-
tivistic method plus first-order perturbation theory
corrections (P-Xo'. ) are poor approximations to the
relativistic method when actinide atoms are con-
sidered.

From consideration of the second-order differ-
ential equation satisfied by the large components
in Dirac central-field theory, we conclude that the
mass-velocity and Darwin operators are not
uniquely defined —only their sum is so defined.
We find that the usual Pauli forms for the opera-
tors are such that this sum is correct only to
zeroth order in the expansion parameter K(e —V);
in Appendix A we give expressions for the opera-
tors which are correct to first order, providing
the conditions of the expansion are satisfied. The
Pauli form of the spin-orbit operator [Eq. (7)] is
inaccurate when used in actinide atom calculations.
The spin-orbit parameters are obtained accurately
only if the correct form of the operator given in
Eg. (6) is used.

When used to calculate Hartree-Fock one-elec-
tron energies the R-Xn orbitals give these ener-
gies nearly as accurately as does the HF-R meth-
od, which is to say quite close to the Dirac-Har-
tree-Fock values. This accords with previous
experience with the respective nonrelativistic
methods; while using dramatically different one-
electron Hamiltonians, the Hartree-Fock and Xn
methods nevertheless yield very similar one-elec-
tron orbitals.

Applications of the Cowan-Griffin approxima-
tion' to the Xo. method is actually more straight-
forward than it is to the Hartree-Fock method
for which it was originally devised; one can assess

a, (r)= -Kav' —--
idr rj

=ma, (r),

(Al)

where H~ is the Pauli form of the Darwin opera-
tor. The expansion to first order in K(e —V) is

a, (r) =a,(r) -K(e —V)a,'(r), (A2)

so that if we wish to call the Darwin operator the
term H~~, then we must absorb the remaining term
into the mass-velocity operator which is then
(to first order)

a'(r) = K(~ —V)[(-c —V)+an~(r)]. (A3)

Now, H~ and the nero H ere correct to first or-
der in K(a —V).

The same result is obtained by a somewhat more
roundabout approach which has, however, the ad-
vantage of displaying the error in the usual deri-
vation. The second-order differential equation
for G before simplification to the form of Eg. (3) is

p' d j.
+ V-KB V' ——— G=qG,

2m . dr r (A4)

its shortcomings more easily in the Xn context.
For example, the neglect of the spin-orbit distor-
tion of the p orbitals appears more serious than
the neglect of explicit inclusion of the small com-
ponents; this is not so obvious from the original
calculations of Cowan and Griffin. ' While the
present work has considered relativistic Xn prob-
lems, the methods suggested should be applicable
to any relativistic one-electron problem employing
a local exchange-correlation potential.
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APPENDIX A: PAULI APPROXIMATION

We have said that we believe the usual (Pauli)
form of the mass velocity and Darwin operators'
is accurate not to first order but only to zeroth
order in K(e —V). This is, we believe, obvious
from Eq. (3), which is exact for the Dirac&later
theory. To properly obtain the results to first
order we use the expansion of Eg. (6) and the
Darwin term
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in which p2/2m is an abbreviation for d2—/dr2
+ I(l+ 1)/r' and where we have omitted the spin-
orbit operator. Equation (3) follows from multi-
plying the above by B ' and simplifying. If instead
we multiply (from the left) by B ' than we obtain
the operator equation

B (q —V) = B ~p /2m+ HD

leading to

(A5)

P /2m=(c —V) H" H~-— (A8)

into the above. The usual treatment as in, for ex-
ample, Ref. 4 is to use P2/2m =a —V; the omis-
sion of the other two terms is, we believe, the

fly in the ointment. H" can now be written

-K(e —V) [(e —V)+ K(& —V)'+ H~~]

1+K(& —V)
(A9)

This "partitioning" of the operators into HD and
H" is just as valid (if less convenient) than our
previous choice of H„and HD as in Eq. (3). (If
the spin-orbit operator is carried along in the
previous discussion, then with H" and HD as writ-
ten goes the spin-orbit operator H„=BH~,—this
is the same operator as in Eq. (3) as, of course,
it must be. ) Now the second and third terms in
the square brackets of Eq. (A9) are recognized as
the mass-velocity and Darwin operators as conven-
tionally written; they are of the same order of
magnitude and are of first order in K(e —V} as
compared with the first term (a —V). We then see
that to zeroth order in K(e —V) we have

c =p2/2m+ V —(e —V)[2K(c —V)+K'(e —V)']
(A6)

+ K(e —V )p/'/2m+ H~D,

which means the new form of the mass-velocity
operator H" is

H"„= -2K(e —V)' —K'(e —V)'+ K(& —V)P2/2m .
(A7)

We then substitute

APPENDIX B: NUMERICAL METHODS

Because of the presence of the Darwin operator,
Eq. (3) contains the first derivative of the wave
function, and the usual Numerov method of solu-
tion cannot be directly applied. Cowan and Griffin
treat this operator as part of the potential function;
at SCF iteration n they use the G determined in .

iteration n —1 to evaluate (1/G)dG/dr C.hoo and
Pratt2 write G(r) =y(r)Q(r) and by proper choice of
y obtain a differential equation (for Q) without the
first derivative term. Following Choo and Pratt
we define

g(r)=V(r)+ -K (~-V)2- —V' -&I(l+ 1) B
r' r

with K and B given by Eq. (4). The radial equation
then becomes

(d' d
Id„,+fd -g)G= 0—, f(~) KBv'. =

We set G=yQ and obtain

~x'+fr d x"+fr
(dr' 7 dr J j

(B2)

(B3)

Choo and Pratt then eliminate the first derivative
term by requiring

2X'+fy = o, (a4)

the equation for Q is
d2 I(I+ 1)
dr

+ V(r}+ -K(e —V)'r2

which yields in our case the multiplicative function

g as

y [1+K(g V))l/2 B 1/2

(It is assumed that y does not vanish; this is in-
deed satisfied for our problem —the vanishing of
y requires e —V= -75000 Ry. ) With

(B6)

H"„=-K(~ —v)', (A10) KB
I~

I d'(«}+ 3KB
V 2

~ (a7)
as we claimed. Using the expansion of Eq. (6) and
retaining only the first two terms we then obtain
to first order in K(c —V)

This equation is then salved for e and Q by the
Numerov method and G is recovered as

H" = K(e —V) [(a —V)+ H—~~], (A11)
G = [1+-,' n'(c —V}]'/'Q (S8)

in agreement with our previous results.
This proper first-order form of the operatars

will be more accurate than the zeroth order form,
but we can expect trouble whenever the conditions
of the expansion of Eq. (6) are violated. It is best
to avoid use of the expansion altogether.

Two initial values are needed to start the outward
integration by the Numerov method; a good choice
is important since relativistic effects are especial-
ly large at small r. In the R-Xn and PCP calcula-
tions we have used virtually the same prescription
as in the Dirac-Slater code. ' There the wave func-
tion is taken to behave as r", where
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(k2 ~2g2)1/2 (B9)

with Z being the atomic number. This exponent
is j (or k) dependent; for our functions G„, we used
an arithmetic average y, = & (y„,~, + y, &,). The
starting values for Q are then determined by di-
vision by the function y.

The radial mesh used in the calculations is the
telescoping Herman-Skilman mesh'0 in which the
first point r, is given by R, = (a22')'~'x, /4Z'~ ' and
where the standard value of x, =0.0025. A finer
mesh is obtained by reducing x, and we found a
choice of 0.001 25 helpful in improving the values
of some iluantities (such as the 1s eigenvalue)
which are sensitive to the values of the orbitals
at small x.

The total energy for an atomic Xn calculation
is the sum of the total kinetic energy, the Coulomb
energy of interaction among the electrons, the
energy of attraction between the nucleus and the
electrons, and the total Xn exchange energy. '
This holds for both the nonrelativistic and relati-
vistic cases. The computer programs actually
calculate the kinetic energy of an orbital eigen-
function from the orbital eigenvalue and the radial
differential equation; this avoids the calculation of
derivatives of the eigenfunction. The total ener-
gies and the total kinetic energies for the DS and
R-Xn computations are included in the tables.

An interesting and useful aspect of the DS kin-
etic energies turned up in the course of the present
work; this is made clearest by an example. Sup-
pose we consider the 1sy/2 shell for the DS calcula-
tion on the uranium atom (Table I). The norm of

E„„,= 2mc-'g (2j+ 1)(E„,~ ~
F„„), (810)

where the sum is over the norms of the occupied
small-component functions. Unfortunately, since
the R-X method omits consideration of the small
components such a useful numerical check is not
available unless, of course, one goes to the extra
trouble of calculating small components after
completion of the R Xn com-putation (see example
in main text).

the square of the small component E„,/, is
0.12V 551 and that of Gls /2 ls 0.872449. The ex-
pectation values of the kinetic energy for functions
of unit norm are 13031.62 Ry (small) and
12 886.57 Ry (large), yielding

Ez(ls, i,) = 0.127 551(13031.62)+ 0.872 449(12 886.57)

=12905.1 Ry.

This is a persistent pattern —orbital by orbital,
the small component has the higher kinetic energy.
Thus a necessary —although far from sufficient—
condition on the total R-X+ kinetic energy is that
it be less than the total DS kinetic energy. This
condition is indeed satisfied by the present calcu-
lations (Tables I and III).

For both nonrelativistic calculations and com-
pletely relativistic (DS) Xn atomic calculations,
the virial theorem provides another useful numer-
ical check. In the nonrelativistic case, it tells us
that the total energy is given by the negative of
the total kinetic energy. We have determined that
in the relativistic case it provides the relation
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