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The exponential absorption edge (known as Urbach’s rule) observed in most materials is interpreted in
terms of thermal fluctuations in the band-gap energy. The main contribution to the temperature shift of the
band-gap energy is due to the temperature-dependent self-energies of the electrons and holes interacting with
the phonons. Since the phonon number is fluctuating in thermal equilibrium, the band-gap energy is also
fluctuating resulting in an exponential absorption tail below the average band-gap energy. These simple
considerations are applied to derive Urbach’s rule at high temperatures, while a simplified model with
independent, noninteracting atoms is proposed to explain the behavior of Urbach’s rule in the whole
temperature range. The three. parameters entering Urbach’s rule are expressed in terms of parameters
derived from the temperature shift of the band gap and from the exciton absorption. Comparison with
experiments is performed for the II-VI compound ZnO. It is shown that a good agreement is found between
the temperature shift of the exciton line observed experimentally and the temperature shift computed from
the steepness parameter of Urbach’s rule. The agreement with experimental values for the two other
parameters is also satisfactory. It is shown that the band-gap shift (and absorption tail) in ZnO is caused by
interaction with both acoustical and optical phonons. While the temperature-dependent polaron contribution
can account for the optical-phonon contribution, the deformation-potential interaction with LA phonons is not
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sufficient to account for the acoustical-phonon contribution.

I. INTRODUCTION

The exponentially increasing absorption edge
near the band gap observed by Urbach in 1953!
has been observed in many semiconductors and
seems to be a fundamental optical property of the
solid state. A review has been given by Kurik,?
and many theories have been proposed to explain
Urbach’s rule.>* By now, the most accepted
theories are probably Dow and Redfield’s micro-
field theory® or Sumi and Toyozawa’s theory of
the momentarily trapped exciton.*

It is the purpose of the present work to give a
general derivation of Urbach’s rule independent
of the nature of the electron—Ilattice interaction
causing this low-energy absorption tail. This can
be done by ascribing the absorption tail to the
thermal fluctuations in the band-gap energy. In
Sec. II simple arguments are presented leading
to the well-known expression for Urbach’s rule
at high temperatures, but expressed in terms of
the band-gap temperature shift. In Sec. IIl a
specific model is proposed from which the ex-
ponential absorption edge is obtained in the whole
temperature range. In Sec. IV the theory is com-
pared with experimental results on band-gap
shift and absorption edge of ZnO.

II. BASIC CONSIDERATIONS

In thermal equilibrium at temperature T the
average number of phonons in the jth mode is
given by the Bose-Einstein factor

(n;=[exp(fiw;/kT) - 1], (1)

where 7iw; is the phonon energy and 2T the thermal
energy. It is well known that Bose- Einstein fields
exhibit very large fluctuations. At temperature T,
the standard deviation of the occupation number

n; is given by®:

0= (P =(n ) 2= (n )y 1+ 1/ (n )] . (2)

Hence, 0,; is never less than the average oc-
cupancy (z;) and at low temperatures o,; will even
be considerably larger than (n .

In a simple model of a crystal the phonon field
is considered coherent through out the whole crys-
tal volume. In a more realistic model, however,
the coherence lengths of the phonons must be
taken into account. As estimated from phonon life-
times deduced from reststrahlen spectra® the
phonon coherence lengths are of the order of 10—
100 wavelengths. Hence, the crystal should be
divided up into small cells of this size for each
phonon mode. On the average, over all the cells,
the occupancy is given by (1), but the local fluctu-
ations in the individual cells may be very large
as indicated in (2). The effect of the phonon field
on the absorption of light in a solid is governed by
the electron-phonon interaction, which implies
change of electron energy (self-energy correction),
scattering of electrons (broadening of absorption
lines), and perturbation of electron wave. func-
tions (change in absorption strength).

In the present section we shall concentrate on
the self-energy correction and neglect the other
two contributions. The temperature-dependent
self-energy corrections for the electron and hole
energies give rise to the main contribution to the

2622



18 URBACH’'S RULE DERIVED FROM THERMAL FLUCTUATIONS... 2623

band-gap shift with temperature (typical about
80%).” ® The rest of the band-gap shift is due to
the crystal expansion. The self-energy correction
is proportional to the average number of phonons
{n; given by (1).” For the sake of simplicity we
assume that the band-gap shift due to the crystal
expansion is proportional to (z,, too.

This simplification is probably not so severe
since the crystal expansion only contribute about
20% to the total band-gap shift with temperature.
In this case, the energy gap E (T) as a function
of temperature T is given by

Eg(T)=E0_‘ Z:A,<nj> ’ (3)
i

where E is the zero-temperature band gap, and
the proportionality constants A; include contribu-

tions from both the electron and hole self-energies

in the vibrating lattice and the crystal expansion.
In order to show in a simple manner how the flu-
ctuations in the phonon concentration can give

rise to an exponential absorption edge, we shall
make the simplifying assumption that the vibrating
lattice can be represented by a single set of oscil-
lators with one phonon energy 7Zw. In this case (3)
can be written for a three-dimensional lattice

E(T)=E,— A n)+{(ny+{(n,))=E,-34A{n) . (4)

The averaging in (4) must be carried out over
times much longer than the phonon lifetimes and
space regions much larger than the phonon co-
herence lengths. Inside a cell of a size given by
the phonon coherence length during a time given
by the phonon coherence time (phonon lifetime),
we can find a local and instantaneous value E
of the band gap

E, 10c=Ey— A, +n,+n,), (5)

& loc

where (nx,ny,nz) are the occupancy number of
phonons in that particular cell during that
particular time. This means that there are
thermal fluctuations in the band-gap energy
throughout the crystal as well as there are
thermal fluctuations in the phonon concentration.
These thermal fluctuations are relevant for photon
absorption since they occur much slower than the
photon propagation through the individual cells of
the crystal. The time it takes for a photon to
propagate through such a cell is much smaller
than the phonon lifetime because the speed of light
is much greater than the phase velocity of the
phonons. In the case of photon propagation, then,
the phonon population in the individual cells will
seem frozen, and the crystal will act as an in-
homogeneous medium composed of regions with
different band gaps. The average band gap of the
crystal is given by (4), and the standard deviation

is found by combining (2) and (4).

These fluctuations in the energy gap immediately
explain the presence of an exponentially increasing
absorption edge as seen in the following, and they
also explain the generality of Urbach’s rule, since
such thermal fluctuations are present in all solids
due to the Bose-Einstein statistics of the phonon
field.

The probability that a particular cell contains
the particular number (z,,7,,%,) of phonons in (5)
is given by the distribution function for bosons®

D= exp[— @, +n,+n, ) Hw/RT] [1 - expl- iw/kT)]3.
(6)

From (5) and (6) we find

D= exp[-TW(Eg—E,, 1,)/ART][1 - exp(-hw/kT)]°.
(M

The absorption coefficient a(kv) at the photon en-

ergy kv must be proportional to p, with E, , , re-

placed by Zv (i.e., the probability that a photon

with energy zv finds a local energy gap E
=hv and therefore is absorbed)

a(hv) = a,exp[-o(E, - hv)/kT] , (8)

& loc

where ¢, is a weakly temperature-dependent pro-
portionality constant and

o=hw/A. ' (9)

The constant A is obtained from the shift of the
band gap at higher temperatures

E(T) ~ E,— A3kT/Iw (10)

where the high-temperature limit of (1) has been
introduced into (4) to obtain a linear band-gap
shift with temperature. Taking the derivative of
(10)

g -

dE 3kA
aT =" hw

we finally obtain the connection between the steep-
ness parameter o and the band-gap shift

_ dEg
°'3k/ (’ ar

Equations (8) and (11) describe an exponentially
increasing absorption edge following the empirical
rule of Urbach,' but where the logarithmic slope
o is expressed in terms of the temperature shift
of the band gap without reference to any specific
electron-phonon interaction.

A useful expression for the absorption coefficient
is obtained by combining (8)-(10):

a=a,exp{-3(E - hv)/[E,— E(T)]}, (12)

) . (11)

which although derived for the high-temperature
case appears to be valid also for lower tempera-
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tures [see Eq. (37)].
The well-known temperature dependence of the
steepness parameter

0=0,(2kT/hw) tanh(7w/2kT) o (13)

cannot be derived from the simple arguments
given above, but is obtained in Sec. III for a more
specific model.

IIl. MODEL FOR ABSORPTION EDGE

As indicated in Sec. II an exponential absorption
edge can arise from the local fluctuations in the
energy gap due to the thermal phonon field. The
simple considerations applied there failed, how-
ever, to predict the correct low-temperature de-
pendence of the absorption edge. In the present
section we shall introduce a simple model from
which Urbach’s rule can be derived in the whole
temperature range.

In Sec. II it was shown that the crystal should
be divided up into microscopic cells of a size of
the phonon coherence length. In the present mo-
del we shall reduce this cell size to the size of
the unit cell. Hence, the interaction between the
atoms is neglected, and the crystal is considered
to consist of completely independent and non-
interacting 'identical atoms. The phonons then cor-
respond to the excited vibrational quanta of the in-
dividual atoms. The atom in the unit cell is con-
sidered to have two energy levels which are sepa-
rated by an energy distance equal to the tempera-
ture-dependent band-gap energy of the real crys-
tal. As wave functions for the two levels one can
use the Wannier functions for the real crystal

Bups (= B)= (s 25 B, (1)

where 3, is the position of the pth unit cell, N is the

number of unit cells, and ¢, c'v('f')__are the usual
Bloch functions with wave vector k for the con-
duction band (c) or valence band (v). These Wan-
nier functions are localized within the pth unit
cell.

In the harmonic approximation the vibration of
the pth atom is described by the harmonic-oscil-
lator wave function

Xni(Bp5) = NyiH i (A,;/ @) exp(— Aii/za) ’ (15)

where A,; is the ith component of the pth atomic
displacement A,=&~ 3, . N, is the usual normal-
izing constant, H,; is the Hermite polynomium of
n;th degree, and a?=7/Mw, where M is the oscil-
lating mass and w its angular frequency. For the
sake of simplicity only one frequency is consi-
dered. '

Without interaction between electron and lattice

the total wave function for the electron-vibrating
atom system inthe pth unit cell is just the product

(I):, v(‘f’ KP) = ¢Cy v(-f - EP)X nx( Apx)Xny(Apy)an(Apz ) s
(16)

and the total energy is just the sum of the elec-
tron energy-and the atomic vibrational energy
(n,+n,+n,+3)kw. The absorption coefficient for
the atom is given by

a=C, l< o, lHr l ¢c> |26(hV"Ego)
=G, l Hye lzﬁ(hV—Ego) ) 1m

where C, is a proportionality constant and p,, is
the dipole matrix element for the transition be-
tween the two energy levels of the atom. The ab-
sorption line has a 6-function shape around E,,
which is the zero-temperature band-gap energy (or
rather the zero-temperature exciton ground-

state energy of the real crystal)..

When the electron-lattice interaction is switched
on both (16) and (17) change. We shall not be con-
cerned here with what kind of interaction is pre-
sent, but only consider the effects of the inter-
action, which are perturbations of energy levels
and wave functions. This leads to a different band-
gap energy and a different dipole matrix element
Uy in (17). As discussed in Sec. II this different
band-gap energy should be introduced as a fluctua-
ting local energy gap with the instantaneous value

Epr0c=Eg= ANy +1y +0,,) - A0, +1,, M)

(18)
Here, the self-energies have been divided up into
two parts since both the electron and the hole of
the real crystal gain energy from the interaction
with the lattice. Similarly, the atomic vibrational
energy is changed into (n,+ nw+ncz+%)ﬁwc when
the electron is in the upper level and (1, +7,,+n,,
+3)fw, when it is in the lower level. The dif-
ference between w,_ and w, arises from different
contributions to the phonon self-energy from the
interactions with the electrons and holes. In the
following, however, we shall neglect this dif-
ference and put 7w, =7w,=7w.

The absorption coefficient for the pth atom is

now given by

1,.=Cy Z DMy Moy s M)

NexaMeys Mez |
Nyxs Nyy » Nyz

x l<q>v |ﬁr l(bc> |26(hV- Eg, loc) )

(19)
where p(n,, ,n,, ,n,,) is the distribution function
(6) for the excited vibrational quanta in thermal
equilibrium; ®, and &, are the total wave functions
for the interacting electron-vibrating atom system.
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Since &, and ®, are unknown we shall use a first-
order approximation where the total wave function
is still written as a product of electron and oscil-
lator functions as in (16), but where the electron
functions are replaced by the perturbed electron
wave functions. In this case the absorption coef-
ficient (19) can be written

Q10= Cy I Uye '2 Z pn,)

Ny s N

XK o (B) [ xne (B)) [0 Eg,lo,,) ,
(20)

where u;. is the new dipole matrix element com-
puted with the perturbed electron wave function;
n, and n, are short-hand notations for the three
vibrational quantum numbers. Without electron-
lattice interaction the overlap integral in (20)
is just the Kronecker delta 5, ,,. With electron-
lattice interaction the wave functions are changed.
Instead of computing this change from perturba-
tion theory, it is simpler to apply the approxima-
tion of displaced oscillators. In this approxima-
tion the oscillator functions are kept unchanged,
but the average position of the vibrating atom is
displaced a small amount A, when an electron
transition from the lower to the upper energy level
occurs. This displacement is due to the slightly
different interaction forces between neighboring
atoms for the two different electronic configura-
tions. This approximation is commonly applied in
connection with absorption or emission processes

in deep centers (configurational coordinate mo-
del®) and in polaron theory.'°

The calculation of the overlap integral in (20)
can be simplified considerably in the present case
because », and n, must be relatively large num-
bers since the exponential absorption tail extends
far below the zero-temperature band gap (up to 0.5
eV at higher temperatures). Hence, the oscil-
lator behaves nearly classically, and the prob-
ability density for the position of the oscillating
atom is strongly peaked near the classical re-
versal points for the vibration. In particular, the
quantum numbers n,,, #,,, and xn, of the final
state can be large, since the final state can be far
from the thermal equilibrium states. We shall
therefore approximate the final-state oscillator
functions y,.(& - A;) by 6 functions peaked at the
classical reversal points &, determined from

TMWP(K, = B )= (n, +ng,+ng,+ 3 )i, (21)

which is valid for large quantum numbers, and

where Ko is the small displacement of the average

atomic position previously described. (As shown

in Appendix B A, is of the order of %f\ for ZnO.)
In this approximation, we obtain

alocr‘coll‘l‘;clzz p(ﬂu)

Ny N ¢

X\ Xmo(Be) [26(hY = E 10, -

(22)
The sum over %, can be converted into an integral

aloc“c ’IJ'vc l28 Sll’lh3 2kT f I-I nzo exp( (n + 2) BT )Xm(Anc, A0)5(1'“/" Eg,loc) da&nc 3 (23)
Ape 1= i=
where (6) has been used. The sum over n; is given by Mehler’s formula®
o 7w A2 fiw
;wp( (n+ 2) ) [xn(8) 2= (21ra sinh - eXp( o= tanhorre (24)
L

In order to perform the integration in (23) E, 10c
in (18) must be expressed in terms of A In (21)
the relatlonshlp between #, and Anc has already
been found Similarly, a relat10nsh1p between

n, and A can be written

%szxﬁc=(nvx+nvy+nvx+ %)ﬁw ’ (25)

which is valid for large quantum numbers, and
where it has been used that the instantaneous elec-
tronic transition energy E, ;.. in (18) should be
computed at the instantaneous reversal point A
of the atom due to the 6-function approxmlatlon of
the oscillator function described above. (In order
to prove this the time-dependent wave functions
must be introduced in the calculation of the transi-

tion probability, and it must be used that the time
variations of the oscillator functions is much
slower than for the electronic wave functions.)

The approximations used above are essentially -
analogous to the old Franck-Condon principle (see,
for example, Ref. 9) stating that an electronic
transition in a vibrating atom occurs so fast that
the position and momentum of the vibrating atom
do not change appreciably during the transition.
Since the vibrating atom stays the longest time at
the reversal points most electronic transitions
occur there.

Combining (18), (21), and (25) we obtain

Eg100=E,+F& + KGR , (26)

nec

where
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Ey=Ep+3(A+A,) -A (Mw/20) A2 @7
F=A,(Mw/R), : (28)
G=(Mw/2K1)(A,+A,). 9)

In order to obtain the exponentially increasing
absorption edge the quadratic term in (26) must be
larger than the linear term in the relevant spectral
range. This happens for vibrational amplitudes

[A,,|>FA/G=2A,4,/(A, +A,) \ (30)
or, from (26), for
Eg 1o <Eo—4A (MwAY/mA,/(A,+A,)
=E+3(A,+4,)
—3A (MwA2/B)(A,+9A,)/(A,+A,). (31)

It is shown in Appendix B (for the case of ZnO)
that (31) is fulfilled for local energy gaps more
than 25 meV below E,,. For the spectral range of
the absorption tail which at higher temperatures
extends more than 0.5 eV below E,, the linear
term in (26) can thus be neglected.

Performing the integration in (23) we then find
using (24) and (26) that

fiw

SHT ch2> R (32)

Qo= 0y €XP <-— (E, - hv) tanh
where q, is slightly temperature dependent. Equa-
tion (32) has been derived for the pth unit cell. In
the present model, however, the atoms in the dif-
ferent unit cells are independent of each other.
Hence, each of the unit cells gives similar contri-
butions, and the absorption coefficient for the
whole crystal is therefore of the same form as in
(32), describingan exponentially increasing absorp-
tion edge below the band gap. This absorption tail
arises from the thermal fluctuations in the band-
gap energy. The three parameters a,, E,, and o
of Urbach’s rule (8) can now be given an interpre-
tation. E, is given by (27). It is seen that E, is
somewhat shifted from E,, as also observed exper-
imentally. It is shown in Appendix B that a, is the
maximum absorption coefficient at the center of
the absorption line representing the band gap (ex-
citon line of the real crystal). As seen from (32)
the o parameter is now given by

kT 7iw 2rT nw (33)

0= o g = 0oy tanh o,
with
_hw o w / &)
%0 36 A+ A, oF (‘ ar )’ (34)

where —dE, /dT is the high-temperature siope of
the band-gap shift with temperature as obtained
from the thermal average of (18)

E(T)=E, - 3(A,+A,) )
=E}— 3(A,+A,) cothiiw/2kT , (35)
with
E}=E,+3(4,+A,). (36)

By means of (34) and (35) it is now possible to re-
write (32) in the form

a = a,exp{-3(E, - hv)/[Ej- ELT)]}, (37)

which is equivalent to Eq. (12) derived in Sec. II.
It should be noted that the temperature dependence
of o in (33) (which could not be obtained in Sec. II)
is the result of the explicit introduction of the
harmonic-oscillator functions in the summation
over thermally populated states in Eq. (24).

IV. COMPARISON WITH EXPERIMENTS

The comparison with experimental results will
be carried out for the hexagonal II- VI compound
ZnO for which there exist data for both band-gap
shift'* and absorption edge.!> The experimentally
observed band-gap shift with temperature for the
C exciton in ZnO is shown in Fig. 1. In Secs. I-III
the contribution from the crystal expansion to the
band-gap shift was treated as a self-energy cor-
rection. This crude approximation makes it worth-
while to separate the two contributions when the

344 Zn0, C-exc.

Energy (eV)
w
i3

3.40

3.38
N\
3.36)
1 1 ?
0 100 200 300
‘ T(K)

FIG. 1. Temperature dependence of the C-exciton
line in ZnO. The experimental points are taken from
Ref. 11. The dashed curve is computed from Eq. (40)
by means of the experimental values for ¢(T) shown in
Fig. 3. The solid curve is computed from Eq. (43) by
means of the two-phonon parameter set given in Ref. 12.
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Zn0, C - exc
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—
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FIG. 2. Temperature shift of the C exciton in ZnO due
to the temperature-dependent self-energy corrections
for the electrons and holes. The points are obtained
from the experimental points in Fig. 1 by subtracting
the contribution to the band-gap shift from the crystal
expansion. The dashed curve is computed from Eq. (40)
by means of the experimental values of ¢ (T) in Fig. 3.
The solid curve is computed from Eq. (43) by means
of the two-phonon parameter set given in Ref. 12. °

comparison with the experimental results is car-
ried out. The contribution AE,(T) from the crystal
expansion can be estimated by means of the tem-
perature-dependent expansion coefficients a,(T)
and a,(7) (Ref. 13) (perpendicular and parallel to
the ¢ axis) in the following way:

AE(T)=CAV/V=C[2a,(T)+a,(T)]T , (38)

where AV/V is the fractional volume expansion,
and C is an average deformation potential con-
stant which is obtained from the hydrostatic pres-
sure measurements of Knell and Langer'*

C=(1/S)AE,/Ap=4.0 eV. (39)
Here, ’
S=2(S,, +5,,+25,;) +S;,=6.836 X 1077 bar™

is an appropriate sum of compliance constants,®
and AE,/Ap=2.Tx10"® eV/bar for the C exciton
of ZnO.'* The contribution (38) from the crystal
expansion with the temperature-dependent expan-
sion coefficients from Ref. 13 introduced can be
subtracted from the total band-gap shift in Fig. 1.
This is done in Fig. 2, where the experimental
points then describe the band-gap shift arising
from the temperature dependent part of the self-
energies of the electrons and holes. As shown in

Appendix A neither the self-energies from the de-
formation potential coupling nor from the polaron
coupling are sufficient to give the correct magni-
tude of the band-gap shift observed in ZnO.

An exponentially increasing absorption edge has
been observed in ZnO,'? and the parameters of
Urbach’s rule (8) were derived from these experi-
mental results, a,=4.5X10% cm™, E,=3.51 eV,
0,=0.90, 7Zw=30 meV, or under the assumption
that two different phonon modes contribute,?

0, =0.90, 7w, =17 meV and 0y, =2.20, 7w,="T2
meV. The temperature dependence observed for
the o parameter is shown in Fig. 3. Comparison
between (8), (36), and (37) shows that the band-
gap shift can be expressed in terms of the temper-
ature-dependent steepness parameter ¢(7) in the
following way:

E(T)=E+3(A,+A,) - 3kT/o(T) (40)

where E,, is the band gap at zero temperature.
A value of (A +A,)=33.3 meV is obtained from
(34), when the one-phonon parameter set given
above is used. )

From the experimental values of o(7) given in
Fig. 3 the band-gap shift E (T) expected according
to (40) can be obtained. This is shown in Figs. 1
and 2 as the dashed curves. Both curves were
shifted somewhat along the energy axis to obtain
best fit. This corresponds to using %(A0+A,,) as a
fitting parameter. It turns out that the best fit is
obtained using 0.92(A_ +A4,) in Fig. 1 and
1.09(A,+A,) in Fig. 2. It is seen that a relatively
good agreement with the experimental points is
found, thus indicating that the exponentially in-
creasing absorption edge is due to the thermal

1.ﬂ~ Zn0
o [}
08 o
041
o
(<)
0 1 | 1
0 100 200 300
T(K)

FIG. 3. Steepness parameter ¢ in Urbach’s rule for
ZnO as a function of temperature. The experimental
points are taken from Ref. 12. The solid curve is ob-
tained by means of a fit with two different phonon modes
(Ref. 12).



2628 . T. SKETTRUP 18

fluctuations in the band-gap energy (exciton ener-
gy) of ZnO.

A much better agreement is, however, obtained
by applying the two-phonon parameter set giver
above. When two different interactions and vibra-
tion frequencies contribute, the band-gap shift of
(35) can be written

Eg(T)=Eg— 3(Ac1 +Avl)(n1>— 3(Acz+Av2)<n2> * (41)
From (33) and (34) it is found that
o=kT/(A,+A,) () +3). (42)

Hence, (41) can be expressed in terms of o, and
0, from the two-phonon parameter set as follows:

Eg(T) :Eé’ - 3kT(1/0'1+ 1/02) ’ (43)
El=Ep+ Ay +A,) + HA,+4,,). (44)

With the parameters o, =0.90, 0,,=2.20, 7w,
=17 meV, and 7w,=72 meV introduced into (33),
the band-gap shift expected according to (43) is
computed. The results are shown as the solid
lines in Figs. 1 and 2.

Again the curves were shifted along the energy
axis to give the best fit. This implies that EY - E
="78.6 meV in Fig. 1 and E{ — E,=84.5 meV in
Fig. 2. It is seen that a better agreement with the
experimental points is obtained in this case. It is
best at higher temperatures for the band-gap shift
due to the self energies alone. This could also be
expected because of the simplified treatment of the
contribution from the crystal expansion. The
agreement obtained in Fig. 2 indicates, however,
that the exponential absorption tail is due to the
thermal fluctuations in the electron and hole self-
energy.

When there are different interactions and differ-
ent vibration frequencies involved, as above, the
simplest procedure is probably to assume that
either one type of interaction (vibration mode) or
another is present at a certain time in a certain
space region. This will imply that (19) leads to
the following generalization of Urbach’s rule:

a:Z aoiexp(-g—"@—‘%m>, (45)

where o; and E; are given by expressions analo-
gous to (33) and (27). a,; is proportional to the
dipole matrix element squared in (19) which is
different for the different interactions involved.
Similarly (43) may be generalized to

) ,
E(T)=Eo~3kT 3 = (46)
i t

where E, is given by an expression analogous to
(44). Equation (45) was already applied in Ref. 12
to analyze the absorption edge of ZnO in terms of

two types of phonons.

In a sum of exponential functions like (45) usual-
ly one of the terms will be much larger than the
others, and the transition from one term to an-
other will occur very abruptly. This property of
a sum of exponentials makes comparison between
the steepness parameters o; and the band-gap
shift difficult, since in a certain temperature
range (and/or spectral range) only one exponential
function, i.e., one o value, determines the absorp-
tion edge, while the sum of all the reciprocal o
values determines the band-gap temperature
shift.

Finally, it should be mentioned that the o, values
observed experimentally for different materials?
seem to fall into two groups. One group has ¢ val-
ues close to 1, and the other group has ¢ values
about 2-2.5. The first group consists mainly of
I-VII compounds and relatively ionic crystals,
while many II-VI compounds belong to the second
group. It is tempting to assign optical-phonon in-
teraction to one group and acoustical-phonon in-
teraction to the other, as in the case of ZnO de-
scribed above.!? This would mean that the elec-
tron interaction with optical phonons should give
o values close to 2.5, while acoustic-phonon inter-
action implies o values around 1.

V. CONCLUSION

It has been shown that the thermal fluctuations
in the phonon concentration lead to a fluctuating
band-gap energy resulting in an exponentially in-
creasing absorption edge near the band gap
(Urbach’s rule). The parameters in Urbach’s
rule were expressed in terms of parameters en-
tering the band-gap shift with temperature, thus
avoiding any specific assumptions about the nature
of the electron-phonon interaction. Comparison
with experimental results for ZnO shows good
agreement at higher temperatures.

APPENDIX A

The most important interactions between elec-
tron and lattice are usually described in terms of
the deformation potential interaction with acoustic
phonons and the pure electrical interaction with
optical phonons. The corresponding Hamiltonians
(in mksa units) are given by

~ . 71 1/2 'ql ' '
Hun=iC\gizw) 22 @y e @00hans (A
L2X)

s oy \MPe 1 -
Huo=ie\gpeer) 20 147 @a—adchacs,  (A2)
12X

where C is the deformation potential for the inter-
action with LA phonon, M is the atomic mass, N
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the number of unit cells, g the phonon wave vector,
and w the phonon angular frequency. a is the pho-
non-annihilation operator [LA in (A1) and LO in
(A2)], while ¢ is the electron annihilation operator.
e is the electronic charge, V the crystal volume,
€ vacuum permittivity, e*=(1/¢,-1/€,)™, where
€, and €, are the values of the dielectric constant
at optic and low frequencies, respectively.

From (A1) and (A2) it is seen that the energy
shift is zero in first-order perturbation theory.
To second order the results at high temperatures
for the sum of the electron and hole self-energies
are given by’

Epa= —-2—157)—5 '('%5(%1% 817G pax + 27"1?11:1:)

x ( 2;;”9 cgig-" ci) , (A3)

Epo=— (Qu+ ap)iiw o +1)

&~ (a,+ @) (kT + iwy ) (A4)

where v, is the velocity of the LA phonons, Q is
the unit cell volume, kT is the thermal energy,
Q2= 3(27)%/(47Q) is the maximum ¢ value, and

m, and m, are the electron and hole masses;

while C, and C, are deformation potential constants
for conduction and valence band, respectively;

@, = (€%/4me ¥ h) (m,, /20w 1 )M/

is the polaron coupling constant for the electron
(e) and hole (#). Equations (A3) and (A4) are the
contributions to the band-gap shift with tempera-
ture from deformation potential (A3) and polaron
coupling (A4).

For ZnO the relevant parameters are M =1.36
x 107 kg, v,=6.1 X 10° m/sec,'® 2=4.73 X 10-%°
m3,'% m,=0.28m,,'" m,=0.T4m, (polaron masses),'®
and C=4.0 eV [from Eq. (39)]. From (A3) we then
find, by replacing (2m,C2+2m,C3)/#? by
2(m,+m,)C?/1?,

<%>LA= ~0.030 meV/K. (A5)
With €*=8.1,3 m,=0.24m,,'" m,=0.59m, (bare
masses,'® and 7w, ,="72 meV,? one obtains a,
=0.83 and @,=1.30. From (A4) one then finds

dE,
<7T‘> Lo=—0.18 meV/K. (A6)

The values obtained in (A5) and (A6) should be
compared with the high-temperature slope of the
experimental band-gap shift (corrected for crystal
expansion) in Fig. 2. This slope is found to be
dE,/dT=-0.27 meV/K. It is thus seen that neither
the deformation potential interaction nor the
polaron contribution nor the sum of these are

sufficient to explain the value of the band-gap
shift observed experimentally.

A best fit to the experimental points in Fig. 2 of
an expression of the form E (T)=E,,— A/
(e"/*T_ 1), with'! E,=3.4210 eV yields A = 82.6
meV and 7w =23.7 meV, indicating that both
acoustic and optical phonons contribute to the
band-gap shift, since 23.7 meV is between optical-
and acoustic-phonon energies. With two types of
phonons an expression of the form

E(T)=E—A,/(€"“1*T_ 1) - A,/(e"2/*T_ 1) (A7)

can be used for fitting. A best fit to the experi-
mental points in Fig. 2 yields A, =44.2 and A,
=104.5 meV, when E,,=3.4210 eV, 7w, =17 meV,
and 7w, =72 meV. This means that the experimen-
tal results seem to indicate that the contribution
from the acoustic phonons at high temperatures is

dEg) _ RA,
<dT =gt =-0.22 meV/K (A8)
and from the optical phonons

dE kA

—f) = 2=

( 77 )0 o 0.12 meV/K. (A9)

Similar estimates for the two contributions can be
obtained from the values ¢, =0.90 and 0,,=2.20
quoted in Sec. IV. Applying (43) it is then seen
that

<£"££> =3k 0.28 mev/K (A10)
ar),” "o,
and

dEg) _ 3k _

(ﬁ == 012 mev/k. (A11)

Equations (A10) and (A11) are in good agreement
with the values (A8) and (A9) obtained from the
two-phonon fit to the band-gap shift. Hence, it can
be concluded that the part of the band-gap shift due
to optical phonons seems relatively well described
by the polaron contribution (A6) although this value
is somewhat too large, probably because of the
neglection of exciton effects. The shift due to the
acoustical phonons can not be explained in terms
of the deformation potential interaction with LA
phonons alone, since the value (A5) is a factor of
10 too simall. The piezoelectric self-energy is
still a magnitude smaller.!® Then the interaction
with the TA phonons remains. Such an interaction
may be important since shear strain tend to split
the valence bands and thus introduce a tempera-
ture-dependent self-energy for the holes.

APPENDIX B

In the model outlined in Sec. III there exists a
relationship between the first-order and second-
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order shift of the local band gap in (26). Hence,
if the local band gap is much smaller than the val-
ue given in (31), it is dominated by the quadratic
term in (26). In order to estimate the value in
(31), A,, A,, and A, must be known. From the
results in Sec. IV one obtains A, +A4,=33.3 meV
from the one-phonon parameter set which will be
applied in the following. A, enters Eq. (28) and
may be estimated from this, since it determines
the linewidth of the absorption line. In analogy
with the derivation in Sec. III one obtains for the
absorption coefficient, if the quadratic term in
(26) is neglected and Ko is treated as a scalar
(3D,

a=a, exp[— (E,— hV)? tanh(%) FzOle(z)], (B1)

where o, has the same value as in (32). Hence,

the a, parameter of Urbach’s rule can be inter-

preted as the maximum absorption coefficient at

the center of the absorption line representing the

band gap (i.e., the ground-state exciton line).
The half width of this line is given by

AE =2(In2 cothfiw/2kT)Y 2FaA,
~2A [(2kT/Fw) In2 ] 2(MwA2/7) (B2)

for kT > hw.

From (21) and (25) an estimate of A, can be ob-
tained. Consider, for example, an emission pro-
cess with an electron in the upper level, and let
us assume that the lattice is relaxed so that no
phonons are present (i.e., A,,~A ). When the
emission process occurs 4, is unchanged as dis-
cussed in Sec. III, and (25) shows that the lattice,
after the transition has occurred, is excited with
n, phonons present where n,fiw ~3Mw?A%  Hence,
during the emission process there will in average
be emitted », phonons of energy 7w. It is well
known from the phonon-assisted edge emission
spectra that the average number of phonons emit-
ted is of about 0.5-1 for most II- VI compounds.
In the estimate of A, we shall therefore assume
that MwAZ/f~1. A value for A, can then be ob-
tained from the width of the exciton line. At T
=300 K the halfwidth of the C-exciton line is 50
meV.!’ From (A2) one then finds A_ =23 meV.
From (31) it is now possible to estimate in which
spectral region the quadratic term in (26) is dom-
inating, resulting in an absorption tail which is
purely exponential,

hv <E,+50 meV - 74.3 meV
=Eg— 24 meV~3.39 eV.

Here, the ground-state energy of the C exciton
[3.4210 eV (Ref. 11)] has been used for E,,. In
Ref. 12 the spectral region near 3.40 eV is only
reached for the very lowest temperatures; and for
these temperatures there are deviations from the
exponential behavior.

With the (rough) estimate of A, given above it is
also possible to give an estimate of the E, param-
eter in Urbach’s rule as given by (27)

Ey=E +3(A,+A,) - A (Mw/27) A2
=E,+38.5 meV=3.46 eV.

From experiments'? a value of 3.51 eV was found.
It is, however, difficult to determine E, experi-
mentally (from extrapolations of the isoabsorption
curves). If E,=3.46 eV is used instead of 3.51 eV,
the value of a,=4.5x10° cm™ quoted in Ref. 12
will be reduced to @,=4.7%x10° cm™. This value
corresponds better to the experimental value of?°
5% 10° cm™ for the maximum absorption coeffi-
cient at the C-exciton resonance at low tempera-
tures.

Finally, it is seen from (26) that it is possible
to estimate a value for a deformation potential
constant defined as

d
o= [ataty | = Pas

MwA a
=A a O~A —
c ﬁ CAO’

(B3)

where a is the average lattice constant. Here, it
has been used that MwAZ/f~1, from which A,
=0.041 A is obtained (with %w =30 meV and
M=1.36 x10"%5 kg). The average lattice constant
is found as

d=(2)'/3=(4.73 x10"23 cm?®)'/3=3.62 A.

With these values introduced into (B3) we find
C=2.0eV,

which is the right order of magnitude and only a
factor of 2 less than the isotropic value found in
(39). From (26) it is seen that a second order de-
formation potential constant also may be defined
as

d2E .
o1 iz =26

MwA? a \?
= 7 D(AC+A0)(—A—)

0

=257 eV.
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