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The energies and lifetimes of phonons in metallic Li between 110 and 424 K are calculated using the self-
consistent phonon theory and the effective ion-ion interaction developed by Dagens, Rasolt, and Taylor
(DRT). The results are compared with the recent neutron scattering measurements of Beg and Nielson. Li
turns out to be surprisingly harmonic, less anharmonic than Na or K, due to the strong Li ion-ion
interaction which has a relatively soft repulsive core. The anharmonic corrections do improve agreement with
the observed dispersion curves at 110 K, and they provide a good description of the phonon frequency
changes with temperature, but the calculated phonon lifetimes are often two or three times the observed
values. The remaining discrepancies with experiment suggest (i) the presence of three- or four-body
interactions in Li which are not included in the DRT pseudopotential method, and (ii) that the phonons
decay significantly via processes higher than those accounted for by cubic anharmonicity.

I. INTRODUCTION

Starting with the early work of Toya,! theoretical
calculations of the lattice dynamics of alkali metals
have progressed, during the past two decades, to
the point where first-principles? calculations can
be expected to yield reliable results. This is es-
pecially true in Na and K where it is possible to
obtain good agreement with experiment at all tem-
peratures, even those where anharmonic effects
are comparatively large.®>** With their spherical
Fermi surfaces, free-electron behavior, and fairly
tightly bound ionic cores these two metals are,
from the theoretical point of view, the easiest of
the alkali metals to deal with. Rb and Cs are ra-
ther more difficult for two reasons. Firstly, the
density of electrons is so low that the compressi-
bility of the electron gas is negative for Cs and
virtually so for Rb, rendering a calculation based
on the electron gas as a zeroth-order approxima-
tion, highly questionable. Secondly, the rather
large ionic cores of these materials are more
loosely bound than in the lighter alkalis giving rise
to appreciable core polarizabilities. This latter
effect has yet to be included in a lattice-dynamic
calculation for Rb and Cs, although Kukkonen® has
incorporated it into the electron-electron scatter-
ing contribution to the thermal resistivity. Kuk-
konen suggested that the core-polarization effect
could be included by renormalizing the density of
the electron gas to an effective higher density.
This has the additional benefit of removing the
compressibility problem. Hence this type of ap-
proach applied to the lattice-dynamic problem
might very well be the answer to the Rb and Cs
problem, although this remains to be investigated.
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This brings us to Li, the lightest of the alkali
metals with the highest density of electrons and no
significant core polarization. However Li has its
own special problem which arises from the fact
that the ionic core consists of only two 1s elec-
trons. This means that the ionic potential seen by
the p component of the conduction band is not
shielded by the core, resulting in a strong scatter-
ing phase shift. The pronounced deviations from
sphericity of the Fermi surface®*” are ‘probably
manifestations of this fact. This means that a
properly constructed Li pseudopotential is highly
nonlocal and relatively strong, which in turn means
that the application of perturbation theory poses a
serious problem. Hence although, superficially,
the lattice dynamics of the alkali metals appears
to be reasonably well understood, only Na and K
seem to have no significant remaining difficulties
in interpretation.

In this paper we address ourselves to the prob-
lem of anharmonic lattice dynamics in Li. Al-
though there exists a number of calculations in the
harmonic approximation (e.g.,Refs. 8-13), there
have been no attempts to evaluate the anharmonic
contributions. In view of the fact that Li* is a very
light ion it is conceivable that significant anhar-
monic effects could be present even at the lowest
temperatures (liquid nitrogen) for which neutron
scattering measurements have been made.!* This
point alone is worthy of investigation since many
of the aforementioned calculations were adjusted
to fit the low-temperature experimental data. In
addition, the recent neutron measurements of Beg
and Nielsen!® of the phonon dispersion curves up to
T =424 K provide an interesting test of theory to
see how well these can be reproduced from a first-
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principles point of view. In Secs. II-V we discuss
the interionic potential used, the techniques to
handle it, the lattice dynamics, and the comparison
of our results with experiment over the entire tem-
perature range. In our treatment there are no ad-
justable parameters determined from experiment
and it can be regarded as a first-principles calcu-
lation.

II. THE INTERIONIC POTENTIAL

In the theory of simple metals, it is normal to
replace the ionic potential seen by a conduction
electron by a pseudopotential. This is then as-
sumed to be a sufficiently weak perturbation on
the system, that second-order perturbation theory
can be used to generate the interionic potential.

In view of our remarks in Sec. I concerning the
strong scattering properties of Li, this assump-
tion is highly questionable. But to go beyond sec-
ond-order perturbation theory when calculating
ion-ion interactions is a very difficult and unre-
warding computation.*® One way out of this di-
lemma is to follow the prescription provided by
Dagens, Rasolt, and Taylor!® (DRT). These au-
thors first calculated the charge density induced
by an isolated ion placed in an infinite electron
gas of the same density as the metal. For this
they used the self-consistent Hartree-Fock-Slater
scheme with Kohn and Sham!” exchange. They then
generated the linear response (first-order) result
using a pseudopotential screened by a dielectric
function, formally equivalent to the Kohn and Sham
exchange approximation, and they adjusted the
parameters of the pseudopotential to make this
second calculation agree with the first. By this
procedure all the higher-order terms representing
multiple-scattering events at a single ion site were
folded into the pseudopotential, which could then
be used in low-order perturbation theory. Using
the DRT pseudopotential to second order in the
interionic potential problem provides an effective
sum of all higher contributions to the two-body
pair potential. Hence it is entirely appropriate

to use the DRT pseudopotential to second order
for a calculation of a Li pair potential and this

is what we have done. We should point out that no
effects of N-body forces (N =3) are folded into the
pair potential and we do not include these forces

in our calculation. It is quite probable that at
least three-body forces play a significant role in
Li and we shall comment on the possible influence
of these forces in the discussion.

For our calculations we used the Geldart and
Taylor'® dielectric function to screen the pseudo-
potential. This dielectric function includes both
exchange and correlation in the electron gas and

is probably the most appropriate one to use for
these problems.!® Using the same combination of
pseudopotential and screening, DRT obatined pho-
non dispersion curves approximately 5% higher
than the experimental results of Smith et al.* at
90 K. The formulas used to calculate the inter-
ionic potential are given by Rasolt and Taylor.*

A particularly important feature of the DRT
pseudopotential which is common to all realistic
descriptions of Li, is the strong degree of nonlo-
cality. This comes from the fact that the abgence
of p-electrons in the Li* core means that the p
component of the conduction band is scattered
much more strongly than the s component. As a
result of this feature the corresponding interionic
potential exhibits asymptotic Friedel oscillatory
behavior of the form

Vds (7) = sz(Ze)z[A3 cossz;r/(sz,r)S ( )
1
+ A, 8in2kr/(2kpr)itoce ],

where the amplitude of oscillation is very large.
This severely complicates the problem of anhar-
monicity since sums of this function in real space
barely converge at infinite distance. This is be-
cause the number of neighbors summed over is 72.
Hence truncation of sums at any finite distance
can lead to serious errors. To display this point
we have plotted 72V (7) in Fig. 1, where it can be
seen that the long-range oscillations are indeed
very large, particularly compared to the DRT K
interionic potential. Because of this, special tech-
niques had to be developed to treat the dynamics
of Li which were not necessary for Na (Ref. 3) and
K (Ref. 4). These are described in the following
paragraphs and Sec. II.

Although Eq. (1) contains only the first two terms
of an infinite series, it gives a good description
of the long-range oscillations of Li in the range of
interest, and we shall truncate the series at that
point. Strictly speaking the coefficient A, displays
a weak logarithmic dependence on 7, but for our
purposes it is sufficient to regard it as a constant.
Thus the problem of summing ¥V, (r) over all neigh-
bors can be solved by evaluating sums of functions
of the form e**7/r™. These can be computed easily
to any desired accuracy by using a modified Ewald
technique. We follow Duesbery and Taylor® and
write, for the interionic potential at all values of
T’

Vy )=V, )+ V(7). (2)
The short-range part V, (r) is of course left over

when V,, (7) is subtracted from V,, ().
To evaluate the asymptotic part V, (7), in (1) we
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FIG. 1. Effective ion-ion interactions p?Vii(p) in Li and K, where p=v/a and a is the lattice constant.

use the Ewald-Fuchs?® method to evaluate x™° and
x~%, where x=2k;7. This employs the identity

12 (7 02
x"'—I‘(m/Z),[0 ne dn

~ 2 © m=1_,=(n%)?
" Tm/2) (./; e dn

+ f e (W) 2dn)
o

Eféﬁ) [J9(x) +JIE(x)] , (3)

where I'(3m) is the gamma function. The second
term J%(x) of this representation of 1/x™ converges
rapidly as x increases (much more rapidly than
1/x™) while the first term J9(x) can be evaluated
rapidly in Fourier space. Using (3) we may write
(1) as

and VE(7) is the corresponding expression with
JE replacing J9. The total potential is then

V. )=V, 0)+VED) ]+ Vi)

=V )+ V). (6)

This representation raises the possibility of re-
placing Vi () by Vi (#) = Vg () + VE(r), which ig-
nores V3(r) completely. This can sometimes be
done by suitable choice of @. This is regularly
done in the reciprocal space formulation of dyna-
mics,?® where the Ewald transformation is used to
separate the entire potential into two parts, one
evaluated in reciprocal space and the second eval-
uated in configuration space. With suitable choice
of o the part in configuration space may be neglec-
ted. However, we found no value of @ which made
V ¢ (7) suitably convergent and at the same time
made V 2(r) negligible. The long-range part of
the potential, which is now collected in V &(r), par-

ticularly affects the low-frequency T, branch along
=VE Q 1

Vo )=V + V3l), ) the [110] direction. For example, for a choice of

where a=0 (V8=0), this branch is still unstable when the

Va(r)=A,2/T{3) ]I ¢ (x)cosx

+A,[2/T(2)]I9(x)sinx (5)

force constants are summed to 19 shells. For «
=0.17 the V4 (¥) converges after about 20 shells
and the harmonic T, frequency at the zone bound-
ary ignoring V&, is 0.54 MeV (the complete value
including V 2 is 0.43 MeV). We chose a=0.23
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which made V . negligible beyond 15 shells and
evaluated V&(») in reciprocal space.

III. DYNAMICS

In the pseudopotential description of Li, we
write the metallic energy as the sum of terms de-
pending only upon the volume plus the term

¢= Z ), @)

1<’

which depends upon the positioﬁs ?, of the ions.
The dynamics of ionic motion at a given volume
then depends solely on V; (¥, = T;).

A. Quasiharmonic approximation

In the quasiharmonic approximation the frequency
of a phonon having wave vector q and branch A is

w@)Z{%Ea@)Bae @&%a@n , (8)

where E(a?t) is the phonon polarization vector and

PO | .

Bas @ =3 (e" 8 B - )0 () Ve (Vi (r5)  (9)
'I

is the dynamical matrix.*’ The derivative of Vy
(r,,7) is evaluated at T;s —R,, , the separation be-
tween the lattice points. Since R, R,: varies with
T as the lattice expands, the quasiharmonic har-
monic frequencies are temperature dependent.
With Vy () written as the sum in (6), the D,s(q)
has two parts
DuB(q aﬂ(a +DaB ) (10)
The first part D2;(q) is obtained by substituting
Ve () directly into (9). The second part is ob-
tained by substituting V¥ (#) in (9) in the form

3 g —
Van)= [ Q)
which reduces D@ (q) to
B3 @ =2 @+ Pa@+ DeP(F+7])
7.7 F(|F])] - (11)

The Fourier transform F@) needed in this ex-
pression was evaluated directly from (5) and the
integrals involved reduce to exponential integrals
and Dawson’s integral. A sum over T of three re-
ciprocal-lattice points was sufficient to obtain
D245(q) with @=0.23 in (3). By writing D,s(q) as
a sum of two parts following the Ewald-Fuchs
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method, we can evaluate D g ('ci) exactly in spite
of the long-range character of V;; ().

B. Self-consistent harmonic approximation

The lowest-order self-consistent phonon theo-
ry®~?% ig the self-consistent-harmonic (SCH)
approximation in which the phonon frequencies
are again given by expressions (8) and (9). Now,
however, the derivative of Vy (7,;+) in (9) is aver-
aged over the relative vibrational amplitudes,
Q@) =u(l) - ("), of the ions about their lattice
points

(ValDVe(t')V, y=[(@m3|A|]-/2

xfdau exp(-30-A-? <)
XV ()Vs ()Y - (12)

The width of this Gaussian distribution is

Aop(U2") = Cug (U ug ' ))
=_ﬁm1_v.z (1 - e T RONZ @GNy, @GN
qX

coth[ 387 w(&)\)

where % is Planck’s constant, m is the mass,
B=(kT)™!, and N is the number of atoms in the
crystal. Since the w(q)) in (13) are the SCH fre-
quencies, Egs. (9), (12), and (13) must be evalu-
ated interatively until self-consistent.

The D24 (q) part of D 5 (q) can be evaluated straight-
forwardly in the SCH approximation since for this
part Veg () replaces Vy (7,,/) in (9). However, DZ4(q)
cannot be evaluated in the same way since the average
(12) introduces correlations between the atomic mo-
tions and the reduction of DZ4(q) to the reciprocal
space expression (11) requires no correlation between
the atoms. Since V. () continues out to 15 shells
and V& (r) accounts for the remainder, we thought
it would be a good approximation to ignore the
averaging for atoms separated more than 15 shells
and use the quasiharmonic value of D% (q) for these
atoms [ A,s(I') <R2(Il’)]. This turned out to be
the case for all branches except the T, [110]
branch, which depends heavily on the long-range
part of the potential. To improve this branch, we
approximated the outer shell averaging by an un-
correlated Einstein model like Gaussian averaging
of the same width in D95 (§). This improved the
T, [110] branch but the frequencies of this branch
still showed unrealistic variation with wave vector.
This point is discussed further in Sec. V.
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C. SCH + cubic approximation

The SCH approximation includes all the even
anharmonic terms that would appear in a first-
order perturbation evaluation of the anharmonic
shift to the phonon frequencies.?® This includes
notably the quartic anharmonic term. The leading
correction to the SCH approximation in perturba-
tion theory is the cubic anharmonic term. This
term is also the leading term in a second-order
self-consistent theory. Here we simply add the
cubic term as a perturbation to the SCH frequen-
cies.

The phonon frequencies w1th the cubic term in-
cluded are identified with the peak in the one-pho-
non response function,? A(g:, w), of form

8w\ (O , )
[= &+ ?(@\) + 20@)AG, w) ]2 + [ 20(@)T (@, ) [?

(14)
which appears in the one-phonon part of the dyna-
mic form factor (see Sec. IIID). The expressions
for A(gA, w) and I'(gA, w) are given in Egs. (5) and
(6), Ref. 3 and two approximations were made in
their evaluation. Firstly, the cubic anharmonic
coefficient

33V (r I)
<a 74(1)8 72 @ 7y (z")> (15)

was summed out to five shells only. Tests by com-
paring phonon frequencies obtained with three- and
five-shell summations showed this gave all fre-
quencies within 2% for g= 0.1(27/a). Secondly,

the self-consistent harmonic frequencies w(&)\)
used in A and I" were those given by the first part
of D5 (q) in Eq. (10) only. Tests of the dependence
of A and T on w(g)) showed this could lead to 10%
error in A and T or ~2% in the final SCH + cubic
frequencies.

D. Dynamic form factor

To complete this section, we note that the co-
herent inelastic cross-section for neutrons scat-
tering from crystals is proportional to the dyna-
mic form factor, S(Q,w). This S(@Q, w) is usually
expanded in powers of scattering from single pho-
nons, pairs of phonons,

S@Q, @) =5,@, w) +S,@, W) +5,@, w)
=5,@, W) +S,@, )+, (16)

and so on. The term Slz@, w) represents the in-
terference contribution between the one- and two-~
phonon cases. For all phonons considered here
the S, (Q, w) + SZ(Q, w) in Eq. (16) was calculated

and this was usually dominated by the one phonon
part

5,@, w)=[n(w) +1]| FQ, qVI2A@G, ©)A@- ),

(17)
where F(Q, QX is the structure factor® and n(w)
is the Bose function.

IV. RESULTS
A. Low-temperature phonons

The representation of the Li ion-ion interaction
used in the present calculations is shown in Fig. 1.
The phonon energy dispersion curves for Li at 110
K calculated in the self-consistent harmonic ap-
proximation with the cubic term added (SCH + cubic)
using this ion-ion interaction are shown in Fig. 2.
A comparison of the calculation and observed pho-
non energies shows good overall agreement with
some clear discrepancies.

In assessing the meaning of these discrepancies,
it is interesting to compare first the quasiharmonic
(QH) and SCH + cubic phonon energies. In a pre-
vious QH calculation using the same ion-ion inter-
action as in Fig. 1, DRT" noted significant dis-
crepancies with experiment around the Q* =Q(a/2m)
=(1,0, 0) point and along the L{qq0] branch. Here
in Fig. 2 we see that the discrepancy around Q*
=(1,0, 0) has effectively been removed. This is
partly because the SCH + cubic energy is lower
than the QH value (see Table I) and partly because
the additional single point due to Beg and Nielson'®
(see Table I) lies higher than the original values
of Smith et al.'* However, the discrepancy along
[4490] L at higher ¢ remains. We shall see that the
SCH + cubic theory does not predict a large enough
downward shift due to anharmonicity with temper-
ature for this branch (for example, the discrepancy
along L[gq0] is greater at 293 K). Thus some of
the discrepancy here might be due to additional
anharmonic contributions. However, these are
unlikely to reduce the phonon energy by more than
1%-2% on the basis of the temperature shifts dis-
cussed below. Most of the discrepancy thus results
from the representation of the ion-ion interaction.
Since this ion-ion interaction simulates the non-
linear electron screening between a pair of ions to
all orders in perturbation theory, the discrepancy
probably reflects the role of three- and four-ion
interactions in Li which are not represented in the
present pair ion interaction.

B. Temperature shifts

The SCH + cubic phonon energies for Li at 293 K
are compared with the observed values of Beg and
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FIG. 2. Phonon energy dispersion curves for Li. The solid lines are the SCH+ cubic calculations at 110 K, the open

triangles (circles) are the longitudinal-(transverse) phonon energies observed by Smith et al. (Ref. 14 and unpublished
data) at98 K, and the solid triangles and circles are the corresponding values observed by Beg and Nielsen (Ref. 15) at

110 K.

Nielsen in Fig. 3. There we see that the discrep-
ancy along {¢¢0] L noted at 110 K has increased
and, in addition, the calculated phonon energies
along [ ¢¢0] T, and along [gqq] L clearly lie above
the observed values. These discrepancies show
that the theory does not predict a large enough
downward shift in phonon energy with temperature.

The [ g¢0] T, branch in Fig. 3 is interesting since
the intrinsic anharmonic shifts in the phonon ener-
gy from the QH to SCH, and on adding the cubic
term, are both negative in Na and K. Here the
QH-SCH shiftis negative but very small (see Table I).
Also the cubic shift is very small (see Table I and
Fig. 4). Generally the cubic shifts and the total
shifts are smaller in Li as a percentage of the
phenon energy than in K ar_lg Na. For example, for
the longitudinal phonon at Q* = (0.5, 0.5, 0) the per-
centage shift in energy between 110 and 424 K
(0.94 of the melting point) is 5.5% (calculated 3.9%)
in Li. In K, this phonon has an energy shift of 8%
(calculated 9%) between 90 and 311 K (0.93 of the
melting point).* The corresponding shifts for the
T, phonon at Q*=(0.5, 0.5, 0) between the above
temperatures are 10.2% (calculated 3.4%) in Li
and 9% (calculated 8.8%) in K. The percentage
shift in the calculated QH frequency with tempera-
ture is also smaller in Li than in K. The magni-
tudes of the temperature shifts in Li are shown in
Fig. 5. )

As a summary statement, the calculated shifts
with temperature are too small. This probably

means uitimately that the representation of the
ion-ion interaction in the replusive region is too
soft given the better agreement of the SCH + cubic
theory with experiment in K and Na.

C. Phonon groups

The dynamic form factor, S(é, w), calculated
with SCH + cubic theory for the longitudinal polari-
zation at Q*=(2—£,2 - &, 2 - £) with £=0.677 is
compared with the corresponding observed pho-
non groups in Figs. 6 and 7. The calculated S
(Q, w) includes the one-phonon scattering, the two-
phonon scattering, and the interfe_agence between
these two [ see Eq. (16)]. The S(Q, w) is also con-
voluted with a Gaussian function of full width at
half-maximum equal to the instrument resolution
width (~1.3 meV) shown by the horizontal bar with
the observed groups to make the comparison with
experiment more direct. This comparison shows
that although the calculated phonon group has ap-

‘proximately the correct shape, its overall width

is too small (i.e., ~2.5 meV at 424 K compared
with ~4.0 meV, both including the resolution
width). Also, the calculated S(Q, w) does not re-
produce the large intensity on the low-energy side-
of the observed phonon group. This would have to
come from gle two phonon or interference contri-
bution to S(Q, w) in the theory. Large intensities
on the low-frequency sides of some phonons groups
have been observed in K, 3! and these could be re-
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TABLE I. Selected phonon energies (meV) and intrinsic phonon group widths 2I' (meV)

(phonon lifetime T7=I"1), 2

Temperature
Phonon Model 110 K 293 K 424 K
(1,0,0)L QH 40.0 39.3 38.5
SCH 39.8 38.9 38.0
rw SCH + cubic 38.6 36.9 36.0
Obs. 37.5+1.0 35.8 =1.0 33.1 =1.0
2r Calec. 0.3 0.3 0.7
Obs. v -1.94 0.6 3.85+0.6
(0.5,0.5, 0)L QH 41.2 40.2 39.0
SCH 42.3 41.7 40.8
rw SCH + cubic 41.0 40.6 39.4
Obs. 36.5 1.0
2r Calc. 0.6 0.8 1.0
Obs.P oo 0.0 +0.3 3.12:£0.45
(0.5,0.5,0)T, QH 24.1 23.9 23.8
SCH 24.0 23.9 23.6
rw SCH + cubic 23.5 23.1 22.7
Obs.
2r Cale. 0.3 0.8 1.8
Obs. 2.20+0.5 2.77+0.64
(0.5,0.5,0)T, QH 7.3 7.3 7.3
SCH (5.6) (7.6) (8.6)
Fw SCH + cubic (5.1) (6.6) (7.5)
Obs. 8.6 0.6
2T Cale. . 0.3 1.6 2.8
Obs. ce
(0.677,0.677,0.677)L QH 17.2 16.9 16.7
SCH 17.5 17.8 18.1
Fw SCH + cubic 16.8 16.3 16.0
Obs. 16.4 £0.2 15.1 £0.5 13.0 +0.5
2r Cale. 0.3 1.2 1.7
Obs. 3.23+0.22 3.69+0.5
(0.5,0.5,0.5)L QH 32.8 32.2 31.2
SCH 33.2 32.8 32.2
hw SCH + cubic 32.4 31.8 30.8
Obs.
2r Calc. 0.3 0.6 0.8
Obs. oo

2 Observed values are those of Beg and Nielsen.

produced by including the interference terms.

To investigate this intensity further, we show
the interference contribution for this phonon at
three different wave vectors 6 which have the
equivalent reduced wave vector £ in Fig. 8. There
we see the interference contribution is large but
does not contribute much scattering intensity at
low energy. Apparently the observed intensity at
low energy arises from scattering from three or
more phonons.’

In Figs. 9 and 10 we compare the calculated
S(Q, w) with the observed phonon groups of Beg
and Nielsen for some second transverse phonons

b oI for (0.435, 0.435, 0)L phonon.

along the [110] direction. Again the calculated
S (@, w) is convoluted with a Gaussian of width given
by the experimental resolution width shown by the
horizontal bars under the observed groups. As in
Fig. 6 the calculated S@, w) reproduces the ob-
served group shapes well but the calculated line-
width is too small at high temperature. We find
that the calculated width of the [££0]7T, phonon with
£=0.079 is given entirely by the resolution width
as in the observed case shown and we have not
shown the calculation of this phonon group.

From Fig. 5 and the phonon groups shown in
Figs. 6—-10 we see that the calculated phonon life-
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FIG. 5. Phonon energy shifts ZAw between 110 K and
the temperatures indicated, and the intrinsic full width
at half-maximum 2T of the phonon groups at the temper-
atures indicated. The lines are the SCH+cubic calcula-
tions and the points are the observed values of Beg and
Nielsen.

times are often three or four times the observed
lifetimes. A discrepancy of a factor of two is
characteristic of calculations made using the
SCH + cubic theory, for example in K. There a
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comparison of the SCH + cubic lifetimes with a
molecular dynamics determination®? using the
same effective ion-ion interaction showed that

a factor of two discrepancy could be attributed

to the SCH + cubic theory rather than the poten-
tial. In the SCH+ cubic theory, a single phonon
can decay to two phonons via the coupling through
the cubic anharmonic term. Clearly, higher order
processes are important. The shortest-lived pho-
non compared to the frequency is the longitudinal
Q* = (&, &, £) with £~ 0.68 phonon which vibrates
approximately seven times before it decays.

V. DISCUSSION

The aim of this study has been to examine the
anharmonic properties of lithium, both for its in-
trinsic interest and as a means of testing the ef-
fective ion-ion interaction. Perhaps the most sur-
prising single result of Sec. IV is that lithium is
not very anharmonic. To put the results in per-
spective we compare in Table II the percentage
anharmonic frequency shift of three phonons with
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FIG. 7. Phonon groups observed by Beg and Nielsen
(Ref. 15) for the same phonon shown in Fig. 6, Q*
=(2-§, 2-£, 2-¢).

temperature in Li with those in Na and K which
show that Li is the least anharmonic of the three.
We might expect lithium to be the most anharmonic
of the alkali metals, and possibly of all metals,
since its mass is small. However, if the inter-
ionic forces are strong these forces can counter-
act the effects of a light mass by providing a
strong restoring force as an ion vibrates away
from its lattice point. This will keep the vibra-
tional amplitudes small. The large phonon fre-
quencies in Li do indeed suggest strong restoring
forces. For example, the maximum phonon fre-
quency in Li is 2.5 times that in Na and 4.0 times
that in K, while on the basis of the mass difference
alone (wxm=1/2) we expect ratios of only 1.8 and
2.4, respectively. '

To make these points more precise, we consider
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FIG. 8. Calculated Si(é,w)+sz(§,w) (dashed line) and
the S,@,w)+sz@, w) (solid line) for three phonons hav-
ing identical reduced wave vector £ =0.677 and Q*
=(0.677, 0.677, 0.677), @*=(1.323, 1.323, 1.323) and
@*=(1.677, 1.677, 1.677). The difference between the
dashed and solid lines, is the interference contribution.

the usual expansion of the interionic potential ¢ in
powers of the atomic displacements #. Schemati-
cally, this is

O= o+, U+ 5P U+ 5P Ut Fo e, (18)

A traditional®*** measure of the importance of
the anharmonic terms is the ratio of the RMS vi-
brational amplitude to the interionic spacing
6={u%)'/2/R. Table III shows estimates of 6 at
the melting point of Li, Na, and K. The (u?) is
estimated from

(u® = (1 /k)? (9RT/MO3) , (19)

which is the harmonic result in the high-tempera-
ture limit using a Debye approximation to the fre-
quency spectrum. (An accurate value of 6 obtained
using the exact frequency spectrum calculated
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FIG. 9. As Fig. 6 for the phonons indicated.
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TABLE III. Estimates of the expansion parameter 0
=w®2/R [using Eq. (19)] at the melting temperature T,
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FIG. 10. As Fig. 7 for the phonons indicated.

from the SCH + cubic frequencies gives® 6=17%
for Na at T=361 K). Clearly the larger value of
©,, for Li has counteracted the smaller mass to
give comparable values of 0.in Li, Na, and K. On
this basis we expect Li to have comparable or
marginally smaller anharmonic shifts as noted in
Table II. The larger ©, for Li reflects the sub-
stantially stronger ion-ion interaction (see Fig. 1).
As noted in Sec. I, the stronger ion-ion inter-
action in Li can be readily understood in terms of
the ion cores. The ions interact via the conduction
electrons through an ion-electron-ion indirect in-
teraction. The lithium ion has only two core elec-
trons, both in an s state. This means that a con-

TABLE II. Percentage anharmonic shift Aw/w in pho-
non frequency calculated using the SCH+ cubic theory for
Li between 90 and 424 K (T',,=451 K), for Na between 5
and 361 K (T,,=371 K), and for K between 5 and 311 K
(T,,=335 K). The observed values in the brackets are:
Li [Beg and Nielsen (Ref. 15)] and K [Buyers and Cowley
(Ref. 33)1.

Phonon Li Na K
(1.0,0,0) -7.2% -12.8% -17.5%
(-12+6%) (=14 %)
(0.5, 0.5, 0)L -4.0% -10.0% -11.5%
(=6+3%) (=10%)
(0.5,0.5,0)T, 03.5% -10.8% -14.5%
(-11+3%) (=14%)

M Tw  aTw  ©p(T,) (uDV/R)
(amu)  (K) (&) (K) (%)
Li 7 453 3.54 430 12.7
Na 23 371 4,25 160 14.2
K 39 337 5.34 100 13.3

duction electron in a state having p-wave character
sees directly the strong Coulomb potential of the
nucleus unshielded by the core electrons. As a
result the indirect ion-electron-ion interaction
will be strong in Li, much stronger than in Na or
K where the larger ions shield the Coulomb poten-
tial more effectively. It is interesting that a smal-
ler mass (fewer nucleons) is balanced by a stron-
ger interaction (fewer core electrons) in such a
way that the Lindemann3® ratio, 8, is roughly held
constant.

To compare the relative sizes of the cubic and
quartic anharmonic terms, we turn to the more
precise expansion parameter for (18) pointed out
by Horner.3” He noted that the expansion para-
meter should include a measure of the size of the
derivatives of ¢ in (18) as well as noting that each
derivative brings a factor of 1/R. The size of
these derivatives is fixed largely by the steepness
of the repulsive part of ¢ which we could repre-
sent crudely by

@) =e(a/7)",

where the index # measures the steepness of ¢(r).
The derivatives of ¢(») are

4)’"(7)[ r=R" q)o("/R)m .

A more appropriate expansion parameter is then
A=nd=n{u?)1/2/R , which is approximately the
ratio of the kinetic to the potential energy. Ifn
and hence A is small, the Taylor-series expansion
converges rapidly.

In the rare-gas crystals, where n is large (2
~12) we find a large shift in frequency A, due to the
quartic anharmonic term. This shift is approxi-
mately given by the difference in the SCH and QH
frequencies. This A, is about twice the shift A, due
to the cubic anharmonic term, the difference be-
tween the SCH and SCH + cubic frequencies. In the
Alkali halides, the quartic (A,) and cubic (4,) an-
harmonic frequency shifts are comparable in size
suggesting that X is smaller there than in the rare-
gas crystals. From Table I we see that the dif-
ference in the SCH and QH frequencies is very
small in Li, while the cubic anharmonic shift A,
is relatively much larger. This means that in Li
the quartic term is small compared to the cubic
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FIG. 11. Transverse Ty [110] phonon energy dispersion
curve in (a) the quasiharmonic approximation (QH), (b)
the self-consistent harmonic approximation (SCH) with
the force constants for the fifteenth shell and beyond ap-
proximated by the nonaveraged QH force constants
(SCH-N), and (c) the SCH approximation with the fifteenth
shell force constant and beyond obtained by averaging
with an uncorrelated spherical Gaussian function
(SCH-G).

term so that the core of the interionic potential is
quite soft (z small). A small A, is also required
to get agreement with experiment since A, is gen-
erally positive and in general, lower frequencies
are required to improve agreement at high tem-
perature (see Fig. 3). The A, is larger in Na and
K, suggesting that the core of the ion-ion interac-
tion is steeper in these larger ion metals. The
softer core in Li is consistent with weak shielding
of the Coulomb interaction which leaves the net
ion-ion interaction closer to 1/7.

Finally, we note that the agreement of the calcu-
lated frequencies and anharmonic shifts with ex-
periment in Li is not as good as in Na or K. Low-
er frequencies at high T (see Fig. 3) or larger

negative shifts (see Table II) are required to im-
prove the agreement with experiment. Since 4, is
always negative, a generally larger cubic term is
called for in Li. This is not the case in K and Na
where agreement is much better. This error in
Li probably arises from the breakdown of the
pseudopotential method limited to second order in
the ion-electron interaction when this interaction
is as strong as in the Li case. As discussed in
Sec. II, the DRT ion-ion interaction used here is
constructed to simulate all the nonlinear higher-
order contributions between pairs of ions. Thus
the present discrepancy probably reflects the pre~
sence of three- or four-body forces. A three-body
force leads to an additional class of cubic terms
in A; which could substantially increase its size.

To conclude, we note that the long-range nature
of the Li ion-ion interaction shown in Fig. 1 made
the calculations difficult. This affected particu-
larly the [gq0] T, branch, and the frequencies of
this branch did not stabilize even for force con-
stant summations out to 30 shells of neighbors.
The QH frequencies could be obtained exactly by
expressing Vy () as the sum of a Ve (), which
became negligible after 15 shells of neighbors,
and an asymptotic part which was evaluated in re-
ciprocal space.

In the SCH approximation, averaging of the force
constants involving the asymptotic part turned out
to be important for the [ g¢0] T, branch and could
not be done exactly in reciprocal space. Figure 11
shows the dispersion curves of this branch with
no averaging of the asymptotic part and for an in-
dependent Einstein model averaging using a Gaus-
sian distribution of appropriate width. This branch
is clearly sensitive to the averaging of the distant
neighbor force constants. It is also likely that the
dip in the [ ¢¢0] L branch in the region ¢=0.7 is
sensitive to the distant neighbor force constants.
In Fig. 3 this [¢00| L branch does fall as far below
the transverse branch as suggested by experiment
and this may be due to our approximate treatment
of the distant neighbor force constants.

Note added in proof: We thank Dr. H. G. Smith
for permission to quote the previously unpublished
data shown in Fig. 2.
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