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Frequencies and eigenvectors are obtained for alkali metals by using the force constants calculated by Shyu
and Gaspari. These are used to calculate the cubic and quartic anharmonic contributions to the specific heat
in the high-temperature limit with nearest-neighbor central-force interaction, in which the effect of thermal

- expansion is included. Calculated values of the anharmonic coefficient 4, defined by C,/3Nk = 1+ AT,
are in good agreement with the experimental results. The values of A are positive for alkali metals.
Calculated dispersion curves lie higher than the experimental ones. The. sum X3 _ 1eof(.l?) is independent of X
for sodium, potassium, and rubidium, but not for lithium. It is concluded that a potential which may be
adequate in estimating the effects of anharmonicity may not be essentially suitable to describe the harmonic

properties.

I. INTRODUCTION

In recent years several authors''? have derived
the theoretical expressions for the cubic (F,) and
quartic (F,) terms of the Helmholtz free energy
of an anharmonic crystal. Maradudin et al.? and
Flinn and Maradudin® made the first detailed cal-
culations of F, in the high-? and low*-temperature
limits for a specified central-force model involv-
ing nearest neighbors in a monatomic face-cen-
tered-cubic lattice. Similar calculations have
also been reported recently for monatomic,®’¢
body-centered-cubic, and diatomic’ face-centered-
cubic lattices.

The increase in specific heat with temperature
is due to effects of anharmonicity, to premelting
induced by impurities, or to the thermal creation
of imperfections in the lattices. In fact in a cor-
rect analysis these latter effects should also be
taken into account. Unfortunately such an analysis
has not been reported for alkali metals but Mar-
tin® has estimated the anharmonic coefficients A,
defined by C,/3Nk=1+AT, from entropy consider-
ations.

The harmonic properties of alkali metals have
been studied in detail.® Recently, Shyu and Gas-
pari'® have calculated the force constants for
alkali metals by using the pseudopotential form
factors as evaluated by Animalu,'! based on the
model potential of Heine et al.'? and a modified
Hartree dielectric function.'®'** Heine and co-
workers!'?:1® used this model potential for band-
structure calculations and obtained very good re-
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sults for the energy bands and Fermi surfaces.
The model potential has also provided reasonable
phonon dispersion curves'® and band-structure
energies.’

The force constants calculated by Shyu and Gas-
pari'® for the alkali metals are used in the present
work. The anharmonic coefficients A are calcula-
ted. The entropy and specific heat at constant
volume are also calculated in the harmonic ap-
proximation. Dispersion curves are studied. It
is tested if the sum Y3 _,w,;2(k) is independent of
Kk for the alkali metals.

In Sec. II we give the relevant expressions used
in the calculations. The method of calculations is
described in Sec. III. Results and discussions
are given in Sec. IV. Finally, Sec. V contains
some conclusions.

In the present work we follow closely the nota-
tion of Ref. 5.

II. EXPRESSION FOR THE SPECIFIC HEAT

The Helmholtz free energy F(T') of an anharmon-
ic crystal can be written

F(T):FO(T)+F3(T)+F4(T)+... ’ (1)

where F,, F,, F, are the corresponding quadratic,
cubic, and quartic term, respectively. In the
following only the leading terms are retained in
the potential, and the evaluation of the F,; and F,
terms is restricted to nearest neighbors only.

In the high-temperature limit Eq. (1) can be writ-
ten®
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2a is the lattice constant and #, is the nearest-
neighbor equilibrium separation; w(kj) is the fre-
quency of the normal mode described by the wave
vector k and polarization index j; E(Ej) is the
polarization vector for the mode (kj); @(r) is the
interatomic potential, N is the number of unit
cells in the crystal.

Using Eq. (2) the specific heat at constant volume
can be expressed® in the high-temperature limit -
as
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The fourth term on the right-hand side of Eq. (4)
is a consequence of the effect of the thermal ex-
pansion. Equation (4) will be used to calculate the
anharmonic coefficients A for the alkali metals.

III. NUMERICAL CALCULATIONS

The various harmonic properties, and the sums
occurring in f; and f, have been calculated by the
following sampling technique. The irreducible
sector of the Brillouin zone (g5 portion) is defined
by the set of equations

kork,<1, kytk,<1, Rk+k,s1,
ko<1, kSl k<1 ®

Dividing the k., k,, and k, axes into Z equal in-
tervals and writing

k=0, /Z, ky=p,/Z, k,=p,/Z,
Eq. (5) becomes
px+py$Z’ py+pgSZ? px+px$Z
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where Z is mesh size and p_,p,, p, are integers
such that p,+p,+p, is even. This choice generates
a face-centered-cubic net in the reciprocal space.

Each point is weighted according to the number
of points equivalent to it by symmetry. Care has
to be taken in giving the proper weights lying on
the surface, edges, and corners of the Brillouin
zone. The total number of points in the whole zone
is thus Z3.

A set of wave vectors for a mesh size is gene-
rated by the technique described above and the cor-
responding eigenvalues and eigenvectors are ob-
tained by solving the secular equation

Ip@ -w¥|=0, ' )

where D(q) is the dynamical matrix, § is the pro-
pagation vector, w is the angular frequency, and
I is the 3 X3 unit matrix. The elements of the
dynamical matrix D(q), for the nth-neighbor ten-
sor force model, are given by Squires,'® where
we ha,ve used the force constants of Shyu and Gas-
pari.!

IV. RESULTS AND DISCUSSION

To calculate the anharmonic coefficients A the
wave vectors for mesh size 10 are generated by
using the technique given in Sec. III. Frequencies
and eigenvectors are calculated for this set of
wave vectors lying in Zsth of the Brillouin zone
by diagonalizing the dynamical matrix D(g) by the
Jacobi method. The details of calculation of f,
and f, are similar to those given elsewhere.®*®
Values of f, for various neighbors (i) are given
in Table 1. It may be observed that the only large
contribution to f, comes from two sets of 1,
namely, (0,0,0) and (1,1,1).

Using these values of f;and f,, the anharmonic co-
efficients A, and A’ whichare the values of A in which
the effect of the thermal-expansion coefficient is not
included, are calculated. The results thus obtained
for Aand A’are givenin Table II along with the exper-
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Foesagy TABLE II. Values of A (in units of 10~ K'l), defined
8 g : :‘; 2 : by C,/3NK= 1+AT, are given for the alkali metals. A’
ﬁ N is that value of A which is calculated without including
A -~ NN

the effect of thermal expansion. Z=10.

Tron o 4 A’
sBIIS Present Experiments Present
oo '-lq c\ll c\; ~ calculations (Ref. 7) calculations
e © e et oq Li 2.180 2.0 +0.02 1.396
NS I8 Na 1.138 1.5£0.1 —0.225
Tassss K 1.313 2.2%0.15 0.349
2 Rb . 1.577 1.820.1 0.720
Cs 1.701 2.3+0.1 1.039
S23288
:. :; ZI 2 Z 2 imental values® of A. It may be noted that the cal-
= culated values of A are in excellent agreement
with the experimental ones obtained by Martin.?
~QEEY®R The values of A’ are much smaller than the ex-
:. oo f @ ; perimental results, showing that the effect of
O I thermal expansion in anharmonicity calculations
. for alkali metals is important. The values of A
. given in Table II are positive, which shows that
Z. a3389 the net effect of the anharmonic contributions to
$83333 the specific heat is to increase it as the tempera-
L ture increases. These results are in sharp dis-
e uEa agreement with the genfaral concflusions of Keller
N oA and Wallace'® who predict negative values of the
:‘].?; ﬁl 3’ c'-\'é ‘&;‘ anharmonic coefficients A for the face-centered-
=

cubic and body-centered-cubic crystals.
Aey The specific heat and entropy are also calcula-

3
e o~ m o ted, in the harmonic approximation, by using the
TESAES following expressions:
W O H -
o — : 2
e _ [7 w(kj)/2kT) .
Cv“k% Sinh?[7 w(&))/2kT] ’ ®
Synges S=kY. (Hwk))/2eT]coth[7wj)/2kT)
o Ri
LS . N
— In{2sinh[% w(kj)/2kT]}) . 9)
o ® 1 o o Wave vectors are generated for a size-20 mesh,
Z’, 283328 and frequencies are calculated by diagonalizing
8385959 the matrix D(q).
- The specific heat at constant pressure C, is
measured experimentally. The specific heat at
D 5 B constant volume C, is calculated by using the rela-
“32888 tion
Lo B E @
TE8289R
dar-gS~d CP/CU=1+AlcpT, (10)

where A, is a constant which has been calculated

TABLE 1. Values of f; (in units of N®) for the alkali metals. In each row are also given the contributions to f; arising from the indicated lattice shells in &

v+ 3 2w for the alkali metals by Sharma and Singh.?® Ex-
°S3I2SaST perimental values of C, are taken from Refs.
SCoowoom
Sorone 21-24.
. S~
3 ¥ - Calculated values of C,, obtained by using Eq.
N (8), are shown in Fig. 1 along with the experi-
S “ & o mental results. It may be noted that there is a
o H A K E O large discrepancy between the calculated and ex-
& perimental values. For lower temperatures this
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FIG. 1. Values of specific heat at constant volume, calculated in the harmonic approximation, are shown as a func-
tion of temperature for the alkali metals. Experimental values are also shown. Experiments: O lithium (Ref. 21),
@ sodium (Ref. 22), X potassium (Ref. 23), A rubidium (Ref. 24), O cesium (Ref. 25). There is a large discrepancy be-
tween the calculated and experimental values. For lower temperatures this discrepancy is largest in the case of lithium
and smallest in the case of cesium, and it decreases consistently as we go from lithium to cesium in the series. The
experimental values keep on increasing consistently for temperatures which are greater than one-half the Debye tem-
peratures, whereas the theoretical values tend to 3R. This consistent increase indicates the importance of anharmon-

icity considerations in the specific-heat calculations.

discrepancy is largest in the case of lithium and
smallest in the case of cesium, and it decreases
consistently as we go from lithium to cesium, that
is, from lighter to heavier elements in the series.
- The experimental values of C, for all these metals
are larger than the theoretical ones. It was men-
tioned before that the increase in C, with tempera-
ture is due to effects of anharmonicity, to pre-
melting induced by impurities, or to the thermal
creation of imperfections in the lattices. Some of
these contributions may be included in the experi-
mental values of C, obtained from Eq. (10), where-
as the theoretical values obtained from Eq. (8)
represent purely harmonic contribution. Effects
of anharmonicity become predominant at higher
temperatures. Temperatures greater than one-
half the Debye temperature ©, can be considered
rather high. Debye temperatures for the alkali
metals are low.* It may be noted from Fig. 1
that the experimental values keep on increasing

consistently for temperatures which are higher
than one-half the Debye temperatures, whereas
the theoretical ones naturally tend to 3R. This
consistent increase indicates the importance of
anharmonicity considerations in the specific-
heat calculations.

Calculated values of entropy, obtained by using
Eq. (9) are shown in Fig. 2 along with experiment-
al results.® It may be noted that there is some
discrepancy between the theoretical and experi-
mental results, which is largest in the case of
lithium and smallest in the case of cesium, and it
decreases consistently as we go from lithium to
cesium in the series.

A comparison of Figs. 1 and 2 shows that the
magnitude of the discrepancy between the theo-
retical and experimental results for the various
alkali metals is larger in the specific heat at
constant volume than in the entropy. Thus, it may
be concluded that the specific heat at constant
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FIG. 2. Values of entropy, calculated in the harmonic
approximation, are shown as a function of temperature
for the alkali metals. Experimental values (Ref. 8) are
also shown. Experiments: O lithium, @ sodium, X
potassium, A rubidium, O.cesium. It may be noted that
there is some discrepancy between the theoretical and
experimental results, which is largest in the case of
lithium and smallest in the case of cesium, and which
decreases consistently as we go from lithium to cesium
in the series.

volume is more sensitive to the effects of anhar-
monicity than the entropy. :

The behavior? of the sum Y% _,w}(k) as a function
of k is studied along the three principal symmetry
directions [111], [100], and [110]. From Figs. 3
and 4 it can be noted that the sum },3_,w?() is
independent of & for sodium,*” potassium,? and
rubidium? but not for lithium.3° Experimental
values of frequencies for cesium are not available.

Dispersion curves are drawn, but not shown
here, along the three principal symmetry direc-
tions [111], [110], and [100] for the alkali metals.
It is observed that the calculated dispersion curves
lie higher than the experimental ones. The dis-
crepancy is rather large.

It may be remarked that excellent results were
obtained in the calculations of the anharmonic co-
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FIG. 3. The sum =2 10 ®w?} (k) is drawn in the
figure along the [111], [100], and [110] symmetry di-
rections for lithium and sodium. — lithium, ------
sodium, experimental points [O lithium (Ref. 30), ®
sodium (Ref. 27)]. Z is independent of % for sodium,
but not for lithium.
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FIG. 4. The sum 2=y 10%w}(k), is drawn in the
figure along the [111], [100], and [110] symmetry di-
rections for potassium, rubidium, and cesium. —
potassium, ------ rubidium, —+— cesium, experiment-
al points [O potassium (Ref. 28), @ rubidium (Ref. 29)].
Z is independent of & for potassium and rubidium. Ex-
perimental points for cesium are not available.

o'/"lmax q'/qmax

efficients A for the alkali metals. The study of
harmonic properties such as entropy, specific
heat, and dispersion curves, as we have seen,
gave poor results. Thus, it may be concluded
that the potential which may be adequate in the
anharmonicity calculations may not be essentially
suitable to describe the harmonic properties.
That is, good harmonic forces are not essential
in estimating the effects of anharmonicity.

V. CONCLUSIONS

Frequencies and eigenvectors are obtained for
alkali metals by using the force constants calcula-
ted by Shyu and Gaspari. These are used to cal-
culate the cubic and quartic anharmonic contribu-
tions to the specific heat in the high-temperature
limit, with nearest-neighbor central force inter-
actions, in which the effect of thermal expansion
is included. Calculated values of anharmonic co-
efficient A, defined by C,/3Nk=1+AT, are in
good agreement with the experimental ones. The
net effect of the anharmonic contributions to the
specific heat of alkali metals is to increase it as
the temperature increases. Values of the entropy
and specific heat at constant volume, calculated
in the harmonic approximatioh, are in poor agree-
ment with the experimental results. Calculated
dispersion curves lie higher than the experimental
ones. The sum Z}i‘“w?,(k’) is independent of k for
sodium, potassium, and rubidium but not for
lithium.

It is concluded that a potential which may be
adequate in estimating the effects of anharmonicity
may not be essentially suitable to describe the
harmonic properties. The form factors are avail-
able'! for other elements also. Work is in progress
to utilize these in anharmonicity studies.



18 LATTICE ANHARMONICITY OF ALKALI METALS 2673

ACKNOWLEDGMENTS

The authors would like to thank Professor F. C.
Auluck and Dr. D. P. Goyal for their interest in

this work. The financial support of a NSF Grant
No. 0IP72-02844 AO01 is gratefully acknowledged.
The cooperation of the staff of the computing center
at the Delhi University is greatly appreciated.

!W. Ludwig, J. Phys. Chem. Solids 4, 283 (1958).

2A. A. Maradudin, P. A. Flinn, and R. A. Coldwell-
Horsfall, Ann. Phys. (N.Y.) 15, 337 (1961).

3A. A. Maradudin, P. A. Flmn and R. A. Coldwell-
Horsfall, Ann. Phys. (N.Y.) 15, 360 (1961).

4p. A. Flinn and A. A. Maradudin, Ann. Phys. (N.Y.)
22, 223 (1963).

P. C. Trivedi, J. Phys. F 1, 262 (1971).

8P, C. Trivedi, in A Short Course in Solid State Physics,
edited by F. C. Auluck (Thomson, New Delhi, 1972),
Vol. II, p. 401.

"P. C. Trivedi, H. O. Sharma, and L. S. Kothari, J.
Phys. C 10, 3487 (1977).

8D. L. Martin, Phys. Rev. 139, A150 (1965).

See, for example, D. C. Wallace Phys. Rev. 178, 900
(1969); V. Bortolani and G. Pizzichini, Phys. Rev.
Lett. 22, 840 (1969); W. M. Shyu, K. S. Singwi, and
M. P. Tosi, Phys. Rev. B 3, 237 (1971); S. N. Singh
and S. Prakash, Physica 58, 71 (1972); B. Prasad and
R. 8. Srivastava, Phys. Rev. B 6, 2192 (1972); P. L.
Srivastava and N. Mishra, J. Phys. F 2, 1046 (1972);
P. K. Sharma and N. Singh, Physica 59, 109 (1972);
W. C. Topp and J. J. Hopfield, Phys. Rev. B 7, 1295
(1973); S. K. Srivastava, Aus. J. Phys. 28, 403 (1975);
J. P. Perdew and S. H. Vosko, J. Phys. F 6, 1421
(1976).

0w. Shyu and G. D. Gaspari, Phys. Rev. 163, 667 (1967).

1A, 0. E. Animalu, Solid State Theory Group Report,
Cavendish Laboratory, Cambridge, England, 1965
(unpublished).

12y Heine and I. Abarenkov, Philos. Mag. 9, 451 (1964);
I. Abarenkov and V. Heine, 7bid, 12, 529 (1965).

131, J. Sham, Proc. R. Soc. A 283, 33 (1965).

143, Hubbard, Proc. R. Soc. A 240 539 (1957); 243, 336
(1958).

154, 0. E. Animalu, Philos. Mag. 11, 379 (1965); A. O. E.
Animalu and V. Heine, 12, 1249 (1965).

A, 0. E. Animalu, F. Bonsignorl, and V. Bortolani,
Nuovo Cimento 44, 159 (1966).

7A. 0. E. Animalu, Proc. R. Soc. A 294, 376 (1966).

18G, L. Squires, Ark. Fys. 25, 21 (1963).

197, M. Keller and D. C. Wallace, Phys. Rev. 126, 1275
(1962).

2p. K. Sharma and N. Singh, Physica 59, 109 (1972).

2p. L. Martin, Proc. R. Soc. A 254, 444 (1960).

2p, L. Martin, Proc. R. Soc. A 254, 443 (1960).

3¢, A. Krier, R. S. Craig, and W. E. Wallace, J. Phys.
Chem. 61, 522 (1957).

7. D. Filby and D. L. Martin, Proc. R. Soc. A 284, 83
(1965).

3¢, Kittel, Introduction to Solid State Physics (Wiley,
New York, 1974), p. 219.

%R. Brout, Phys. Rev. 113, 43 (1959).

277, D. B. Woods, B. N. Brockhouse, R. H. March, A. T.
Stewart, and R. Bowers, Phys. Rev. 128, 1112 (1962).

%BR. A. Cowley, A.D. B. Woods, and G. Dolling, Phys.
Rev. 150, 487 (1966).

3. R. D. Copley, B. N. Brockhouse, a.ndS H. Chen,
in Proceedings of International Conference on Inelastic
Neutron Scattering (IAEA, Vienna, 1968), Vol. I,

p. 209.

¥4, G. Smith, G. Dolling, R. M. Nicklow, P. R. Vijay-
araghavan, and M. K. Wilkinson, Bull. Am. Phys. Soc.
13, 451 (1968).



