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The general theory of Brillouin scattering from the surfaces of opaque media is developed using a total field
solution approach. Acoustical modes appropriate to a stress-free surface are found from solutions to the
acoustical-wave equation and boundary conditions for a finite isotropic medium. Two light-scattering
mechanisms, namely, the surface corrugation and bulk elasto-optical efFects, were analyzed by deriving
optical fields which satisfy both the acousto-opticagy driven wave equation and the electromagnetic boundary
conditions. The special case for a metal of scattering by acoustically created conductivity fluctuations was
also investigated in a similar way. The Brillouin spectrum was obtained by summing the scattering from the
individual acoustical modes over the density of phonon states, Excellent agreement was obtained with
experiment for Brillouin scattering from the metals gallium (liquid) and aluminum (solid).

I. INTRODUCTION

Brillouin scattering from thermal phonons in
bulk media has been utilized extensively to study
transparent solids and liquids. ' ' The most re-
cent developments in this field deal with scattering
from thermal phonons at the surfaces of opaque'-'
and transparent materials. "" These experiments
are technically very difficult due to (he intense
stray light scattering which occurs at imperfect
surfaces. This phenomenon is characterized by
penetration depths of one wavelength or less for
the incident light with the result that the wave-
vector component normal to the surface is not
conserved in the acousto-optical interaction.
Therefore for a specific scattering direction the
frequency spectrum is relatively broad since the
scattering takes place from phonons of a continum
of wave vectors rather than from phonons of a
discrete wave vector as occurs in the Brillouin
spectrum of bulk media. It then becomes neces-
sary to have a detailed theory of the phenomenon
in order to deduce accurate acoustical information
from the spectra.

The first two papers on Brillouin scattering from
opaque materials by Bennett and Maradudin, "and

by Sandercock' were of a theoretical and experi-
mental nature, respectively. Bennett and Maradu-
din analyzed the elasto-optical effect within the
skin depth of aluminum and concluded that experi-
ments on metals were feasible. Sandercock re-
ported backscattering measurements on semicon-
ductor surfaces. In the same year Sandercock'
also measured the Brillouin spectrum of a free-
standing film. The first experiments on metals
(liquid) were reported in 1976 by Dil and Brody. '
These authors were unsuccessful in interpreting
their spectra in terms of scattering from acousti-
cally induced electron-density fluctuations in the.
metallic free-electron gas, within the skin depth.

Dervisch and Loudon" and Dresselhaus and Pine"
identified the appropriate acoustical modes as those
of a semi-infinite rather than an infinite medium.
In 1S76 we reported" the Brillouin spectra of thin
films deposited on substrates. Excellent agree-
ment was obtained between experiment and theory
by using the acoustical modes appropriate to the
surface of a semi-infinite medium and by treating
light scattering from both the elasto-optical and
corrugation mechanisms. The theory was subse-
quently refined" by deriving the normal modes of
a thin film on a semi-infinite medium. Very re-
cently Sandercock' has measured the Brillouin
spectrum from solid metal surfaces and found that
the spectra were not described adequately by pre-
vious theories. ' ' Loudon'6 has interpreted the
frequency spectra and has shown that the primary
scattering mechanism is the corrugation pro-
duced at the surface by the phonons. Independently
we" extended our formalism to the analysis of
Brillouin scattering from metals and interpreted
the results of Dil and Brody' on liquid metals as
well as those of Sandercock' on aluminum utilizing
both the corrugation and conductivity mechanisms.
In this paper we present the details of our calcula-
tions and also treat the elasto-optical effect in
order to complete the theory.

The problem of Brillouin scattering at surfaces
requires the analysis of (a) the acoustical modes
at a surface and their density of states, (b) the
acousto-optical interaction, and (c) the Briilouin
spectrum.

The acoustical modes are those appropriate
to a semi-infinite medium or a thick plate. The
key point is that the surface(s) must be stress free
which leads to a mixing of the sound modes asso-
ciated with an infinite medium. In a liquid, only
longitudinal modes are considered and a standing
wave is formed which results in a stress-free sur-
face. (The possibility of coupling to a shear type
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of mode at the surface is considered in the Ap-
pendix. ) In a solid the resulting normal modes
consist of surface phonons and linear combinations
of standing waves of the usual shear and longitudi-
nal phonons. The analysis in this paper is based
on finding total field solutions of the acoustical-
wave equations which also satisfy the boundary
conditions. (It is also possible to use Green's
functions" to evaluate these fields. ) These as-
pects of the calculation are discussed in Sees.
II-IV.

Two scattering mechanisms, namely the corru-
gation and elasto-optical effects, are considered.
Scattering via the corrugation effect'9 ' from
generated surface and bulk acoustical waves is
well known. The corrugation acts as a traveling
diffraction grating and Doppler shifted light is
scattered into diffraction "orders. " A general
theory for this phenomenon for surface waves on
dielectric media is available" and was extended
here to opaque media. The elasto-optical effect
was treated by solving for the total fields which
satisfy the driven wave equation and electromag-
netic boundary conditions. A special case, that of
conductivity fluctuations in an electron gas, was
analyzed separately using the same technique. The
result of Secs. V-VIII is an expression for the
field scattered by a single acoustical mode.

The Brillouin spectrum from each acoustical
mode is calculated in a standard way, i.e., from
the electric field correlation function. The com-
plete spectrum is calculated by summing the in-
dividual mode contributions over the density of
states (Sec. IX). The analytical expressions are
evaluated for liquid and solid metals and are com-
pared with previously reported experiments in
Sec. X. The principal results of this paper are
summarized in Sec. XI.

II. ACOUSTICAL MODES —GENERAL

The equations which govern the propagation of
phorions in any medium are well known. '4 The
mechanical displacement u associated with a sound
wave satisfies the acoustical wave equation (force
balance)

+)T g= pu~ ~

Here T,~ is the stress (force per unit area) and p
the mass density. For a solid and a liquid

respectively, where c;,.» are the second-order
elastic constants, v~ is the longitudinal wave velo-
city in the liquid, and g is the fluid shear viscos-
ity. In infinite media, the solutions for liquids
consist of longitudinal waves (V x u= 0) (for small
q) and for solidi, they consist of longitudinal
and transverse waves.

The.existence of a free boundary introduces
stress-free boundary conditions at the surface,
i.e., T,&=0 for an interface in the x-y plane. A

sound wave incident on a surface gives rise to"
reflected waves of the same or of different polari-
zation. For example, in a semi-infinite solid an
incident shear wave polarized out of the plane of
the surface produces a reflected shear wave and
either a propagating or an evanescent longitudinal
wave. There a,re two quantities which are con-
served in this process, i.e. , the frequency 0 and

q„,the component of the wave vectors parallel to
the surface. Thus normal modes at a surface are
characterized by q„and 0, rather than the total
wave vector q which is the case for infinite media.
Furthermore, we note that the normal modes ex-
cited by thermal fluctuations are basically standing
waves. Therefore the normal modes near a sur-
face consist of linear superpositions" of standing-
wave shear and longitudinal phonons characterized
by equal values of q„and Q. Since there are three
orthogonal solutions allowed by the'wave equation,
there exist three orthogonal modes for a given
value of A and q„.

The analysis of the acoustical modes proceeds
along classical lines. '4 Since most Brillouin-scat-
tering experiments are performed at flat sur-
faces, the medium is modeled as a flat plate of
area A and thickness 2L, (as shown in I ig. 1).
Only isotropic media are considered, and the pho-
non wave vectors are assumed to lie in the x-z
plane. In such a flat-plate geometry, one surface
is sufficient to derive the form of the normal
modes. The appropriate density of states is taken
from the work of Stratton, "when necessary.

III. ACOUSTICAL MODES —LIQUIDS

The normal modes of a bounded liquid, their
normalization to the energy provided by thermal

2Ly
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ij R ijkJ g l k

(2)
2L
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+
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FIG. l. Geometry for the analysis of the acoustical

modes of a thick plate.
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fluctuations and their density of states are dis-
cussed in this section.

A liquid can support longitudinal waves at all
frequencies as well as shear waves at high fre-
quencies for some viscous liquids. ' Of interest
in this paper are metallic liquids such as mercury
and gallium and for frequencies of 10-0Hz shear
waves are not expected based on the viscosity, etc.
This assumption is relaxed in the Appendix and the
effect of evanescent shear waves on the surface-
boundary conditions is analyzed. In this section it
will be explicitly assumed that only longitudinal
waves exist.

The local displacements of the incident and re-
flected sound waves associated with the pth mode
are written

volume of the sample. The allowed wave vectors
for the three-dimensional resonances are described
by q„=n„zi/2L„,q, = n, zi/2L, , and q, = n, zi/2L, where
n„,n„and n, are integers. For example, a plate
surface at z =2L, must also be stress free and
therefore the x component of the field must vanish
at this point, i.e. , sin(q, 2L,) =0. This gives q,
=q, =n, zi/2L, as asserted above. In the standard
acoustical terminology'4 the resonance in the z
dimension is separated into symmetric (s) and
antisymmetric modes (a) with allowed wave. vec-
tors q, =n,(2'/2L, ) for each T.herefore the den-
sity of states in zI space for both modes is 4V/(2zi)'.
Summations over the allowed modes p, can be re-
placed by an integral over q space, i.e.,

~+'

u~g(r f) —) ull ei(Q t q(x)
z

q-(( $ 'VL

~

ei((zz
9' ]

I

A

+I'~ i —"+0—' e "z' +c.c.

(4)

Here u," is the mode amplitude,
~

I' ~= I (standing-
wave condition) and the wave vectors are
q=(iq„vkq, ) with q'„+q,'=Q'/vz~. As discussed in
Sec. II,T„=Oat a=0, i.e. ,

2

-2 zpv' —' u "e' '"' '(("'(I+ I') =0,0

which gives I'= -1. Therefore the normal mode is

P(r, t) = —u,'e'"' ""'~i 2( —.
" sin(q, z))

—Izi
' cos(q,z)

i
+c.c.- (2q,

]
(6)

If the stress-free boundary conditions were also
imposed at the yz and p-z planes, then standing-
wave resonances would also be obtained over the
x and y coordinates, respectively.

Normal modes are thermally excited resonances
of the whole medium and the resonances along the
x and y axes must also be included-. Therefore the
energy associated with the fields described by Eq.
(6) is only —,

' of the normal mode excitation energy,
i.e., —,'K~T for K~T»SQ. Writing the average en-
ergy of the p, th mode as twice the average kinetic
energy, i.e. ,

s &=
4

=sf�((z'(i,

&)('&«

yields

(iu,')') =Sr,T/4pQ'V, (6)

where K~ is Boltzmann's constant and t/' is the

for both s and a modes. This substitution is valid
for samples with dimension L,(«L„andL„)such
that q,L,» I for all the q, of interest, i.e., the
modes are closely spaced in q space. Using the
relations q'(+qzz= Q'/v~ and dq, = Q dQ/v~(Q'- Q~)' ',
this integral can be rewritten in terms of q„and 0
as

with A~=@„v~. Finally we note that Q~ is the
smallest frequency possible for a mode charac-
terized by q .

IV. ACOUSTIC MODES —SOLIDS

In this section the acoustical modes appropriate
to a finite isotropic medium are discussed.

Consider again the geometry of Fig. 1. The
shear waves polarized in the plane of the surface,
i.e., along the y axis, can be decoupled from the
x-z-polarized shear and longitudinal modes. Thus
the normal modes (characterized by j, and Q) con-
sist of a y-polarized standing-wave shear mode and
two modes which are linear combinations of lon-
gitudinal and shear waves polarized in the x-z
plane. In addition there are also surface phonons
on each surface which are characterized by q„
only (i.e. , Q„=q„v„,where vs is the Rayleigh wave
velocity). It proves convenient to discuss the x-e-
polarized modes in three distinct regions charac-
terized by a fixed q„and variable A. First the
parameter Q~= q, v~ is defined where v~ is the
shear wave velocity. Region I denotes the fre-
quency range A&Q~, region II the range Q~&Q
& Q~, and region III the surface phonons at Q~
& Q~.
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4V AdA
(2 )' i q"i,(0' 0,')' '' (12)

B. Region I

The analysis of modes polarized in the x-z plane
is more complex than in the previous case. In the
general case the field is written

4

uw(r t) —
~me& &At-&&&&x& g&v'&e-&q& g + c c

A. y-polarized modes

This case is the simplest one to analyze for a
solid and is forma11y identical to the system
analyzed in Sec.III for liquids. The standing-wave
field has the form

u'(r, t) = —,'u,'je""' a~~"'(e "&'+ I'e '"')+ c.c.
and ensuring that T„=0 leads to I' = 1. Here q'„
+ q,

' = 0'/&&2r and for a finite sample the symmetric
and antisymmetric fields are degenerate in form.
The pertinent wave vectors are illustrated in Fig.
2(a}. It is also easy to show that normalization
leads to Eq. (8) for (~u,"~'} and that the density of
states in wave-vector space is 4V/(2»)'. The sum-
mation over the acoustical modes p, is replaced
for this case by

of propagating shear and longitudinal waves. The
terms v'=1, 2, 3, and 4 refer, respectively, to
the upward shear, downward shear, upward longi-
tudinal and downward longitudinal traveling
waves. Here

(q&./q&I iqll/q&) I

X"&= e'" (q,'/q„o, -q„/q,),
A "'=I'"(q„/q„0,-q„'/q,),
A = I""e&"v(q„/q&O, q'/q&),

(14)

t
T = fc q"q' (I —e'" )gg 44

t

where v = 1,2 refers to the symmetric and anti-
symmetric modes F.urthermore, q', =q'„+q,"=0'/
v q

—
q +q&2 —02/v2 q&&& — & q&2& & &S&

gJ and qJ
' =q Jr. The appropriate wave vec-

tors for the v' modes are shown in I ig. 2(t&).
The surface boundary conditions require that

T,„=T„=Oat z =0. Evaluating the stresses
(2 t2

~

q« —
q&. (1 «&„)

gx 2 44
I t

for both the symmetric and antisymmetric modes.
The summation over v' is over all the x-z-polar-
ized acoustical modes with a given qii and 0 which
satisfy the wave equation (1}.

In region I the acoustical modes consist solely

2
—~il" q,c» —2c« —" ~(1+ e'~~)=0.

&r)
By inspecti'on, T =0 for ii&,

= g,'=0 and a sym-
metric mode is formed for

&» 20,'(0'- 0,2)'~2

0,(0' 20,')

(16)

(17)

a condition which yields T„=O.Noting that T„=O
for P, = g,

'= », the antisymmetric mode is formed
by requiring that T =0 which yields

(, ) 2n,' —a'
20/0' 0,')'~' ' (18)

This is the only case for which the symmetric and
antisymmetric solutions are not identical in form.

Each of these modes is normalized to an average
energy of 4K~T as discussed in Sec. III. .Pro-
ceeding as in the liquid case,

qu

I
4eal

t4)

KgT
2I pQ'Zg IX~ F

It can be shown that

20~(0 —20r) + 80r(0 —Qr)
Qi(0 —20r)'

(19}

(20)

FIG. 2. Real part of the acoustical wave vectors
associated with (a) the y-polarized shear mode; the
x-z-polarized modes in the frequency range (b) Q

&QJ., (c) QJ. Q Qzs and (d~ Q=Qa

40'$0' —Qz)+ (20'r —0')'
(21)

for the symmetric and antisymmetric cases, re-
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spectively.
Despite the complex nature of these fields, sum-

mations over the acoustical modes designated p,

can be replaced by an integral over wave-vector
space. Stratton" has shown that the density of
states is 4V/(2v)2 for a wavevector &1 with q, = q,'
+ q,'= (2((/21,)n„This relation is correct for an

v,(0' 0',)'/'+v, (n' 0',)'/'„
v, (0'- n',)'/'v, (0' 0',)'/' (22)

and

average over a number of neighboring states. Not-
ing that dq, =dq~+dq, ', then

4v v,(n' n', )'/'+ v, (0' 0',)'/'
„„„

(2)/)2 I % I (02 02 )1/2& (02 02 )1/2 (23)

(3)A = (1,},/, (1,0
&+r

pp

1+ ')/' j

(24)

with y'=1 —0'/0~, q,"'=—iyq„, and q,"'=iyq„
For thick samples, i.e. , l»exp(-2L, yq„), the
symmetric and antisymmetric solutions are de-
generate in form and requiring that T„,= T„=O
yields

C. Region II

In this region only the shear waves are propagat-
ing modes whereas the longitudinal fields become
evanescent at both the top and bottom surfaces of
the plate. The field amplitudes for v'= 1 and 2 in
Eq. (13) are identical to those defined by E&l. (14).
The remaining terms decay exponentially into the
medium at the upper (v'= 3) and lower surface
(v'=4), with

D. Region III

For frequencies below the shear cut-off fre-
quency only one phonon mode, a surface wave, "
exists for each value of q„.All of the acoustical
field solutions are evanescent and the energy is
confined to the upper and lower surfaces. At the
upper surface

(1) ( (
(1) (2))1/2 0 ( (2)/ (1))1/2)

A&»=(1 0 &«&»)

with

(29)

for the small frequency region 40. It is given by
4V/(2w)' and the summation over the phonon states
is given by

4V QdQ
(2v)' ~ "~ (n' 0',)'/', '

and

4(0202)l / 2(20202)02(1 +y2}1/2

n[-(2n', —n')'+ 4iyn', (0' —0',)'/']

(20', a')'
(2) 4yn'(0' —0')"' '

(25)

(26}

~ "'= (1 —n'/n')'/'
R T

~ (2) (1 02/02)1/2

(1) so. (1) and (2) -sQ(2)

(30)

The real parts of the acoustical wave vectors are
shown in Fig. 2(c). (The wave vectors associated
with the evanescent modes have imaginary com-
ponents. )

The mode energy is normalized in the usual way
and the normalization is given by E&l. (19}. For
thick samples the energy associated with the evan-
escent waves can be neglected compared to the
energy carried by the shear modes and Z„.

~

A" ~' = 2.
Therefore

The equivalent terms on the lower surface are

A(2) 2L~n(1)e«( ( (1) (2))1/2 0 .
( (2)/ (1})1/2)

(2)A'" =e '~~" '«(1, 0, i&)(") (31)

q( ) j~( ) and q( 4)
g (y( 2)

The ratio QR/q is evaluated from the stress-free
boundary conditions which produces the Viktorov
equation"

(~u,'~'&=A;T/4pn'v. (27}
[2 —(,/, )']'=4[1-( „i,)']'/'[1 —(,/, )']".

This approximation is valid everywhere except for
a small frequency region bn-0~/SL', q~, just below
the longitudinal mode cut-off frequency Q~.

The density of states is governed principally by
the standing-wave shear part of the mode, except

(32)

For a finite @ample the symmetric and antisym-
metric solutions are degenerate.

Here we have an energy normalization which is
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different to that of the bulk wave case. Since the
surface waves are excitations of a two-dimension-
al surface, the appropriate resonances associated
with the normal mode are those over the surface
coordinates only. Again, ~ of the thermal energy
is involved and evaluating Eg. (7) gives

2 2 glr ~
&~u,"~'&=re,T 4pn„v~ g Q

u'=X q'= j.

for both the symmetri. c and antisymmetric modes.
No additional simplification of the denominator
term will be useful and the term is left in this
particular form. Furthermore, these surface ex-
citations are characterized by g„and therefore
the mode density in fi~, space is given by 4A/(2v). '
Any summation over the modes labeled by p, is
therefore replaced by

(33)

4A
(2„)k

E. Anisotropic media

(34)

Thd generalization totheacoustical modes of an
acoustically anisotropic medium is simple in
principle but tedious in practice. The three solu-
tions of the acoustical-wave equation are no longer
pure longitudinal (Vxu = 0) and shear (V ~ u =0)
modes. As a result, the stress-free boundary
condition couples all three waves and the modes
are linear combinations of standing waves com-
posed of the two quasishear and one. quasilongi-
tudinal waves. Numerical techniques are neces-
sary to find the relative amplitude and phase fac-
tors which lead to T,~=0. Three such orthogonal
linear. combinations are possible.

V. LIGHT SCATTERING - GENERAL

There are basically two scattering mechanisms
near the surface of a material, the corrugation
and elasto-optical effects.

The presence of an acoustical wave at a boundary
creates a surface ripple which alters the usual
electromagnetic boundary conditions. This cor-
rugation has the form I, =uo~ Icos(Qt —q„x)and
ean be corisidered as a travelling, sinuosoidal
diffraction grating which scatters Doppler-shifted
light into the "first diffraction order. " This
phenomenon was first used by Bergmann and
Schaeffer' to study light scattering from gener-
ated bulk and surface waves on opaque media.
Recently it has been used as a diagnostic tool for
surface acoustical wave devices, "as the read-
out mechanism for acoustical microscopes" and
to investigate shear waves at semiconductor sur-
faces "

This acousto-optical interaction has been analy-

zed previously in a number of ways. Diffraction'
and Helmholtz' integrals were used to describe
the diffraction of light by low-frequency-generated
surface acoustical waves. However these tech-
niques are valid for q„/k«1, where k is the opti-
cal wave vector. Another approach'3 is to ex-
amine the continuity of the usual electromagnetic
boundary conditions across the corrugated inter-
face. It can be shown that either the tangential
electric or magnetic field, or both are discon-
tinuous across the moving surface. The additional
radiation fields required to satisfy the boundary
conditions correspond to the Brillouin-scattered
fields. It is this latter approach which will be
pursued in this paper.

The second mechanism to be analyzed is the
elasto-optical effect which is the well-known
source of Brillouin scattering in "infinite" media.
Included in this category are all phenomena which
scatter light from sound waves in the bulk of a
material. (The special case of conductivity fluctu-
ations in a metal will be discussed separately. )
The general elasto-optical interaction is described
by

1 il'Bu, Bu, ll
~im~ jn Pmnklnli +

, ~E J &

Cp ". lyse, s, &

(35)

VI. LIGHT SCATTERING - CORRUGATION EFFECT

A general theory of light scattering by surface
corrugations on a dielectric transparent material
has recently been reported'3 by one of us and
essentially the same formalism will be extended

where p „»is the elasto-optical tensor and 0 is
the polarization field created by the interaction be-
tween the acoustical strain and the incident opti-
cal field E, These polarization fields radiate
electromagnetic waves which are then observed as
the scattered light. In mathematical terms the
polarizations are sources for an electromagnetic-
wave equation and total fields are found which
satisfy both the driven-wave equation and the
electromagnetic boundary conditions.

It proves convenient to analyze directly the
source of the elasto-optical interaction for a
metal, namely, the conductivity effect identified
by Dil and Brody. ' Density fluctuations associated
with a sound wave produce fluctuations in the den-
sity of a "free-electron gas" in a good metal.
Since the local conductivity is proportional to the
local electron density, an incident optical field
produces oscillating currents which in turn radi-
ate scattered fields. In the mathematical analysis
the currents drive an electromagnetic-wave equa-
tion and total fields are derived ~hich also satisfy
the boundary conditions.
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FIG. g. Light-scattering geometry.

to opaque media. All experiments on surfaces re-
ported to date" have dealt with geometries in
which the incident and scattered wave vectors
were coplanar with the normal to the surface.
Only this geometry as illustrated in Fig. 3 is
considered here. (The more general case was
analyzed for dielectric media in Ref. 23.) Both
8- and p-polarized light, i.e., with the optical
electric field parallel to the surface or in the
plane defined by the surface normal and the opti-
cal wave vector respectively, will be treated.

The analysis is based on matching electro-
magnetic boundary conditions across a moving
surface. Therefore fields must be evaluated in
a coordinate system fixed to the oscillating sur-
face, i.e., the ~', y, z' axes shown in Fig. 3.
The transformations relating a vector R
=(R„,R„R,) specified originally in the stationary
x, y, z coordinate system to the same vector 5
=- (R„',R,', R,') in the x', y, z' system is given by

R„' R„+R=,sing, R,' =R, —R, sin(

for small rotation angles $. For a surface cor-
rugation of the form u, =u,"icos(Qt —qJJx),

&Q~

8Ã
= tang = uoJ' 5q JJ

sin�(n

t —q JJ
x) .

Note that these transformations indicate that the
normal field components contribute to the tangen-
tial fields across the rippled interface.

A. p-polarized incidence

Consider first the electromagnetic fields and
boundary conditions in the absence of sound waves

x exp[i(Jd, t —k„x—k cosp,z)] + c.c. ,

E„=,E,'(i c—osJIJ,+ k sin JtJ, )

x exp[i(Jdof kJJx+kcospoz)]+c ~ C. ,

2EO'( iin„—p —k -sing, )

x exp[i(Jdot —k JJx) —pn kz]+ c.c. ,

(37)

(38)

(39)

respectively, for light of wave vector k and fre-
Jluency &, incident at an angle po relative to the
surface normal, see Fig. 3. Here k, J

=k sin/0 and

P = sin'yo/yP —1. For example, for a good metal
~n'

~

» 1 and p = i. The continuity —of E„andH„at
z =0 yields the usual Fresnel relations

E,'/E, =(p —in cosJ|J,)/(p+in cosJIJ, ) (40)

and

Eo' /E, = 2i c os', /(n p + in' c os JtJ,) . (41)

%e now assume the presence of sound waves at
the interface. As a result the electromagnetic
boundary conditions must now be satisfied across
the moving surface [i.e., at z =u,"fJcos(AJJ —qJJx)]
in the x', y, z' coordinate system. Expanding terms
of the type

exp[ik cosp, fJ cos(Qt —q, Jx)]

as Bessel functions, applying the transformation
in Eq. (36) and assuming 1»u,"6qJJ and 1»uoJ'bk,
then the tangential fields'3 at z = 0 are

at the surface of an opaque material of refractive
index n . The incident, reflected and transmitted
fields are of the form

R,. = ,' E,(i co—sp,—k sing, )

(i) incident

E„=2 u,"5E,i( —
2 + '

2
ex+i[(cu +&)t —(kJJ kqJJ)x]] +cc.( k cos'po q, J

sin@0
(42)
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1„.& k'cosp
H, = —uo5Eoil

2
'&I exp(i[((dp+Q)t (k~~ &q~~)x]}+c.c. ;2

(43)

(ii). reflected

E„= u—,"5E,'i +
2 ) exp fi[((o, ~ Q)t —(k+ q, ~

)xj}+c.c. ,
1,. k cos'p, q„sinpo

~ (44)

H, = uo—5Eoi — '
~
exp(i[(&o, ~Q)t —(k„+q )x]}+cc,1 ~, . k cosfo )

2COop 0 )
(45)

(iii) transmitted

E„=
2

u,"5E,"i
2

+
2

— exp[i[(~, qQ)t —(k~~ yq„)x]}+cc.1 „,. kp qp sinpo (45)

exp (t [((0 0+ Q)t —(k )( t q (( )x]j + c c ~

It can now easily be shown that E„andH, are no longer continuous at z =0. Fo~ example, AE„=(E,),
+ (E )' fl g (E )u 4 0. Evaluating relative to the air side of the interface gives

1 sing, cosp, (n' —1)
AE~ —— . 2 u05EO(k)) kq)))exp(z[((do +Q)t —(kp 4 q)() x]}+C.c~

2 n p+in' cosp,

(4V)

(48)

&H„=
2

. ,"uE5, e px(i[((o +oQ)t (k„+qp)x]}+cc.1 i cosp, (n' —1)pk'

Ogo p+ jn~ cosp(
(49)

Thus the corrugation effect is manifested in terms of discontinuities in the usual electromagnetic boundary
conditions.

Continuity of the tangential electromagnetic boundary conditions is satisfied by the total fields. The ad-
ditional fields are solutions to the homogeneous wave equation in air, i.e.,

—A, u," i —'+$ "* ") exp(iN+, &Q)t (ktt+q'tie+0 z])+c.c. ,

and in the metal, i.e. ,

(50)

R„=—B,uo" iiP'n —k —' exp[i[(+0+ Q)t —(k~~ +q~~)x] —P'n kz}+C.C. , (51)

respectively, with k,'= k' —(k~~ + q~~)' and p" = (k~, + q,~)'/n'k' —1. The field designated by E, propagates
away from the surface and forms part of the total field observed in the experiment. The scattering angle

P, (shown in Fig. 3) is given by cosp, = k, /k. Evaluating gives

ik cosy, (n' —1)[kpp'+ sin@o(k,
~ +q„)]5E

(in„k,+ p'k)(p+ in cosp, )

The term

ik cos@,(n' 1)[kpp'+ sing, (k„~q„)]
(in k, +p'k)(p+in cos&j&,)

(52)

is basically a geometrical factor so that we now
write A, =H~OE, . Finally we note that the scattered
fields have the same polarization as the incident
field, i.e., no depolarized scattering occurs via
the corrugation mechanism.

Only partial wave vector conservation occurs in
this acousto-optical interaction. The components
of the incident and scattered optical wave vectors
uniquely determine the value of q~~. This implies

that wave-vector conservation is valid only in the

plane of the surface, a feature common to other
scattering phenomena at surfaces. ' Furthermore,
the light scattering originates from a phonon

continuum characterized by a fixed value of

q]~ and therefore the frequency shift of the scat-
tered light starts at some cutoff frequency
Q =q]]v and extends in principle to very high

frequencies.
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B. s-polarized incidence

The analysis for this case is exactly the same
as for the previous p-polarized geometry. For an
incident field of the form

region II,

-4i) nn,' (n' n—', )'/'
(3Q2 Q2)2 4 ' Q3 (Q2 Q2 )1/2 1

region III,

(63)

R, = —,
' jE,exp[i(&o, t —k JJx —k cosJj)~)]+c.c.,

it can easily be shown that ~E„=Oand

-ik' ocs jJ)(n' —1)u~om~4H„=
(dopo ( Jj)o 1nmp)

(54)

x exp [i[((do a Q)t —(k JJ
+'q

2 )x]}+C,C, (55)

Again additional solutions to the homogeneous
wave equation are required in the air and metal in
order to satisfy boundary conditions. The scat-
tered field has the form

R, =-,'Juo2A, exp(i[((d, +n)t —(kJJ+q1)x+k, z]}+c.c.

(2) [1 1/( (1) (2))1/2] (64)

These results indicate that only the x-z-polarized
modes contribute to this scattering mechanism.
Note that the shear wave components of the x-z-
polarized modes contribute to the polarized scat-
tering, a situation which does not occur for
Brillouin scattering in "infinite" media. The pre-
ceding formulas are for the upshift case (~, +n)
and conversion to (&, —Q) requires taking the
complex conjugates of Eqs. (59)—(64).

VII. LIGHT SCATTERING-CONDUCTIVITY FLUCTUATIONS

with

Ac= Hs5E0

ik' co—s JtJ, (n '„—1)
(cosJj), —in p)(ip'n k —k.)

Therefore the scattered fields are again of the
same polarization as the incident field.

C. Specific cases

(56)

(57)

(56)

'The acousto-optical mechanism appropriate to
a metal which can be described by a "free-elec-
tron gas" is discussed in this section. In such a
medium the bound electrons associated with the
ions are effectively screened by the electron gas
and the effects of dipole radiation from the bound

electrons becomes negligible. However propa-.
gating density waves (longitudinally polarized
excitations) produce local fluctuations in the den-
sity of the free-electron gas and therefore in the
local conductivity, i.e., ao/o = ap/p. For sound
waves described by Eq. (13), the density fluctua-
tions (b,p/p= p u) are given by

It has been shown in the preceding discussion
that the scattered fields are directly proportional
to the corrugation g. This term is now evaluated
for the acoustical modes of Secs. II-IV.

f( ot -q x) v'
b.p/p= —u," e'("' 'JJ") g t)p" e( '+82c.c. , (65)

2
v'

with

Liquid:.

5 = -&(n' —n', )"/n.

Solid y -polarized shear:,

a=0.

(59)

(60)

Ap = —ig]t A +iqj A (66)

I
1 Ou)Je'I( Qt 8JJ 8) Q Pp, HAJJ ellP& 8+
2 0 (67)

Therefore the conductivity fluctuation produced by
the p, th acoustical mode is

Solid x-z polarized snakes:

region I,

&=0 (symmetric mode),

5 =n/Qr (antisymmetric mode);

(61)

(63)

A. p-polarized incidence

The appropriate incident, reflected and transmit-
ted fields are given by Eqs. (37)-(41) for the p-
polarized geometry. Fluctuating currents
(J=agR, ) of the form

v'
J = —ou32ED(-iin p —k sinJtJO) exp[i(wo+Q)t —i(kJ, +qJJ)x] g t) p' e

vt

~ 3)( V

e+p[xi((o, - )tni( kJJqJJ)-x] g t2p*' e '"~ ""1- ' +c.c.
v

(68)
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are created by the sound waves and radiate electromagnetic waves at the frequencies , +Q. Only the
downshift case will be treated further for the sake of brevity. These currents act as sources for the wave
equation for the vector potential A and for the scalar potential p via the Lorentz condition or the conserva-
tion of charge condition. " Therefore

~ 0

V~A —(n' jc') A= —p,J and i ~ A+(n' jc')j=0 (69)

are satisfied and the usual electromagnetic fields recovered from E = —Vg —A and 8 = V x A. The resulting
tangential fields

&p*~ [sing, (k„-q„)—n„g(n„gk+iq*, "')]e '~"m~"'

(VO)

uo'cE,"exp[i(&u, —Q)t -i(k, —q„)x]~ &p* [k'g "n'„-sing, (k„-q„)(gn„k+iq*, )]e ~"m""'&

(gn„k+iq*, ")' —(g'n„k)'

exist only in the acousto-optical interaction region and do not propagate away from the surface. When eval-
uated at the surface, both fields give rise to discontinuities in the boundary conditions and additional fields
of the form of Eqs. (50) and (51) with amplitudes A, and B, are required. Writing o =-i(o,e(n„—1) for good
metals and ensuring that the usual boundary conditions are satisfied yields

with

ik cosP, (n' - 1)[kgg'+ (k„-q„)sinPJn' ]
(in„k,+ g'k)(g+ iri„cosP,) (VS)

The scattered fields are similar to those obtained for the corrugation case, i.e., the scattered fields are
not depolarized and a continuum of phonons characterized by .a single value of q„contributes to the scat-
tered fields. Note that the geometric factor is not quite the same for the corrugation {H~) and conductivity
(H~) mechanisms.

B. s-polarized incidence

The analysis for this geometry is exactly the same as for the previous case. Vector and scalar potentials
((t =0) are evaluated for the currents produced by the local density fluctuations. After some algebra it can
easily be shown that the driven fields give rise to the discontinuities

pt~g& e (Snma+(qg" )s-

(V4)

&pm (gn k+ iq+q )e ™+I(((.H„=-'cru,"E,'exp[i((d, —Q)t —i(k„-q„)x] 2)2+CC

yl

X,=H,Z, g (V6)

Again only polarized scattering occurs.

in the surface tangential fields (relative to the
air side of the interface) with E,"/ED = 2 cosQ, /
(cosQ, .—in„g). Again additional fields are required
and the field scattered into the air has the form
given by Eq. (56) with amplitude

C. Specific cases

It has been shown in the preceding analysis that
the scattered field is proportional to

g~m /[(g+g')n„k+iqm" ].
v'

This term is now evaluated for the acoustical modes
of Secs. II-IV for the downshift case 0 Q.
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Liquid:

2(0' —0')'i20
[n k(g+g')vi]'+0' —Q~

'

Solid y-Polarized shear:

0.
Solid x-z-Polarized nzodes: region I,

(78)

40v 0 2(02 02)&/2(P+ P~)/
Qi(0' —202r)$[n k(g+ g')vi] + 02 —Qi}

(symmetric), (79)

0 (20~r —02)

Qr [n„k(g+P') v~]'+ 0' —02'

VIII. LIGHT SCATTERING-ELASTOOPTIC EFFECT

The elasto-optical mechanism is analyzed for
an arbitrary opaque medium in this section. Equa-
tion (35) simplifies for an optically isotropic me-
dium to

4 eu„ eu
on Pa, "+ Z

ex, exu
(83)

This polarization field is the source for the driven
wave equation"

Conversion to the upshift fields is achieved by taking
the complex conjugate of Eqs. (77)-(82).

region II,
(antisymmetric); (80)

~ 0

V'v ~f= —P/e n'
c 0 m

-4i00',(0' —0',)'"
(202 02)2 + 4iy03 (02 02 )1 /2

(20', —02)
Qi[n k(g+ g')vi+ (02' —0')'"] '

region III,

iQ~/02,
n„k(g+g')v„+0„(1—02/0')'+ ' (82)

for the Hertz vector m. Total field solutions are
found which satisfy Eq. (84) as well as the electro-
magnetic boundary conditions.

A. p-polarized incidence

The analysis for this geometry is essentially
the same as for the conductivity case. The polari-
zation fields for the downshift case (&o, —0) are

P = ——,'e,n'„E,"u", g P exp[i(v, —0)t —i(k, q„)x—(g-n„k+iq,*"')z]+c.c. , (85)

with

P« = —,'n'„[-ign„(p»A*,«l*„«+p,p*,"'lf«) —sin&]&p«(A~«l*, «+A~«l*„)] (88)

P", =-,'n~«(-ignis*, l+" -sing++ l*,"'),
1

(87)

P,"'=
—,'n'„[-ign„p«(A*,"l~«+ 4+«l*, «) —sing, (p,p*, «l*, «+p,g*„l„*)]. (88)

(89)

Here l„=-iq„,l„=O,l,"=iq and the elasto-optical tensor has been rewritten in Voight notation. Solving
for the Hertz vector" and using E = Vx (V xv) 5/e, n2 a—nd A=n2V x /pv, , tco eva1uate the driven fields,
it can easily be shown that

1 .
„

i(k„—q„)(gn„k+iq*, ")P,"'- (g'n„k)'P„

2 poC

1 +P
——n'„k'exp[i((o, —0)t -i(k„-q„)x],

k
. ~«„,, ), +c.c. ,

2 poC

(90)

(91)

(92)
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at the surface (air side). Thus, just as in the
previous sections, the calculation has been arranged
to produce discontinuities in boundary conditions.

P-polarized scattered fields are obtained if &E„
or &H„is nonzero. Solving for the boundary con-
ditions gives

2n2 pt

Eo'n'„-1 ' (g+ g')n k+ iq+' (100)

and only x-~-polarized acoustical modes contri-
bute to the scattering. Simplifying further gives
for acoustically isotropic media

2i cosp, kE,
(g + in„cos(t),) (ik~„+g 'k)

n„k(g+6')+ iq*, "' (93)

n
'n' —1 " ' (g+g')n„k+iq~"' (101)

If DE„or&H„is nonzero, depolarized scattering
from the y-polarized modes takes place with an
amplitude

This term cannot be simplified further but com-
parison with E(ls. (86)-(88) shows that only the
x-z-polarized acoustical modes scatter light into
this polarization. For an isotropic metal (P»=p»
and P44=0))

Am+.
HI m P E('n' 1 " ' (g+g')n k+iq*~ ' (94)

which is in agreement wwith, the results for the
"conductivity" calculation. As expected, this
gives p» = (g —I)/n4.

If &E, and &H„arenonzero, depolarized scat-
tering (s-polarized fields) occurs. Solving for the
field amplitude gives

2cosg,n k'E,
(ig'n„k —k,)(g+in cosP, )

pV
X

(g+g')n k+iq,*"' ' (95)

B. s-polarized incidence

This case differs from the previous one only in
the form of the incident field. The components
of the polarization field are

Pv' &n2* ggv )gv'
x 2 ~44 y x

P" =-'n'* (A*"/*"+4*"l*~)
y 2 ~12 x x Z g

P, = —,'nag, g+"'l+~

(97)

(98)

(99)

and the field discontinuities at the boundary are
given by E(ls. (89) -(92). If &H„or&E, are non-
zero, then the s-polarized field amplitude is

Inspection of E(ls. (86) -(88) shows that scattering
occurs from the y-polarized modes and simplifying
(95) yields

2 cos(t),k'n~+«E,
(ig'n„k —ik,)(g+ in«cos(t), )

sing, (Q' —Qmr)+n'„Qgvrg(g+ g')
I~

[n„k(g+g')v,]'+ Q' Q', i '

Conversion to the upshift case requires taking
the complex conjugate of the acoustic parameters.

2n k cos(j),E,
(cosp, —in„g)(ik~„+g'k)

in„kg'P„(k(,—-q„)P,
(9+6')n k+iq,*"'

Substituting the acoutical parameters yields

2n'„cos(t),kP«E,
(cos(j), - in g) (in k, + g'k)

[n„k(g+g')v,]'+ Q' —Q',

(103)

IX. BRILLOUIN SPECTRUM

The frequency spectrum of the scattered light is
calculated by first evaluating the Brillouin spec-
trum from a single acoustical mode and then sum-
ming over all of the possible phonon states. For
a given mode p. the scattered field at the observa-
tion point described by R is written

E'(R, i) = —,'E,u,"exp[[((d, + Q)t —(k„+q„)x+k,z]]

x g 7' (104)

where the summation over p includes all of the
scattering mechanisms. For example,

-, .g, +~,)

for the polarized scattering of s-polarized in-
cident light by the corrugation and elastooptic
effects. The frequency spectrum is given by

s'(R, td')= —f(F."(t+T) E "(t))e' "dT+c.c. ,

where ~' is the frequency of t'he scattered light.
Assuming that the damping'of the p. th mode is
of the form e r't, the spectral density S(R, ur') is
calculated to be
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r /vS'(R & ) =2(l "0
l )

( O)2 Z
2SO

x F~

S(R, (u') = Q [SJR,Id') + S."(R,Id')], (107)

with So = —,
'

I Eo l'. The total frequency spectrum
is a summation over all the acoustical modes
which contribute to the scattering, i.e. ,

where s and a refer to the symmetric and anti-
symmetric modes. For free-standing thin films
such that 2q,L,»1 is not satisfied, this summation
must be done term by term. If 2q,L,»1, the
summations are replaced by integrals over q space
the details of which depend on the acoustical modes.

A. Liquids

The appropriate density of states for a liquid was
discussed previously in Sec. III. The spectral den-
sity is given by

(2v)' ' ' ((u' (u+O)'+1""' ~~ (O2 2)~/2 (108)

for both the symmetric and antisymmetric modes.
For small solid angles &0, subtended at the detec-
tor,

q„-dq„=k2cos,&Q,

(Ref. 32). If the "skin depth" of the incident light
is no more than a few optical wavelengths then all
of the terms inside the integral, except the Loren-
tzians, have broad frequency distributions. Since
0» I'", the I.orentzian is effectively a 5 function,
l.e. ,

(109)

I(R, &u')/I, = cosP,S(R, &u')/cosg, S,

for the ratio of the total detected scattered light
I(R, &u') to the incident light power I,. Therefore

I(R, &u') 0' cos'Q,XsT
I,n.O, (2v)'pOv, (O'-O', )'"cosy,

is the final result for frequencies ~'=~, +O.
Finally we note that for penetration depths of the
incident field of many wavelengths, the integral
in Eq. (108) must be evaluated explicitly and the
5-function approximation for the Lorentzian terms
is not valid.

Evaluating the integral over 0 yields

S(R, (o') =S,(R, (o')+S,(R, (o')

A~Tk' cosg, &O,S,
(2v)'pOv, (O' —O')~~2

(110)

8. Solids

(112)

Consider first the case of y-polarized shear
modes. The treatment is exactly the same as for
the liquid case and the result is

I(R, Id') k' cos'p, K~T A~ ~'

I,d O, (2v)'pOvr(O' —O'r)'~' cosP,

which relates the spectral dlstrlbutlon of the
scattered Poynting vector to the magnitude of the
incident optical power per unit area. In an actual
experiment the incident light illuminates a finite
area of the sample surface so that

withe~ given by Eq. (96) or (103) for P- and s-
polarized incident light, respectively.

The analysis for the x-z-polarized acoustical
modes is also the same as for liquids. In region I
(O&O, )

I(R &o') lP cos'QQ T v (O -O')' '+v (O' —O )' '
g gt F~ ~ F* F F*

I,&O, pO(2v)'cosQ v (O' -O')' 'v (O' —O')' „(g, [A"[' Q ~g" ~s]
(113)

For region ll (O~ &O&Or) the modes are degenerate and

I(R, &u') k' sc'oQ+sT
pO(R)'cosy, v,(O'-O',)I~~ (114)
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(115)

Finally, since scattering from surface phonons occurs from only one value of q„for a given scattering
geometry, the scattered spectrum consists of two discrete Lorentzians with

I(R, w') lP cos'P+~T 1' "/m

I,&Q, (2m)'cosp~v~Q„~+~[A";A*,"/(e" +'n+"'}j ((u' -Id +Q)'+ 1'"' ~ FP ~ Fg 0'

The spectra described by Eqs. (111)-(114)have
a. number of interesting features. Vfe note that
both the volume and area cancel out, as expected
on physical grounds„so that the frequency spectra
are essentially independent of sample size. For
small penetration depths of the incident light into
the opaque medium, all of the spectral features
for Q& Q~ are relatively broad. The only well-
defined feature is due to scattering from thermal
surface phonons. As the penetration depth in-
creases, the frequency spectrum undergoes a tran-
sition for Q &Q~ to the usual spectrum associated
with Brillouin scattering from "infinite" media. ' '

Finally we comment on the apparent discontinui-
ties which are predicted by Eqs. (111)-(114)for
Q=Q~ and Q=Q~. In many of these cases there
are compensating terms contained in F~ and in the
final expressions no discontinuities are predicted
(see Sec. X}. Furthermore in these regions the

replacement of the I orentzian terms by 5 func-
tions is invalid and equations of the type given by
(108) must be evaluated in detail. This results in
finite peaks with widths of the order I"".

X. METALS

In this section the formalism outlined to this
point is applied to Brillouin scattering from metals
in order to compare with recently reported experi-
mental spectra. "The elasto-optical effect is
treated here in terms of conductivity fluctuations.
For all the cases considered, no depolarized scat-
tering is predicted, or observed. ' '

A. Liquid metals

Consider first the case of s-polarized incidence.
Substituting Eqs. (5V)-(59), (76), and (7V) into
(111)yields

I(R, &g') 4k cos&/&, cos'Q, I
n' —1 1'K Te(Q' —Q21.)

I,b, Q, ~(cos$, -in p)(ip'n„—cosp, }~ (2w) pv Q [n (P+0 )~& j +Q —Q

for Q y Q~ and I(R, ~')/I, gQ =0 for Q~&Q. The spectrum starts from zero at Q= Ql, (corresponding to
scattering from sound waves traveling parallel to the surface) and peaks at Q -1.22 Qz. The first term
originates from the corrugation effect and the second is due to acoustically induced changes in the local
conductivity. In the vicinity of Q-Q~ the ratio of the conductivity to corrugation effects is 1/2n which is
small for a good metal. Therefore the corrugation effect is the dominant scattering mechanism and the
conductivity contribution is only a few percent. The spectrum can be further simplified to give

I(R, &o')/I, b Q, = 4k' cosQ, cos'P, K~ T(Q' —Qi)' '/(2 m)'pviQ'

for a highly reflecting metal characterized by ~n
~

» l.
The frequency spectrum for p-polarized incidence is calculated from Eqs. (52), (53), (59), (72), (73),

(77), and (111). The result is

I(R, e'} 4k cosP, cos'P, In' —1 I'K~T(Q' —Q2z)'~' FQ
i,&Q, ~(in cosP, + P')( I+in cosP, )~'(2m)'pe Q' [n &(P+ 0')v j'zQ+' —Q'z,

+

(11V)

(118)

with

X= P P '+ sing, sin&]&, and F= P P '+ sing, sing, /n' .
In the vicinity of Q- Q~ the frequency spectrum is similar to that for the 8-polarized incidence case and the
previous comments regarding structure and relative contributions are valid here also. In the limit of a
good metal, i.e. , ~n cosP, ~'»1 and ~n cosP, ~'»1,

I(R, &u')/I, n. Q, = 4k'(1 —sing, sing, )K~ T(Q' - Q~)' ~'/(2 v)'pe~ cos P,Q' . (119)

Note that the frequency spectrum is exactly the same as for s-polarized incidence in this limit but the scat-
tering intensities are different.

Experiments have been performed by Dil and Brody' on the metallic liquids gallium and mercury. Based
on the parameters given in their paper Eq. (117) [or (119}jwas evaluated for the spectrum which ez-
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hibited the best signal-to-noise characteristics, that for liquid gallium. As shown in Fig. 4, the agree-
ment between experiment and theory is excellent.

B. Solid metals

Consider first the Brillouin spectrum in region I defined by Q&Q~. The spectrum evaluated from the

equations in the previous sections is

I~(R) (()') 8k cos Q, KsTAQr(0 —Qr) / [v~(0 —0~) / +vr(0 —Qr)'/ ] ~v~n k(p+ P') p

I nQ (27/)'pv~vr cosp, (0' —0~)'/'[0~(0' —2Qr)'+ 40r(0' —Qr)] 1 [v~np( p+ p ')]'+ O' - A~ [' '

(120)

where H is either H, or H~ depending on whether the incident light is s or P polarized. For the antisym-
metric mode

I,(R, (()') k cos (t),K/)TA(0' —Qz)' '[v~(0 —0~)' '+ vr(0' —0'r)' '] 20' —0'
I,EQ, (2v)'pv v cosp, (0' —0')'/'[20'(0' —0')+ (20' 0')—']

~
[v n„k(P+P ')]'+ 0' —0'

(121)

with H=H'=H, for s-polarized incident light, and H=H and H'=H& for the P-polarized case. The Brillouin
spectrum is the sum of the two, i.e.,

I(R, (d')/IonQ, = [I,(R, (()')+I,(R, (0')]/IonQ, . (122)

The symmetric mode spectrum arises solely from conductivity fluctuations whereas both corrugation (first
term} and elasto-optical (second term} mechanisms contribute to the scattering from the antisymmetric
sound waves. The ratio of the conductivity to corrugation terms is of the order 1/n apd for metals with

~n„)-,5-, 10 this constitutes only a few percent. For ~n ~'» I,

I(R, ~') k'K, T cosy, cosy.A(02 0',)' '[v,(0' 0',)' '+ v,(0' 0',)' ']
I,aQ, (27/)'pv~vr(0' —02r)'/'[202r(0' —02~)+ (20'r —0')'] (123)

and

I(R, (0') k'KsT(l —sing, sin(t), )0(0' —0~) '[v~(0' —0~) + vr(0 —Ar) ]
I.~A. (2)/)' cosy, pv~v r(0' —0'r)' " (124)

for s- and P-polarized incident light, respectively. These two spectra are identical in structure but do
differ in intensity.

The frequency spectrum in region II (0~& 0& Qr} is calculated in the same way as discussed previously.
Here

I(R, ~') . 16k' cos'Q, K)) TQQ'QO' —02r)'/' H'(20' r0')
I,nA, (2)))'cosp, pvr[(20'r- 0')'+ 16y'0'r(0' —0'r)] 0~[van k(P+ P ')+ yO/]

(125)

(126)

with y = (1-02/0~)' ', H=H'=H for s-polarized incidence, and H= H and H'=H' if the incident light is P
polarized. The corrugation terms are dominant for a good metal and the spectrum has minima at Q~ and

Q~. However the ratio of the conductivity to corrugation terms [(20'r- 0')/Q~n y] is not negligible for
metals with ~n„~ in the range 5—10 (unless 0'-20'r).

Scattering from surface phonons is characterized by two j' orentzians centered at co'= ~, + 0„.The spec-
trum is given by

I(R, ~ ) k'cosy, K,T r "/v
IonQ, (27/)'pvzQ+Z 2 (A" A*"/n + n*") ((()'-(do+ 0)'+I"2

(
(1) (2))1/2 I

H k(P+ P)) + 0 (I 02/Az)1/2
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FIG. 4. Experimental and theoretical (solid line)
Brillouin spectrum from liquid galbum. These data
were supplied by Brody.

FIG. 5. Experimental and theoretical (solid line)
Brillouin spectrum from isotropic aluminum.

and the previous comments about H and H' are ap-
plicable here. For this case the contribution from
the conductivity term is small, but not negligible
(-5%)

Brillouin scattering from isotropic metals has
been reported by Sandercock' and a comparison
with his results for isotropic aluminum is shown
in Fig. 5. Scattering from both the corrugation
and conductivity mechanisms was included in the
calculation and the refractive-index data was taken
from Ref. 33. The instrumental profile was esti-
mated from the published curve' and it was as-
sumed that the instrumental width was much great-
er than 1"' for the surface phonons. The difference
in the observed and calculated positions of the
spectral lines originating from scattering by sur-
face waves is attributed to a difference between
the elastic constants of this sample and those re-
ported previously. '4 Nevertheless the agreement
between the experimental and theoretical frequency
spectra is excellent. The absolute sca.ttering in-
tensity was also estimated from the experimental
parameters" and by modelling the instrumental line
as a rectangular profile. A value of 35 counts/
(sec incident-mW sr) was obtained which compares
favourably with ihe experimental value of 22 in the
same units.

XI. SUMMARY

In this paper we have outlined a total field ap-
proach to the analysis of light scattering by sound
waves at the surfaces of opaque materials. The
acoustical Modes used are those appropriate to
stress-free boundary conditions and the scattering
was analyzed in terms of both the corrugation and
electro-optical effects.

The acoustical modes were found to be linear
superpositions of standing waves of the phonons
of an infinite medium, i.e. , the shear and longitu-
dinal waves. In a liquid, only standing-wave longi-
tudinal modes occur. The case of a solid is more
complicated and three separate acoustical fre-
quency regimes have been considered. These re-
gions are Q&Q~, Q~&Q&Q~, and Q=Q„. One
mode consists of a y-polarized standing-wave
shear which exists for Q&Q~. The other two
modes are polarized in a plane normal to the sur-
face and consist of standing-wave shear and longi-
tudinal waves for Q& Q~, of a standing-wave shear
and evanescent longitudinal modes at both surfaces

Qr and of a surface phonon with both
evanescent shear and longitudinal waves at Q= Q~.

Basically two scattering mechanisms were con-
sidered, i.e. , corrugation scattering and elasto-
optical scattering. Sound waves produce a surface
corrugation which scatters light in a way reminis-
cent of a traveling diffraction grating. This mech-
anism was found to be responsible for the Brillouin
spectrum of highly reflecting liquid and solid
metals. The elasto-optical effect within the "skin
depth" of the material was also analyzed for the
general case. Treated as a special case of the
elasto-optical effect were conductivity fluctuations
in "good" metals. The good agreement between
the present theory and the experimental results
of Dil and Brody' and Sandercock' is considered
to be a verification of this formalism for corruga-
tion scattering.

This theory has also been used previously"'" to
analyze Brillouin scattering in thin films deposited
on substrates. In that case the elasto-optical ef-
fect was the dominant mechanism and the corruga-
tion effect contributed of the order of 10%. The
agreement with experiment was excellent" for
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that case also which indicates that the present
formulation is also correct for the elasto-optical
mechanism.

In summary, it appears that Brillouin scattering
at the surfaces of opaque materials is well under-
stood and that experimental results cannowbe used
to obtain information about sound waves at sur-
faces.
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and

T = -~ "zngyX 8''"' ""'~'+ c.c.zz z (A5)

Solving the force-balance eciuation (V,T,~= pii&)

gives

b' = i(pQ/7l)(l+

q'„q/ipse)

. (A6)

T,„=—uo" (b'+ q'„)K,e""' ~t"'+ c.c.1 Qq
(A8)

For the liquids of Ref. 8, the second term is typi-
cally less than 10 ' and can be neglected. Thus

(A V)

This shear mode can now be used to satisfy both
stress-free boundary conditions. The contributions
to the surface stresses are

APPENDIX

"g„q"q' (1 I') ""' '~*'+ .c.
zx 0

q (A1)

In this Appendix we investigate the effects of
fluid shear viscosity on the longitudinal standing-

wave modes in a liquid. The incident and reflected
longitudinal fields are given by Eg. (4) and sub-

stituting into Eg. (3) yields

and

T„=uo"QQgK, e' '"' ' "'+ c.c. (A9)

We note that b'»
g~~ for the shear mode with the

result that T,„»T„.Furthermore, since T„»T,
„

for the longitudinal waves, the shear modes are
neglected in satisfying T„=O,i.e. , l = -1 and
both terms are used in ensuring that T,„=O.This
yields

2

T = -i "—' (pv'+2iQq) —'(1+1)e""' ' "'+ c.c.
zz 2 I

q
K,= —(2q„/q)(2iq'„q/p 0) (A 10)

at z=0. It is impossible to satisfy both T =0 and
T„=0with a single choice of I'.

It is therefore necessary to consider additional
modes, in this case an evanescent shear wave at
the surface. The fields are of the form

K„=(4q, /q) (q'„q/2p0)' ~'(1+ i)

We now estimate the effect of this shear mode on

the scattered fields. It is easy to show that for the
total corrugation

u. = —'u"K.e""' ')~"' "+c ci 2 0 i ~ ~ p (A2}

i(ng-q x)-yz+

+P g~ ~ ei (Q $-q~~x )-Qz+ cxx 0 II x ~ ~ 7

(A3)

(A4)

with the real part of b chosen positive to produce
evanescent waves. Requiring '7 u= 0 (for a shear
mode) gives K„=(ib/q„)K,. The stresses are

T„,= T,„=—' u "i Ari( iq„K,—bK„)—

pQ
(A12}

The second term is attributed to the shear mode
and can be neglected forghonons in the gigahertz
frequency range. Since V u = 0 for the shear mode,
there is no contribution tothe elasto-opticaleffect.
Therefore the effect of this evanescent mode on the
Brillouin spectrum is negligible.
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