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A new formalism for obtaining the Green’s functions suitable for studying the surface properties and
chemisorption properties of real crystals is presented. The method has a number of calculational advantages
which make it possible to examine the problem of chemisorption on the surface of crystals which are
represented by realistic and complex band structures. The method is illustrated by applying it first to a
linear monatomic chain, second to a simple cubic s-band crystal, and third to a two-band fcc crystal. The
first two well-known examples are presented to verify the method. The last example has not been considered
before and shows the importance of including in the model calculation all of the crystal bands, even those
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not involved directly in the chemisorption bond.

I. INTRODUCTION

The Green’s-function formalism for studying the
surface properties of semi-infinite systems and the
chemisorption properties of these systems has
been well known for a number of years.'™ To date,
however, most of the work has been directed to-
ward simple model systems because of the compu-
tational complexity of the method.*'° Even those
papers which deal with “real” systems, necessari-
ly make a number of approximations regarding the
electronic properties of the bulk crystal in order to
simplify the calculation to the point where it be-
comes tractable.''"'®* Many useful qualitative con-
clusions regarding the behavior of the change in the
density of states during chemisorption have been
made with these model calculations. Quantitative
comparisons, however, are not presently possible
due to the absence of a numerical procedure which
is practical for considering real systems with com-
plex band structures.

Two schemes have evolved which are directed to-
ward solving this problem. The first is the method
of generating the Green’s function as a continued
fraction as reported by Haydock, Heine, and Kel-
ly.**#1% This method is closely related to the me-
thod of moments which has been exploited by Cy-
rot-Lackmann, Gaspart, and others.'*™'®* Whether
this method can be practically applied to a real
system such as Ni where the full Ni band structure
is considered carefully is yet to be demonstrated,
although rather complicated model systems have
been studied.

The other scheme has recently been used by Fas-
saert, Liebmann, and van der Avoird.’*?° By a
clever numerical procedure, they solve for the
chemisorption energy of an atom on a semi-infinite
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slab without the step of determining the appropri-
ate Green’s function. Their method does not per-
mit the calculation of the change in the density of
states,? but it is the first attempt to describe ac-
curately the substrate with a realistic and complex
model.

The npumerically difficult step in those chemi-
sorption calculations which give the change in the
density of states is the determination of either the
bulk or the surface Green’s function in a mixed
representation (one depending on wave vector par-
allel to the surface and on layer index perpendicu-
lar to the surface). In this paper, we present a
new way to determine this Green’s function which
has the characteristic that it is no more difficult
to consider complex band structures than to con-
sider model bands. We illustrate the method by
applying it first to two well-known situations, a
monatomic linear chain made up of atoms with one
s-like orbital and the logical extension to the (001)
surface of a simple cubic crystal made up of the
same type of atoms.*"'° Finally, we apply the me-
thod to the nontrivial situation, never before con-
sidered, of chemisorption of a one-level adatom on
the (001) surface of a fcc metal made up of two in-
teracting bands. This last example shows all the
steps of the procedure and also demonstrates the
importance in chemisorption calculations of inclu-
ding all of the substrate bands.

II. FORMALISM

In this section, we will discuss the Green’s func-
tions for four different subsystems. Whereas only
the last of the four contains the desired informa-
tion regarding the chemisorbed system, our me-
thod is based on the fact that the first Green’s
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function is easy to determine, and through a series
of steps the other three can be found sequentially.
Hence, we will encounter G° the Green’s function
for a single two-dimensional layer of atoms having
the structure of a layer in the bulk crystal; G, the
Green’s function for the bulk crystal; G*, the
Green’s function for a crystal with a surface; and
G% the Green’s function for a crystal with a sur-
face and an adsorbed atom. The first, G° is rela-
tively easy to determine; the last, G% contains the
desired information about the chemisorbed system.
In what follows, we will specialize to consider the
(001) surface of a monatomic cubic crystal. How-
ever, this in no way restricts the usefulness of the
method since it is an easy matter to generalize to
other surfaces of solids with different crystal
structures.

A. Layer Green’s function

We write the one-electron wave function for the
infinite crystal in a mixed Bloch-Wannier repre-
sentation using atomiclike orbitals as

YD= 3 aje!tumrme (FoR,,.q), (1)
iymn, 1

where n, m, I label the lattice cell, _ﬁ.n,m', is the
position vector for that cell, and ¢ denotes the type
of atomic state on each site. The terms &, and &,
are dimensionless wave vectors (ranging from —7w
to 7) in the [100] and [010] directions, respective-
ly. The choice of the wave function to be in this
form is made anticipating the fact that the surface
destroys the periodicity in one direction, here the
[001] direction, but retains the periodicity in the
other two directions.

Using this wave function in Schrddinger’s equa-
tion results in a matrix equation whlch is of the
form

Z‘,H,,(zz' K)al, = E,(K)at, )

where E,; is the energy of the ith band, af is the ei-

genvector of the Hamiltonian, and the matrix
H”(ll’,ﬁ) is the Hamiltonian matrix element be-
tween the ith and jth-type orbitals in layers ! and
l’, respectively.

For this first step in our solution, we ignore all
interactions between layers. Thus, the Schréding-
er matrix equation becomes

D_H,;(1,K)al =€ (Rai, 3)
¥

where the matrix now is independent of ! and has
the dimension (N XN ), and where N is the number
of orbitals on each atom. Even for complex sys-
tems, this matrix is not very large. With the solu-
tion to this equation, we can construct the Green’s
function for a two-dimensional plane of atoms not
interacting with any of its neighboring planes as

_. am ajx
Gy, W', k, E) = Z Eoay o (4)
Using this Green’s function as a starting point, we
now proceed to solve sequentially for the other
Green’s functions in the overall calculation.

B. Bulk Green’s function

To obtain the Green’s function for the bulk crys-
tal with intevacting planes, we write the Dyson
equation as

G, =G, + Z‘, G2V, M")G,y0"17)

(5)

where the perturbation comes from the terms in
the Hamiltonian matrix of Eq. (2) for Z#1’, i.e.,
those which connect the planes. This Green’s func-
tion satisfies the symmetry conditions

Gi(1,10=G 0, 1) =G, ", 1) . ®)

In addition, the Green’s function depénds only on
the difference I —~1’. Restricting our attention to
those Green’s functions with positive arguments ,
Eq. (5) can be written as

G;;(1)=G3;(0)8,, + ;G?i.(0)<$ (1 =30, [Vigoll =1) + Vupul +1)]G,;(17) + l ﬁ Vi,j.(l—l’)G,,,(l')>, o=si<M
g =0 =M=1+1

G0 = ZG,,,(O) "_,: Vil =10G,,0"), 1=M
o
(8)

where M is the largest integer for which V;,(M)
#0. Remember that every function in these equa-

)

L

tions depends upen 2, and &,.

In order to solve Egs. (7) and (8),. we proceed as
follows. First, we solve Eq. (8) making the as-
sumption that it is valid for alll, even I<M. This
will give us a set of homogeneous solutions. Sec-
ond, we form a general solution by constructing a
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linear combination of the homogeneous solutions
using arbitrary coefficients. Third, we substitute
into Eq. (7) to obtain an equation for the coeffi-
cients. By solving for the coefficients, we obtain
the Green’s function which we desire. These steps
will be worked out below in detail.

By assuming Eq. (8) is valid for all l, we can
represent the solution in the form

G;;()=4'G;(0), 9)

where ¢ is a complex quantity to be determined.
By substituting into Eq. (8), we obtain, after divid-
ing by ¢’ (note that the case ¢ =0 is not allowed
since that corresponds to noninteracting planes),

G1;(0)=256%(0) 3 V,il=11g"G,y(0).  (10)
i ="y
For each index j, there are N equations in the set
of Egs. (10), where N is the number of bands in the
crystal. With some simple manipulations, Eq. (10)
can be rewritten in matrix form as

D (Pi;=5,,)G,,(0)=0, (11a)
<
where
Pip= 2. GLOVuu(=D)g*. (11b)
i I==M

The condition that Eq. (11a) has a solution is that
det(P;; - 8,;)=0, (12)

and this condition determines the values of ¢ which
satisfy Eq. (9). Note that this condition is indepen-
dent of the subscript j in Eq. (11a). From the sev-
eral solutions for ¢ which result from Eq. (12), we
choose those which satisfy the condition

lgl=1, (13)

since the Green’s function in Eq. (9) must satisfy
the condition

|6,;@+D]=]Gc;,0]. . (19)

The determination of the ¢’s which satisfy Egs.
(13) and (14) for a general case is complicated, so
it is convenient at this point to restrict our discus-
sion to the case where V;;(I)=V,;(~1) and V;({)=0
for 1>1 (i.e., M=1). For this case, Eq. (11a) can
be written

; (A4j - Q5,,)G ,,(0)=0, (15a)
where

A= 2 GOVes(1) (15b)
and ,

Q=@+q")=q/(1+¢7). (16)

Here @ is the eigenvalue of the matrix A;;. From
Eq. (16), then, we have for the ath eigenvalue

-min< 1 + 1
9a= 2Q. 20,

From these solutions, we can construct a general
expression for the Green’s function, namely,

(1- 4@1)1/2) . (17)

Gu)= 3" b4 G500), )

where the quantities b, are unknown coefficients,
and the G§(0) is determined from Eq. (15a) (it is
the 7th. component of the ath eigenvector of the ma-
trix A;;). By substituting Eq. (18) into Eq. (7), we
obtain a set of N equations for the unknowns b,
which can be written as (to remove the arbitrari-
ness in the index j, we setj =4, although other
choices would also suffice)

N
D Bigb,=G%(0), (19)
a=1
where
Bio= D (85— 205 A;;)G%(0). (20)
jl

By solving the set of linear equations in Eq. (19)
numerically, we find the Green’s function for the
bulk through Eq. (18). This procedure for finding
the bulk Green’s function is the difficult step in
considering chemisorption. The method we have
presented holds a number of advantages over other
methods when it comes to the application to a sys-
tem with a large number of orbitals per atom. We
will illustrate the method below, but first we com-
plete the formalism of the chemisorption problem
by presenting the method for obtaining the surface
Green’s function, and then the Green’s function for
the chemisorbed system.

C. Surface Green’s function

Now we proceed to determine the Green’s func-
tion appropriate for the (001) surface. This is done
by writing Dyson’s equation for the perturbed bulk
system where the perturbation eliminates the bulk
interactions between the /=0 and [ = -1 planes.

This equation is

G3,,17
=G, =1 = 2, Gl =1 =1) Vu(1)G5,;(0,1),
i’

1)

where the superscript “s” means that the Green’s
function is for the surface, and the matrix V;;(1)

is the same as used above. Note that the minus
sign in Eq. (21) eliminates the bulk interactions and
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that all the quantities depend upon %, and 2,. For
the consideration of chemisorption to follow, we
only need the surface Green’s function for the sur-
face layer. Thus, choosing I=1'=0 in Eq. (21)
gives

$,(0,0)=G,,(0) - ; Gp(VV;.(1)G5,;(0,0).  (22)
Upon rearrangement, this equation gives
G$;(0,0)= ;(D*).-,,G,,,w), (23)
where D;; is a matrix which is given by
D,,=0,,+ ;G“,(l)vi,,.(n ) (24)

Thus, the Green’s function for the surface layer is
specified completely once the bulk Green’s func-
tions for a layer, G,;(0), and for nearest-neighbor
layers, G,;;(1), are known. Note, again, that the
quantities in Eq. (23) all depend on %, and %,.

D. Chemisorption Green’s function

Finally, we arrive at the formalism necessary to
consider chemisorption. We want to find the dia-
gonal matrix elements of the Green’s function ma-
trix for the composite system schematically given
by

a a

G%= |: aa’ Gaj:| , (25)
G?a’ G‘ili

where the indices a and a’ range over the levels on

the adatom and the indices 7 and j range over the

bands of the substrate. This matrix is determined

from a Dyson equation

G*=G*+G°V°G?, (26)
where the matrix G° is
0
Ge=[Car O], 27)
0 Gy '

This represents the composite of the free atom and
the free surface with no interaction. The matrix
V¢ in Eq. (26) represents the interaction due to
chemisorption and contains terms connecting the
adatom levels to the substrate orbitals. The free-
atom Green’s-function matrix is given by

Gga’:-' (E - Ea)-léau' . (28)
Symbolically, the solution to Eq. (26) is given by
G*=(I-G°V9'Ge, (29)

where I is the identity matrix. In some simple ca-
ses,. this matrix inversion can be done analytical-
ly; for more realistic cases, numerical methods

must be used. The desired information regarding
the chemisorbed system is contained in the imagin-
ary part of the diagonal matrix elements of G°.
This imaginary part is the density of states. Of
more interest is the change in the density of states
due to chemisorption. This can be found by taking
the difference of the imaginary parts of the new
Green’s function and the old as follows:

An,=Im(G:, ~G;,), r=a,i. (30)

Alternatively, the change in the density of states
could be found from the phase shift function by* ®°

1dn

An=— ~dE’ ‘31)
where
n(E) = —tan™*[det(I - V*G®)]. (32)

In the first instance, the change in the density of
states of each type orbital is found, whereas in the
second instance, the total change in the density of
states is obtained without the need of determining
explicity the Green’s function for the chemisorbed
system.

In summary, the following computational steps
are required in this method to obtain the change in
the density of states (see Table I). First, we must
find the eigenvalues and eigenvectors of the Hamil-
tonian matrix in Eq. (3) to construct the first
Green’s function G° in Eq. (4). Second, the eigen-
‘values and eigenvectors of matrix A in Eq. (15)
must be found and the terms ¢, determined in Eq.
(17) from the eigenvalues. Third, matrix B must
be constructed in Eq. (20) and the set of linear
equations in Eq. (19) solved for b,. Fourth, the
bulk Green’s function is constructed from Eq. (18)
and explicitly obtained for a single layer G;;(0) and
for first neighbor layers G;;(1). Fifth, the matrix

TABLE L. Labeling of the four Green’s-function ma-
trices considered along with the perturbation matrices
that relate them to each other and their dimensions. The
essence of the method is that the first Green’s function
can be determined easily and the others can be found in
sequence.

Matrix Dimension Definition

G? N2 Layer Green’s function

|4 N Layer-layer interaction

G N Bulk Green’s function

-V N Perturbation creating surface
GS N Surface Green’s function

va N+nb Adatom-surface interaction

G2 N+n Chemisorption Green’s function

2N is the number of bands.
Y% is the number of adatom levels.
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D in Eq. (24) is constructed, inverted, and used in
Eq. (23) to obtain the surface Green’s function. All
of the above matrix manipulations are done with

(N XN) matrices where N is the number of bands
in the bulk crystal. Sixth, a larger Green’ s-func-
tion matrix of dimension (N +#) X (N +z) is con-
structed where » is the number of molecularlike
orbitals on the admolecule involved in forming the
chemisorption bond. Finally, if only the total
change in the density of states is desired, then the
phase shift function in Eq. (32) is determined which
leads to the total change in the density of states
through Eq. (31). Alternatively, the matrix Eq.
(21) can be used which requires inverting an (N +n)
X (N +n) matrix along with a simple matrix multi-
plication. Then by forming the difference in Eq.
(30), the partial change in the density of states for
each band can be determined.

III. RESULTS AND DISCUSSION

Here we consider three examples to illustrate
the formalism of the previous section. They are
(i) 2 monatomic linear chain of atoms with one or-
bital per atom, (ii) a simple cubic crystal with one
s band, and (iii) a two-band crystal with the fcc
structure. For the first two examples, we only
carry them as far as the determination of the bulk
Green’s function. For the third example, which is
both new and the most complicated of the three, we
consider all stages of the chemisorption problem.

A. Linear chain

We start with a very simple case of a linear
chain of atoms with one electronic state per atom
at energy E=0. The Green’s function of the un-
coupled atoms corresponding to Eq. (4) is simply

G°(E)=E™, (33)

where the subscripts 7 and j are dropped since
there is only one band. We assume that the inter-
action between atoms is limited to nearest neigh-
bors and is of magnitude 8. Then the matrix A;; in
Eq. (15b) only has one element, and the eigenvalue
in Eq. (16) is

Q=A=B/E. (34)
Upon rearrangement, this becomes
Bg® - Eq+B=0. (35)

Using Eq. (17), the solution for g divides into two
cases depending on the magnitude of E. For the
case |E|>|2[3l, we have

q=E/2B - sgn(E/B)(E*/48> - 1)/2, E>>482. (36)
Note that ¢~! is given by

a'=E/28+sgn(E/B)(E*/4p* - 1)"/?, E*>4p°.

(37)
For the case |E|<|28]|, we have
q=E/28+i(1 - E?/4B%)'/2  E%<4p? (38)
and
at=q*. (39)

For this case, the sign is ambiguous, but we can-
not determine the sign uniquely until later in the
calculation.

Since for this linear-chain example, N=1, the
sum in Eq. (15a) only has one term and therefore
G%*(0)=1. Eq. (20) then reduces to a trivial case
and becomes

B=(E-29B)/E. (40)

Consequently, the Green’s function using Eqs. (18)
and (19) takes the simple form

G(0)=b=G°(0)/B. (41)

By substituting Egs. (36), (38), and (40) into Eq.
(41), we obtain for both énergy ranges

sgn(E/B)

¢ O =255/ - 7

, E*>4p2, (42)

G(0)= E2<4p2. (43)

+i

23(1 - E2/432)1 29
To determine the proper sign in Eq. (43), we im-
pose the condition that the imaginary part of the
Green’s function (which is proportional to the den-
sity of states) be positive. Hence, we choose the
upper sign®® both in Egs. (43) and (38). The
Green’s functions in Eqs. (42) and (43) are the cor-
rect result for the case of a linear chain. (Nofe
that this result was obtained very easily without the
necessity of pevforming an integval over k space.’)

ok

W
S
wim

-0 — Re G(0)

FIG. 1. Real and imaginary parts of the bulk Green’s
function for cases A and B. For the linear-chain case,
E=E. For the three-dimensional “cubium” case, E
=FE —2B(cosky+cosk,).
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This Green’s function is shown in Fig. 1. The
solid line is the real part of the Green’s function -
which for this simple case is nonzero only outside
of the band which has a width of 43. The imaginary
part of the Green’s function is shown with the
dashed line and is nonzero only inside the band. It
is proportional to the density of states.

B. s-band cubium

The second example we consider is the tight-
binding model of a monatomic simple cubic crystal
with one orbital per atom. This corresponds to
“cubium” and has been studied extensively by other
authors.*® In formulating the problem to discuss
the (001) surface, the bulk partial Green’s function
G(ll',k, E) is needed in Eq. (4). Again, we can drop
the subscripts ¢ and j since there is only one band
for this system. The energy for the noninteracting
layers is given simply by

€(k) =2B(cosk, + cosk,), (44)

where B is the nearest-neighbor hopping integral,
and, again, we have set the energy of the atomic
level equal to zero (as for the linear-chain case).
The Green’s function in Eq. (4) for the noninteract-
ing planes is given by

G°(E, E)=[E - 28(cosk, +cosk,)]™". (45)
The perturbation potential which gives the interac-
tion between adjacent planes is simply 8, the same
as in the linear-chain case. Consequently, the re-
sults for the linear-chain case presented in Eqgs.
(42) and (43) can be carried over directly to the
case of “cubium” if we make the identification of
variables

E—~E - 2B(cosk, + cosk,) . (46)
Thus, the Green’s function for each value of %, and
k, is also shown in Fig. 1 as long as the identifica-
tion of the energy axis in the figure is given by Eq.
(46).

This particular bulk Green’s function has been
derived by others by several different meth-
ods.*'"22 The method we present here is not
simpler than some of these previous derivations.
However, our method does have the advantage of
being applicable directly to complex systems.

C. Two-band fcc metal

Now we will apply the formalism to a model two-
band system. The reason for doing this is that the
present calculation will illustrate all of the steps
needed in performing a chemisorption calculation,
namely, determination of the bulk Green’s func-
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tions, finding the appropriate surface Green’s
functions, and finally obtaining the change in the
density of states due to chemisorption on this sur-
face. We choose the system to be a simple tight-
binding crystal with the fcc structure and with two-
electronic states per atom. We will examine the
chemisorption of a one-level adatom in the on-site
configuration on the (001) surface. These choices
specify a problem that has not been solved before
by any method. Even though the model is simple,
it will illustrate all of the numerical steps that
must be performed for more complex and realistic
problems.

The model is specified in the linear-combination-
of-atomic-orbitals (LCAO) tight-binding (T B)
scheme. The on-site energy integrals are given
by a; (=1, 2 distinguish the bands of the solid),
and the nearest-neighbor resonance or hopping in-
tegrals are given by 8;; (4,7=1, 2). Inall the cal-
culations presented in this example, we use a;,
=0.0, @,=-0.2, 8,,=-1.0, B,,=-0.25, and B,,
=-0.25 (note that B8,, defines the units of energy).
The bulk band structure for this fcc model, deter-
mined by standard techniques, is shown in Fig. 2.
The solid line in the figure is for noninteracting
bands which cross (i.e., for 8,,=0.0). The dashed
line shows the model we use with interacting bands.
The modeling of a broad band and a narrow band is
to simulate a transition metal with an s band and a
d band.

For the bulk crystal, the matrix Schrddinger Eq.
(3) can be written as

5 T T T

\
1
4
]
/
k)

=

g

FIG. 2. Bulk band structure for the two-band fcc
model described in the text. For B4,=0.0, the two
bands are independent. For By, =-0.25, the two bands
interact and repel each other. The wave-vector notation
is that appropriate for the bulk Brillouin zone of a fcc
crystal.

[



2662 TAPILIN, CUNNINGHAM, AND WEINBERG 18

[@; - € (K)]ai+ Z4f3i,-(cosk1)(cosk2)a{
7

+ ; 2B;;(cosk, + cosk,) (@i, +al,)=0. (47)

Since we first want the Green’s function for the Ith
layer noninteracting with the other layers, we ne-
glect the last summation in Eq. (47) which connects
different layers. The band energies for this non-
interacting layer are given by

€ (K)=3(e, +€,) £[i(e, - €,)2 + €2, ]2, (48)
where

€ =a,+48,, f(K), (49)

€=, +48,, f(K), (50)

€,=481, f(K), , (51)

f(Kk) = cosk, cosk, . (52)

The label k=1, 2 denotes’ the choice of sign in Eq.
(48). By substituting Eq. (48) into the truncated
form of Eq. (47), we obtain

[@; - € (K)]ai* + D 48,,(cosk,)(cosk,)ai =0, (53)
7

where the label k has been added to the coefficients
a! since their values depend upon which value of €,
is used. In general, the values of the coefficients
a’,"‘ must be found by using numerical techniques.
For this model problem, however, they can be
found analytically with the result being

a}K=€12Dm (54)

azlx=—(€1—Ek)D‘” (55)
where

D, ={e2,+[e, — e (D)2, (56)

Note that all quantities depend upon the wave vec-
tors &, and 2,. Now all the quantities needed to de-
fine the Green’s function for the layer in Eq. (4)
are known.

To obtain the Green’s function for our model bulk
crystal with interacting planes, we examine Eq.
(47) to determine the interaction matrix between
layers. It is given by

Vi;(,17) =28;;(cosk, + cosk,)0;, 1y, - (567)

Using this matrix in Eq. (12) and then substituting
into Eq. (11) gives for each value of j

(¢, -Q)G,;+¢,G,;=0, (58)

¢;G,j+(c,-Q)G,;=0, (59)
where

€,=GYV,,+GLVs, (60)

€2=GY V13 +G, Vo, (61)
C3=Gg1vu+‘ngvzl ’ (62)
€,=G5V ,+GLV,,. (63)

The parameters c,, c,, ¢;, and ¢, are complicated,
but completely specified and trivial to express nu-
merically. To solve for the eigenvalues @, we
have from Eq. (14)

c,-Q ¢,

det =0, (64)
c; ¢,-Q
which yields
Qu=3(c,+c)£[k(c,—c)?+c,c,]Y2, (65)

where a =1, 2 depending upon the choice of sign.
Following the assumption of Eq. (18), Eq. (19) for
the two unknowns b, becomes

2
Zl [G‘xxl‘z(clc?l"'czcgl)qa ]bu=G(1’19 (66)
o=

2
Z; [G5 - 2(csGh+¢,65)04]64=6, (67)
o=

where q, is given by Egs. (17) and (65), and the
quantities G§; are found numerically by solving
Egs. (58) and (59) for a particular choice of g,
(i.e., G§ are the eigenvectors associated with the
eigenvalue @,). Again, we solve these equations
numerically for the unknowns, in this case the two
b,. Then we substitute into Eq. (18) to obtain the
desired bulk Green’s functions.

In the consideration of chemisorption, these bulk
Green’s functions, which at this stage depend on &,
and k,, represent an intermediate step. However,
for purposes of illustration, we present in Fig. 3
the imaginary parts of G,, and G,, summed over the
two-dimensional Brillouin zone. The details of how
this sum is performed will be discussed later.
These curves are proportional to the density of
states for electrons in bands 1 and 2, respective-
ly. The effect of the coupling of the two bands is
seen by the feature at E=0 in the imaginary part of
G,, and the feature at E=4 in the imaginary part of
G,,. When the bands are uncoupled, i.e., when g,,
=0, then these two features are absent.

We now proceed to determine the Green’s func-
tion appropriate for the (001) surface. We generate
the matrix D;; in Eq. (24) numerically which is 2
X 2 in this example. The inverse can be written
analytically in terms of the matrix components,
and the matrix product in Eq. (23) is easily per-
formed.

For the chemisorption calculation which we have
chosen, it is only necessary that we know the sur-
face Green’s function as a function of energy and
not as a function of %2, and k,. This is true because
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FIG. 3. Density of electronic states in each of the two
bands for an atom in the bulk showing the effects of the
interaction of the two bands.

we are choosing the chemisorbed site to be direct-
ly above the surface atom so that the perturbation
which causes the chemisorption does not depend
upon &2, and k,. Therefore, our calculation of
chemisorption becomes simpler if we sum the sur-
face Green’s function over the two-dimensional
Brillouin zone and thereby eliminate the %2, and &,
dependence. Due to the form of the Green’s func-
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FIG. 4. Density of electronic states in each of the two
bands for an atom at the surface. This represents the
two contributions to the density of states as might be
observed by surface sensitive photoemission. Note the
differences between this figure and the bulk results in
Fig. 3.

tion chosen in Eq. (4), this sum over the Brillouin
zone is

G;;n,m,1,1',E)

T T
=f dklf dk, cos(nk, +mbk,) G3;(L,1", k,, ky, E) .

-1 -1
(68)

To obtain the density of states on a surface atom,
we must obtain G (0,0, 0,0, E) so that Eq. (36) be-
comes merely a sum over the Brillouin zone. In
this work, the sum is performed by sampling? a
mesh of special points in the two-dimensional zone.
The results shown in the figures are for a sample
of 1275 points in the irreducible } of the square-
surface Brillouin zone.

In Fig. 4, we present the densities of states for
the two types of bands for the surface layer of at-
oms. On comparing Figs. 3 and 4, we see that the
density of states for band 1 is significantly changed
between the bulk and the surface. Band 2 is also
different, but in a more subtle way.

We are now in a position to consider chemisorp-
tion explicitly. For illustration purposes, we
choose one of the simplest cases. We choose the
adatom to have one atomic level at energy E,. The
atom sits in the on-site configuration where the
adatom level interacts only with the two orbitals on
the nearest substrate atom below it with resonance
integrals of V,, and V,, between adatom and atomic
levels 1 and 2, respectively. The Green’s function
G, for the free atom is given simply by Eq. (28).
We wish to find the diagonal matrix elements of the
Green’s-function matrix for the composite system
given by

G Ga Go
G*=|6G; Gi Gh |- (69)
Gz Gt Gi,

To obtain these, we solve the matrix Eq. (29) nu-
merically, where the matrix G° is

G, 0 0
¢=| 0 ¢ 0|, (70)
0 0 G5

and the interaction matrix V is given in our simple
case by

0 Val Vn2
v=|V, 0 o0 |. (11)
Ve 0 0
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FIG. 5. Change in the density of states Axn due to
chemisorption of an adatom with energy level E, =—0.1.
For three different values of the interaction strengths
between adatom and the two bands, the total change in
the density of states as well as the partial changes due
to the electrons in band 1, band 2, and on the adatom
are shown.

It is the fact that the V matrix does not depend on
k, and k, which allows us to use the Green’s func-
tions which have been summed over the surface
Brillouin zone.

We have obtained the change in the density of
states on the adatom and in both bands on the sur-
face atom by the method given in Eq. (30). In Fig.
5, we present results for the case E,=-0.1, and
for several choices of the parameters V,, and V,,.
We show the changes in the density of states of the
electrons in band 1, Az ; of the electrons in band
2, An,; and the change in the density of states of
electrons on the adatom, An,. Also shown is the
total change in the density of states An, where each
change is equally weighted in the sum. This total
change is related to the results of a photoemission
measurement. These curves show the familiar
bonding and antibonding resonances in the surface
density of states and how these resonances are af-
fected by changes in the strength of coupling. Of
importance is the observation that increasing the

strength of coupling of the adatom to one band has
an effect on the electrons in the other band. Com-
paring An, between Figs. 5(a) and 5(b) shows that
increasing the coupling between the adatom and
band 1 perturbs band 2. Hence, there are impor-
tant effects due to the interaction of substrate elec-
trons even though those electrons may not partici-
pate directly in the bonding process.

In Fig. 6, we show similar results for the case
E,=2.9. Again we see the important effect of bands
being perturbed even though they are not strongly
involved in the chemisorption bond. Here An, is
considerably larger in Fig. 6(b) than in 6(a), while
only the coupling to band 1 is increased. Also, for
larger coupling strengths, a localized antibonding
state is split-off above the metal bands.

IV. CONCLUSIONS

A new method has been presented for finding the
Green’s function for a bulk material in a mixed
representation depending upon wave vector parallel
to an imaginary plane and layer number perpendic-
ular to the plane. The calculation of this bulk

 Eg= 2.9

FIG. 6. Same as in Fig. 5 where the energy of the
adatom level is E,=2.9. Note the fact that changing the
interaction strength with only one band affects the re-
sults in the other band significantly.
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Green’s function is the most important intermedi-
ate step in studying systems wherein the imagi-
nary plane becomes the surface of the crystal and
upon which additional atoms may be chemisorbed.
The value of this new method lies in the fact that it
is numerically practical for studying crystals with
complex band structures where the bands can be
calculated in a LCAO scheme. Calculations of
chemisorption on Ni, for example, can now be at-
tempted using realistic bands rather than relying
on simplifying assumptions.?*

The method has been demonstrated by analytical-
ly solving for the bulk Green’s functions for a
monatomic linear chain and for the (001) surface of
s-band “cubium” (two well-known results). Final-
ly, a new system was considered, the (001) sur-
face of a two-band fcc metal, to demonstrate in de-
tail the numerical steps required for more com-
plex cases.

In addition, the chemisorption of a one-level ad-

atom on the two-band fcc metal was presented.
Here, all the steps of a chemisorption calculation
were demonstrated on a system not heretofore con-
sidered. It was shown that the familiar bonding
and antibonding resonances can be recognized al-
though additional structure is present. For the
first time, it was specifically demonstrated that
when a single level interacts with a multiple band
substrate, increasing the interaction between the
adatom and only one band significantly affects the
electron density in the other bands.
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