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The exact solution is given for the electron density and various electrostatic properties of the infinite- and
finite-square-barrier model for the effective potential of a jellium metal surface. It is shown that the analytic
results  usually given for the electrostatic potential at the surface, the surface dipole barrier and the work
function of these models, do not correspond to the exact solution. ‘We find those quantities to depend
sensitively on the electron density outside the surface region. The electrostatic part of the surface energy
however, is found to be insensitive to the precise form of the electron density outside the surface region.
These observations also apply to the linear-potential model for the effective one-electron potential.

I. INTRODUCTION

Currently there is great interest in simple mod-
els for the effective one-electron potential' near
a metal surface, for which an analytic expression
for the electron density can be obtained. Fully
self-consistent solutions for the electron density
are numerically cumbersome, so that even the
solution of this problem for the jellium model of
a metal surface has been a great achievement.2™
Moreover, such solutions give the electron den-
sity only numerically. It is therefore a great
advantage if models can be found that permit an
analytic solution for the electron density that
closely approximates the result of a fully-self-
consistent calculation of the density for the same
system. The evaluation of various surface prop-
erties is greatly facilitated and the results can
be expected to approach those of a self-consis-
tent calculation closely since the densities in both
cases are similar.® In addition, the availability
of analytic densities can be very helpful for the
study of fundamental questions concerning the in-
homogeneous electron gas, such as the feasibil-
ity of gradient expansions® or the merits of the
local-density approximation for the exchange and
correlation energy.”

Unfortunately, there are not many model poten-
tials for which the electron density can be ob-
tained analytically. And for those it remains to
be seen whether they give rise to an acceptable
density profile i.e., one close to the self-con-
sistent result for the system under consideration.
However, for the jellium model of a metal sur-
face, both good results for the self-consistent den-
sity?®+® and for effective one-electron model poten-
tials are available. Of the latter, the infinite and
finite- square-barrier potentials have been known
for a long time.®'® They have been considered

recently-merely as a device to generate electron
densities close to the self-consistent result,” but
also more directly as approximations to the self-
consistent effective one-electron potential
itself.'»*? Recently, linear potentials whose den-
sites approximate self-consistent densities more
closely have been studied extensively'®:*¢; these
also give better results for various metal sur-
face properties.

The purpose of the present paper is to show
that, contrary to the general understanding in
the square-barrier or linear-potential models,
the familiar analytic results for the electrostatic
potential, dipole barrier, and work function do
not correspond to the exact solution for these
quantities. The exact solution will be given and
its relation to the familiar results elucidated. We
want to stress immediately that our results do
not invalidate some of the work mentioned above;
in fact, the usual method of generating electron
densities may be an even better prescription than
that imposed by the exact solution. We wish to
point out however that the exact solution gives
rise to different results from those usually as-
sumed to be the case. In view of the wide inter-
est in these models, we feel that this is an impor-
tant observation.

The paper is set out as follows: in Sec. II, the
model is explained, and the expressions for the
potential, electron density, and surface dipole
presented. In Sec. III, the explicit forms for
these quantities are given for the infinite-square-
barrier model. In Sec. IV, the finite-square-bar-
rier model is discussed, and Sec. V has the con-
clusions.

II. MODEL

In order to establish our notation, we first de-
fine the well-known square-barrier models.*®1°
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FIG. 1. Configuration of the square-barrier model.

Let us consider a rectangular metal sample of
volume V=L _L L, in which the ions are replaced
by a uniform charge distribution of density »,. At
the (010) and (001) faces of the sample one im-
poses periodic boundary conditions on the wave
function of a conduction electron. Each electron
moves independently in an effective one-electron
potential along the x direction of square barrier
type with a step of height W=p?/2 at x=0. The
(100) surface of interest is located at x =—a, at the
other (100) face one imposes hard-wall boundary
conditions on the electron wave functions. That is
to say, there is an infinite barrier at x =—L =-(L,
+a+a,) with the surface at x=-L +a_ (see Fig.
1). Both a and a_ are determined by the require-
ment of charge neutrality. We refer to the end
of Sec. IV for a discussion of the independence of
the surfaces at x=-gaandx=-L+a,. Itisa
matter of taste to define the geometry and bound-
ary conditions in this way. The results obtained
below apply equally well to one surface of a metal
slab centered at x =0 with step boundaries at both
(100) faces.®

The one-electron wave functions are given by

5O = oy e T, E=G,8)
2.1)
and
2y \E oL
(pk(x)=—(m> sinde™™, x=0, (2.2a)
2y V"2 .
¢k(x)=(yL+1) sin(kx—0), —L<x<0,
(2.2b)
and
y=(p = BPR/2; S=arcsin(k/p).  (2.3)
_The possible values of k& are
RL=nm-06, n=1,2,3,... . (2.4)

This result follows straightforwardly from the
Schrédinger equation

(= V2 +12)0,(¥) =R 0,(x), %30,
_Vz(ph(x) =k2¢k(x)7 -Lsx<0

and the appropriate boundary conditions at x =—L
and x=0. Atomic units are adopted throughout

“(m,=r=|e|=1). If one recalls that the number

of allowed values for k, at fixed & is (1/4m)L L (k%
— k%), and takes the spin degeneracy into account
the electron number density ne(i’) for the ground
state is found to be

N
n(©=2 2 (1O = 5 3 6 -#) oW,

where N is the integer belonging to the Fermi-lev-
el electron. Or, on substitution of (2.2),

U}

RN

N
n,(x) 21 (B% - ¥?) sinzée'z”‘(yLy+ 1) , x=0
Nz .

(2.5a)

no) =3 f; (4= ) s = 0) (7755,

—-L<x<0. (2.50)

From Poisson’s equation one has for the electro-
static potential ¢(x), defined to be zero as x —-~,
(by which is meant a point deep in the interior of
the metal)

¢(x)=-41rf dx'[ dx"np(x")+A@ =(x)+ A,
% x’
(2.6)
with
Ag=@() = p(—») =47 [ dx’ [ dx"np(x").

(2.7)

Here

Ny (x) = ne(x) = Mbackground

=n,(x) —=n,0(-x - a)o(x +L - a,,), (2.8)
Ag is also conveniently expressed as
A¢=41rf dx xn p(x). (2.9)

Writing the electronic and background part sep-
arately [p(x)=9,(x)+P5(x)] and using (2.5), (2.6),
and (2.8), one readily finds
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x in26
d)”(x)zf’;(kz ~¥) L+1( S S

2
2 - &) ~L<x<0
,,,2;( yoL+1y =5
3, (x) = i - R S xx0
ex ‘pz "=1(F 7(7’L+1), x =V,

and
Vp(x)==2mny(L - a,)? — 4my(L — a - a,)x + 2mna?,

Ygx) =2mny(x +a), -L+a,<x<-a,

Ppx)=0, x=-a.

All of the above expressions are well known, but,
to our knowledge, it has escaped attention that the
usual analytic results for the electrostatic dipole
barrier and work function of these models do not
correspond to the exact solution.

The magnitude of the electrostatic surface di-
pole barrier depends, of course, on the way this
quantity is defined.® It is usually defined as?*

(Ag)=g(») -9, (2.12)

where ¢ is the average of the electrostatic poten-
tial over the metal sample:

=1 fm i, (2.13)

In another definition, the dipole barrier is mea-
sured with respect to some specific point in the
interior of the metal. An example is the expres-
sion given by (2.7),

80= ()= o) =ar [ ax' [ dxrnge).
(2.7)

It may often happen (see Ref. 4, page 247) that
9= ¢(x,) for any point x_ chosen in the metal in-
terior well outside the surface region. In that
case (2.12) and (2.7) lead to the same result for
the electrostatic dipole barrier. However, for
the infinite- and finite-square-barrier models
this is not the case. It turns out that @ #@(—).
Remember that ¢(-«=) is defined to be zero, be-
cause of the choice of boundary conditions in (2.6).
Moreover, the exact results for A¢ (and by the
same token for the work function) differ from the
expressions presently adopted, e.g., for the in-
finite square barrier model it turns out that A¢
equals (kp/T)(1 - 12 +5n2), not (kp/T)(1 - Z72).
We present the derivation of these results in Sec.
II1.

_ cos[2(kx - 0)] ) 2 E (k% - P*)R*

Zkz p n=1 (YL+1)
(2.10a)
(2.10b)
~-L<x<-L+a,, (2.11a)
(2.11b)
(2.11¢)

HI. INFINITE-SQUARE-BARRIER MODEL

We shall first treat the infinite square barrier
model, since in this case the exact expressions
for the electrostatic dipole barrier and work func-
tion can be obtained without making extensive use
of the Euler-Maclaurin expansion, as is necessary
for the finite barrier model.

A. Exact density

Letting p -~ in (2.5) one obtains for the electron-
density

n,(x)=0, x=0,

N

Z 2 _ 1?) (3.1)

— k?) cos2kx, -L<x<0,

3
?
i
hl"“

with 2=nnL.
The sums in (3.1) can be readily evaluated and
one finds

kr +ﬁ cos(2kpx)
1212 ° 4L2? sin®*(mx/L)

7 sin(2krx) cot(mx/L)

T 8L? sin®(mx/L)
=ny+p(x). (3.2)

The total density, therefore, is

n,(x) =ny—

nT(x)zp(x)’ —L+a_°6x<—a,°, (3‘3)

np(x)=ny,+p(x), —-Lsx<-L+a, or —a,<x<0.

In the limiting case [x|/L <1, valid near the met-
al surface, one obtains the result usually given
for the electron density

n,(x) =ny[1+(3/9°)(y cosy — siny)] (y =2kpx).
(3.4)

Since one is interested in surface properties,
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it is natural to use (3.4). We shall see, however,
that for these models not all surface quantities
depend solely on the electron density in the sur-
face region. As a consequence, if one uses (3.4),
one actually obtains the surface properties of a
model in which the density near the surface is
generated by a square barrier model and the re-
sulting expression is subsequently assumed to
hold throughout the entire sample. As we stated
earlier, this procedure may be just as valuable
for the purpose of generating a desirable electron
density as any other; however, it does not corre-
spond to the exact solution of the square barrier
model.

B. Charge-neutrality condition

The charge neutrality condition, which fixes
a,,’ reads

f np(x)dx =0,
-L
or, for the infinite-barrier model,
o - Ltae [
f p(x)dx+f nodx+f nydx=0.
-L -L ~Geo
The first integral can be evaluated straightfor-
wardly'® [using GR(2.539.1)] and:one finds
—kp/12L - E%/4T+2a k5/372=0
or
a,=31/8k,+1%/8k%L. (3.5)

Apart from the familiar term of order unity,*®
there is a term of order L™ that should be kept,
since it will give contributions of order unity
later on.

C. Electrostatic surface dipole barrier

In this section the dipole barrier is defined to
be Ap=¢(0) - ¢(-3L). The electrostatic poten-
tial ¥(x), defined by (2.6), and given by (2.10) and
(2.11), reduces (p —=) to

P (x) = — E (K- )+ oF -Iif—-zi cos(2kx)
1« k2
+‘2—E - _—Ez—, (3.6)

b ) ==2mny(L - a,)? - 47y (L - 2a,.)x

+2m,a%, -L<x<-L+a,,
3.7
Yp(x) =2mny(x +a,)?, -Lta,<x<-a '

Ypx)=0, x=-a,.
A@ can be evaluated either by means of (2.9),

—47rf ,dxxny(x), or by calculating $(0) and
W(~-3L du‘ectly from (3.6) and (3.7). In the first

approach the integrals, resulting after substitu-
tion of the exact density (3.2), can be done analy-
tically [GR(2.539.3)], neglecting contributions of
order 1/L and higher in the final result. The case-
es N=even and N =odd have to be distinguished,

but the final result is the same whether N is even
or odd.

The alternative approach is explicitly given in
an Appendix, since it exemplifies the features of
all calculations e.g., the fact that the term of
order L™ in a_ should be kept. Here we only state
the result:

37k STRF mkr

___F _ IkF =
Y-3L) +* 33 — 9z 2and ¥(0)=0
Hence
ke fi_3m ™
Ap= ”(1- 32+24 (3.8)

and not (k/7)(1 - 37%/32), as would be the case if
(3.4) held throughout the sample.

D. Average electrostatic potential

The average of the electrostatic potential over
the metal sample (¢z,) can be obtained from (3.6)
and (3.7). First the x integrations are performed.
The algebra for evaluation of various sums is en-
tirely similar to the calculation given as an ex-
ample in the appendix. Again, the term of order
L™ in a, is of crucial importance. Instead of tak-
ing the average over the metal, one may take the
average over the potential well (¢,). It turns out
that @ L= @, which explicitly bears out a remark
made in Ref. 4 (page 241, footnote 62). However,
for the average itself, one finds

— — Tk
qaLx <pL 7; A§o

or in terms of ¢(x), defined to be zero at x=—-L/2
by (2.6),

— — _—_ Tk
q;Lx: (pL= = 72_1? ) (3_9)

instead of ¢ =0. Therefore, it does indeed not
matter where precisely one takes the boundary of.
integration in the 'surface region,* but, at least
for these models, the average electrostatic poten-
tial itself is not equal to its value at any specific
point in the interior of the metal.

E. Electrostatic potential at the surface

In view of promising applications of a theorem
due to Budd and Vannimenus?® to the calculation of
surface properties,'?'!3 it is of interest to know the
electrostatic potential at the surface, i.e., for
x==-a,. Since x/L <1 in the surface region, the
last term of (3.6) can be reduced as follows:
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Z cos(2kx

cos(2mxn/L)

n

(@;T_L)z[g cos(Zﬂ;m/L) _ i

n=N+1

LKL 2kplxl (cos(2kr Ix1)

6 T\ 2kp x|
For lx |=a,,, (3.1) and (3.2) then yield
3k mk 2k 3n
¢(-a,)=- T@E + 2: 3"F sin y
kr 31 3kr 311)
+ o7 cos n + 8 Si (4 . (3.10)

Again, this result differs by 7k,/24 from the cor-
responding expression that is obtained if the ex-
pression for the electron density near the surface
is extended to be valid over the whole sample.'!

In addition, a point has to be made about the use
of the Budd-Vannimenus theorem for square-bar-
rier models. For reasons of clarity we state the
results of Ref. 16(b), where it is shown, that the
change (AE) in total energy of N electrons in the
groundstate, upon stretching a’ jellium slab uni-
formly (which produces a change An, of the uni-
form background density), is given in terms of
the electrostatic potential ¢(x) b

1 AE 2 [
=¢(-a,) - 9o+ — [®o-

= @ (x)])dx.
14 Ano Lx -L/2 ]

(3.11)

This is expression (4) of Ref. 16(b), displayed for
the infinite-barrier model in our notation.'®®> Budd
and Vannimenus show that this result is independ-
ent of the choice of G[rn], the universal functional
describing the contribution of kinetic energy, ex-
change, and correlations to the total ground-state
energy. In the limit of large L, the total energy
can be split in a bulk and a surface part: E(n,)
=Nf(n,) + 2L L,0(n,), where f(rn,) and o(n,) are the
bulk and surface energy per particle, respective-
ly. Hence [expression (5) of Ref. 16(b)]

1 AE _ df 2 do

V ot I dng (3.12)

Or, by comparison of the leading terms in (3.11)
and (3.12),

nojf =¢(-a,) - @,

(3.13a)
And, under the assumption (clearly stated by Budd
and Vannimenus) that ¢(-a,)-¢, tends to its as-
ymptotic value faster than L ' one also finds
4o _ hm f
dan,

- @(x)dx].
-L/2

(3.13b)

1
L
l(kz«- )2:_15 g(2n|x|>+1(zn|x|2
L\#n/ 16 2\ 1L 4 _

]

)—f”dn cos (Zr'rlrzx/L)n []

N

+Si(2kp x| )).

.
Now, for the finite- and infinite-square-barrier
models, the usual procedure is to obtain the elec-
tron density for the ground state from the wave
functions of the model potential. Once this den-
sity has been calculated, the total ground-state
energy may be obtained in principle.® Here,

the kinetic energy can be calculated directly,®'°
the electrostatic energy follows from Poisson’s
equation and for exchange and correlations ap-
proximations can be made!!™* without affecting the
validity of the BV theorem since it is independent
of the choice of G[r]. In addition, however, in
order that both (3.13a) and (3.13b) hold for the bar-
rier models, ¢(-a,)-¢, has to tend to its asym-
ptotic value faster than L_'. This can be tested
explicitly for the infinite square barrier (the case
we have concentrated on for definiteness through-
out this section) as well as for the finite-barrier
model. For the infinite-barrier model, then, the
right-hand side of (3.11) can be calculated explic-
itly to order L_? using (3.6) and (3.7). We find that
[¢o - ¢(-a,)] does not tend to its asymptotic value
faster than L'; therefore, the identification made
by Budd and Vanmmenus [Eq. (3.13b)] is not cor-
rect for the present case. In faet, ¢(~a,)-¢,con-
tains L;' terms, coming from both terms, which
would have to be added to the right-hand side of
(3.13b) in order to identify the surface terms. Ex-
pression (3.13a), being (3.11) to order unity, still
holds, but for ¢, one has to read the average elec-
trostatic potential ¢ since it differs by a term of
order unity (ky7/72) from its value at the center.
This again shows that one has to be careful to dis-
tinguish between the average electrostatic poten-
tial and its value deep inside the sample.

F. Electrostatic part of the surface energy

The electrostatic part of the surface energy
(¢.s) is given in terms of the electrostatic poten-
tial by

1 (d<ﬂ)
%™ 37 -1/ a\dx dx.

Let us briefly indicate how this quantity is calcul-
ated. With the electrostatic potential given by
(3.6) and (3.7) the integrand of (3.14) turns out to
be

(3.14)
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ﬂ_z_[ ( %)] 8fmox( %)”
(dx)—4ﬂnox1— 2 -1 1- I

n=zl

B2 _ p2
E Ef—%—k; sin(2kx)

1 Nz 2\ 2 _ 2
+FZZ(%)@%—q)sin(ka)sm@qx), kL=nm, gL=mun, 0=x=-a_.

n=l m=l

RO R
<dx dmqa,, (1 + 57 7 1+ 7

Nz

Nk%‘—kz

(3.15)
sin(2kx)

1 LK — B2 -
t 1z Z E ke =k >(k2L—q—)sin(2kx)sin(2qx), -L+a,zx=>-a,.
nal m=1 k q

Sums over possible k2 values that are encountered
in the course of the calculation are (a=37/8ky, b
=371/4)

§cos(——- ) 2L sin(d),

7 cos(b) _ zl'f Si(b),

Zcos[(21m/L)n] ?
7 n® S 6 kL

X sin[(@ma,/L)n] _ a 7a\?
2; n3 T 3L 'Z(L)
cos(b) = sin(db)
X[ 5 b

+Si(b)] ,
N n 72
Sy -5
Z[ ' ] 2L K The
—~ 3w 2 6L °’
which has already been substituted into the above
expression for (d¢/dx).? In every sum the terms
are retained that give rise to contributions of (at
least) order unity to o,. The various space inte-
grals, resulting from (3.14) and (3.15), are per-
formed, and for the sums % values the above ex-
pressions are substituted. After some straight-
forward but subtle algebra the following analytic

expression for the electrostatic (part of the) sur-
face energy is found:

2 1 VI(1 1)
=p3 —_— —_— -
8704, kF[ 3r 16 F 2 (3112 an

+S1(b)(16 ; )] (3.16)

If the electrostatic surface energy is calculated
from (3.14) and the density given by (3.4) for all

x, the result obtained is identical to expression
(3.16). In the above derivation of (3.14) various
contributions of order L occur, which of course
all cancel from the final result. Moreover, three
terms of order unity from the L™ term in (3.5) ap-
pear, namely, 7%%/72, 7k3/36, and —7k3/24; how-
ever, they cancel in the final result (3.16). There-
fore, the results for o, are identical for the elec-

and

tron density given by (3.2) and that given (for all
x) by (3.4).7 This indicates that, in this model,

the surface energy is truly a surface quantity in
the sense that it is determined by the electron
density in the surface region alone, while the ex-
act results for the surface dipole barrier and work
function depend on the electron density beyond the
surface region as well.

IV. FINITE-SQUARE-BARRIER MODEL

For a infinite square barrier, of height p2/2
and characterized by the parameter 8=k/p,
(see Fig. 1) we find the difference between vari-
ous familiar expressions and the exact results,
obtained from the electron density given by (2.5),
to be the same as for the infinite-square-barrier
model. Let us first state the results, and then
comment on their derivation. (i) The surface
is fixed by charge neutrality at x =—a, where

a=a,-D=31/8k,+7%/8k;L - D 4.1)
and
/ -
D= 4kr[(1 gz i (Zﬁ; 1) arcsin(B)]. (4.2)

(ii) The electrostatic surface dipole barrier, de-
fined to be

Ag=g¢(»)- ¢(-L/2),
is given by
2 1
Ag= kF[ 2 oar - 17[3 24+32611 (li;;)]

(4.3)

which differs from the familiar expression'! by
Tke/24. This is also true for the value of the el-
ectrostatic potential at the surface. (iii) The av-
erage electrostatic potential over the metal sam-
ple (or over the potential well) is given by

F=1ky/12, (4.4)

where ¢(-~L/2) is again defined to be zero.
We restrict ourselves to general remarks about
the way in which these results are arrived at,
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since the details are elaborate and not very in-
structive. The exact density for a finite barrier
(B #0), given by (2.5), cannot be evaluated as sim-
ply as for the infinite barrier (8=0). For the lat-
ter case all sums can be evaluated exactly and re-
sult in expression (3.2) for the electron density.
For B #0, the sums in (2.5) have to be determined
by means of an Euler-Maclaurin expansion.'” If
spatial integrals occur, it is always advantageous,
however, to perform those first, and then evalu-
ate each sum by an Euler-Maclaurin expansion.
All higher terms in 1/L that contribute to the fin-
al results for dipole barrier, etc. at most to order
1/L are neglected. Note that this approach is
quite different from that of the previous section,
where we started out with the exact electron den-
sity. Therefore, taking the limit 8~ 0 in the pres-
ent calculation provides a useful check on whether
all terms contributing to order unity have been
accounted for.

The key element in the calculations turns out to
be the fact that second order corrections in the
Euler-Maclaurin expansion give contributions of
order unity to electrostatic quantities. In a gen-
eral notation we have'’

N N
3 fo)=J  fw)dx - 570+ 37N

1{dr ar

where the dots stand for terms involving higher
(odd) derivatives. It was recognized long ago'®
that the first-order correction 3[ f(N) — £(0)] should
be taken into account. We find that the second-
order correction term should be taken along as
well. For instance, the contribution of order L™
in (4.1) is due to this term. As in the infinite-
barrier model, it gives contributions of order
unity to electrostatic quantities. :

Finally, let us discuss the boundary at x =—L,
that we chose to be a hard wall, and whose effect
should be trivial no matter how one calculates the
electrostatic properties of the finite barrier. Con-
sider the dipole barrier to be calculated from
2.9), Aqa,.=41rf_:dxxn,.(x). The result is Ag,
=A@ - A, with Ag given by (4.3) and A¢_ by
(3.8). This is what one should expect since the
integral is taken from —L to infinity. But, in
this approach, it.is not a priori clear that the
dipole barrier of the relevant surface (at x =-a)
is given by A =A@+ A¢,. However, the value
of the electrostatic potential at x=-L, x=-L/2,
and x =« can be evaluated directly from expres-
sions (2.10) and (2.11); one finds ¢@(«) - @(-3L)
= Ay [given by (4.3)] and ¢(-»)- ¢(-3L)=A¢,,
[given by (3.8)]. The latter result proves that

@(—) — ¢(-3L) is independent of the height of the
barrier at x =0, so that indeed A¢=A¢,+A¢p,,

if calculated by means of (2.9), is the dipole bar-
rier of the finite barrier at x =0, and the bound-
ary at x =-L is completely trivial, as it should be.

V. CONCLUDING REMARKS

We have not derived an analytic expression for
the electrostatic part of the surface energy in the
finite-barrier model. Considering the fact that the
exact solution gives rise to the same additional
contributions for the electrostatic potential in the
infinite- and finite-barrier model, it is likely
to leave the familiar result for the electrostatic
surface energy’ unchanged for the finite-barrier:
model, as it did for the infinite-barrier. Also we
did not carry out a full analysis of the features
discussed in this paper for the linear potential
model.’*"** 1t is, however, immediately clear
that the same type of additional contributions, as
discussed here, also occur for the exact solution
of the linear model, since it transforms into the
infinite-square-barrier model in the limit of the
infinite slope. It may be that the additional terms
depend upon the slope. However, in view of the
fact that for finite-square-barrier models such
terms are independent of the barrier height, we
speculate that they will not depend upon the slope
in the linear model either.

In order to give an impression of the changes
that may be brought about by the additional con-
tribution to the analytic solution, we follow an
idea put forward in Ref. 11 to calculate the elec-
trostatic surface dipole barrier. The barrier
height is determined by the self-consistency re-
quirement

1/28% = (1/k3) [0 (B) = pyo(kp)] . (5.1)

Here —u, (ky) is the contribution to the barrier de-
rived from the exchange and correlation energy

in the uniform electron gas approximation. The
expression for the dipole barrier now reads

y 2 _ 2
(5.2)

Here we chose to define A@ =¢(»)~ ¢, and in that
case Tk,/36 is the extra contribution due to analy-
tic solution. Both 8 and A¢(B8) can now be deter-
mined self-consistently from (5.1) and (5.2). The
results are given in Table I, together with those
of Ref. 11 and the self-consistent results of Lang
and Kohn. The additional term in (5.2) gives

rise to substantial changes. The agreement be-
tween A@ of (5.2) and the self-consistent results
is better for high densities and even worse for
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TABLE I. Self-consistently determined barrier height g and
corresponding dipole barrier A¢ and work function ®. For
comparison the self—con51stent results of Lang and Kohn are
also given.

Equation (5.2) Reference 11 Lang-Kohn
rg 8 Ay @ B A ® A¢ D

2.0 0.934 4.71 1.79 0.988 3.21 0.13 6.80 3.89
2.5 0.848 3.24 3.12 0911 1.77 1.65 3.83 3.72
3.0 0.777 2.48 3.65 0.839 1.15 233 232 3.50
3.5 0.718 2.00 3.83 0.779- 0.825 2.65 1.43 3.26
4.0 0.671 1.69 3.84 0.728 0.629 2.78 091 3.06
4.5 0.630 146 3.76  0.684 0.503 2.80 0.56 2.87
5.0 0.594 1,29 3.66 0.646 0416 2.79 0.35 2.73
5.5 0.564 1.15 3.54 0.614 0.354 2.74 0.16 2.54
6.0 0.538 1.04 341 0.585 0.307 2.67 0.04 2.41

low densities than those of Ref. 11. We hasten

to add, however, that we only want to display the
difference between both models and that neither of
the models results for A¢ should be taken too
seriously, because the densities of square-barri-
er models do not approximate the self-consistent
densities very closely, and the magnitude of A¢

is extremely sensitive to the discrepancies be-
tween those densities. For this reason the authors
of Ref. 11 subsequently studied the linear potential
model since it gives more promising density pro-
files.. Moreover, by writing (5.1), the model po-
tential is given the interpretation of a direct ap-
proximation to the self-consistent effective poten-
tial. In view of many conceptual subtleties,'® it

is not clear whether such a simple interpretation
is permitted. Therefore, it makes more sense to
consider the model potential merely as a means

to generate acceptable analytic density profiles,
and not to attach direct significance to the poten-
tial itself. Results for surface properties are
then obtained, e.g., by fixing the parameter(s) in
the potential through a variational calculation of the
surface energy”'* or by application of the Budd-
Vannimenus theorem.'>!3:1¢ et us repeat once
again that in the context of the latter approach the
familiar analytic results may be just as good (or
even preferable over) the exact results. This is

N
U

and

1) 5= BE Ly [ f
-BN-(3) 3= BE-5E) b
1 &rﬁ)(_ “dn __1_)
2)-N~(1r 6_fN T

1

an open question; we have shown in this paper that
familiar results for the electrostatic potential and
work function in square-barrier and linear-poten-
tial models differ from the exact results.

Finally, it should be mentioned that the use of
exact electron density, say (3.2), instead of its
approximation near the surface, (3.4), does not
alter to order unity any expressions involving
the kinetic-exchange or correlation-energy den-
sity. All corrections of this nature are found to
be of higher order in 1/L. Therefore, work in
which these quantities are considered (e.g., Refs.
6, 7, and 19), is completely unaffected by the ob-
servations of this paper.
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APPENDIX

As an example of the algebra that can still be
called palatable, we give the derivation of the sur-
face dipole barrier for the infinite barrier mod-

el from expressions (3.6) and (3.7). From (3.6)
we have

__xY2k¢L 1, ﬂkp) 1 (k?.-Lz ZkFL)
Yele) L( 3r 2R~ %)t LN "

14} 1 X
- EI_:[I -3 sin(2kgx) cot(—i—)— cos® (kg x)]

+F(x), (A1)
with

Fe)=— L kFL z; cos](an/L)nI (A2)

In (A1) we have already performed the following
sums up to the appropriate order in L™ (which can
be inferred from the coefficient in front of each
sum):

m T 3w 2 6L

3 2 3
el g (Bel)', el L 1y e
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Furthermore, we have to the desired order

2
- 37 Zcos( T )
1 1 . X
= —Z—Z[l -3 sin(2kg x) cot (f) - cos? (kg x)]

41L sm(ZkFx) cot(L>+ O(L™). (A5)

For F(x), defined by (A2), we find that the values
of interest
F(0)=F(~L)==F2L/12+k,/2n+0(L™) (A6)

[the algebra for this case is already implicit in
the derivation of (A4)] and

F(—=3L)=FkzL/24+0(1). (A7)

To arrive at the latter result we have to evaluate
(take N even for definiteness)

k%L( LA | 1)
— —_— —
7 ; & on?

nodd neven
KL Bl X1
= oz \~2 5+ Z;—z
m N mr'n
nodd nall

Q

SRy g S 1)
o 52 Gy -fN dk =

~kpL{ 7 1 _1_) k3L
2 <‘ 12 N+i- N/ 2 TOW):

Using the results (A3)-(A7) in expression (Al),

we find
,(0)=0, (A8a)
~RL® RRL | Thp kg
P (-L/2)= —— + ==+ L (A8Db)
6w 4 24 T’
_ 28LL%  REL kg
$,(~L)=~ 37 + 5t - (A8c)

From (3.7) we have for the background contribu-
tion

¥5(0)=0, (A9a)
- kFL 3Mkr Tk
dp(-L/2)= 35 ~ 13 0 (A%)
_2K3L* KRL  mkg
Pg(=L)= oy -5 - (A9c¢)

Note that the last term of (A9b) and (A9c) is due to
the order L™ term in a,=37/8k, +7%/8kLL. Terms
of order L? and L are seen to cancel each other in
the sum of (8) and (9), as they should. However,
we find, in deviation from the familiar result,

$(0)=9(-L)=0, (A10a)
S s

Most other derivations are considerably more el-
aborate, especially for the finite-barrier model.
In this paper we have discussed them only in gen-
eral terms. We feel that this simple example al-
ready provides insight in the nature of our results.
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