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Plasmon model for image-potential-induced surface states with an application to positrons at
metal surfaces
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A variational method is presented to calculate dynamic corrections to the image potential of a charged
particle at a metal-vacuum interface and hence to calculate its binding energy. The response of the metal is
treated within the plasmon approximation. As an application, a model for positron surface states on simple
metals is studied. It predicts the existence of bound positron surface states in Al, Ga, Zn, Cd, and possibly
other high-density simple metals. Further, the resulting localized positron state would have a lifetime 2 to 3
times longer than in the bulk.

I. INTRODUCTION

The long-range attraction between a charged
particle and a semi-infinite medium may in some
cases lead to a bound or resonant state localized
at the vacuum-medium interface. This sort of
surface state has been described as "image-po-
tential-induced" to distinguish it from surface
states associated with energy gaps in the bulk
band structure. Examples are provided by elec-
trons trapped at a liquid-helium surface' or more
generally by surface polarons, electrons bound to
the surface region of a dielectric by coupling to
the phonon fields. ' '

The existence of such states at a void-metal in-
terface has also been proposed"' to account for
the observed sensitivity of thermalized positrons
to voids in irradiated materials. Thus the ano-
malous annihilation characteristics of positrons
in such metals may be due to annihilation from a
trapped state localized close to a metal-void
boundary rather than one extending throughout the
volume of the void.

Calculations of the characteristics of such posi-
tron surface states have up to now concentrated
on using the classical electrostatic form of the
image potential, which assumes the medium to
respond macroscopically and instantaneously to a
time varying perturbation. The problem of includ-
ing dynamic and microscopic corrections to the
image potential was not considered in any detail.
As pointed out by Sak, ' the binding energies of
electrons on a liquid-helium surface (-1 meV) are
so much smaller than the electron excitation en-
ergies (-1 eV) responsible for generating the
image potential that the electrostatic form must
be a very good approximation. For the case of a
surface polaron, however, the particle binding

energies may be of the order or even greater than
the excitation energies of the medium lattice.
Thus the use of the classical form for the part of
the image potential generated by coupling to the
lattice vibrations will not in general be valid. The
situation for a positron on a metal is similar to
that for a surface polaron except that now all of
the image potential is generated by electronic ex-
citations. The most important of these are the
surface plasmons, whose energy is only slightly
greater than the estimated positron binding energy
of a few eV. Thus it is clear that for a positron
surface state one is in a regime where dynamic
image potential effects may be of some impor-
tance; how much so is not clear without further
investigation, which is the object of this paper.

Vfe assume a trial wave function for the particle
localized at the surface region, and minimize the
energy expectation value at the ground state. This
involves the one-particle kinetic and potential
energies and the interaction self-energy arising
from the correlation between the particle and the
metal electrons. The latter will be described by
the plasmon approximation: we account for it in
terms of (virtual) excitations of surface and bulk
plasmons. Our theory is reminiscent of using
variational' methods for a polaron-type linear
model Hamiltonian. The theory for calculating
the self-energy is presented in Chap. 2. As an
application, we describe in Chap. 3 the results of
a calculation for the positron surface states on
simple metals. For these, the one particle poten-
tial is approximated by a pseudopotential that
mimics the effects of the electrostatic surface di-
pole and the repulsion from the ionic cores in the
metal (see Fig. 1).

For this model, we conclude that the dynamic
and recoil effects are by no means negligible: they
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FIG. 1. Schematic one-particle presentation of the surface potentials for a positively charged particle on a metal.
Not that the image potential in reality is nonlocal. The total potential may have a bound state below both vacuum and
bulk levels. This is what we call a surface state.

decrease the binding energy by as much as a third.
In Chap. 3, we also estimate the annihilation rates
for stable surface states. The resulting lifetimes
are 2 to 3 times longer than for bulk positron
states.

Before proceeding to the theory, one or two
remarks about the plasmon approximation should
be made. Because the positron is in a relatively
tightly bound state it is also quite close to the
metal surface, say within a few A. The particle
potential perturbing the medium will have Fourier
components with wavelengths parallel to the sur-
face of this order of magnitude, comparable with
the interatomic spacing. The microscopic di-
electric properties of the medium should thus in
principle be taken into account. This would mean
considering the dispersion of the plasmons and al-
so the coupling of the particle to single-particle

excitations. The response of a metal to a pertur-
bation with a finite wave vector Q parallel to the
surface is, however, still a matter of debate. We
have therefore studied a simple model in which the
microscopic nature of the medium is taken into
account by a cutoff wave vector Q, = &o~/v~ (&u~ is
the plasma frequency and v~ the Fermi velocity
of the bulk electron gas) to the plasmons, the
coupling to the single-particle excitations being
neglected altogether. It should be noted that the
coupling to plasmons contributes the major part
of the random-phase approximation (RPA} corre-
lation potential for a positron in the bulk. ' Qur
assumption of a dispersionless surface plasmon
is consistent with the neglect of particle-hole ex-
citations. Furthermore, the asymptotic limit of
the image potential is correctly given by the long-
wavelength surface plasmons only. "
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II. THEORY

Following the approach of Sak' and Evans and
Mills' to the surface polaron problem the coupling
of the particle to surface plasmons of frequency
00: = &u&/W2 on the metal can be represented by the
Hamiltonian (a.u. )

H=H +H, (2.1a)

(2.1c)

H0= ——,
' V'+ V(z)+ Q (g,(again+ —,'), (2.1b)

~& ~c
1/2

P 8 QIPI ZIQ'P(a + at )s QA Q -Q
@&c

where the particle (effective mass unity) is lo-
cated at r=(p, z), z being the coordinate perpen-
dicular to the surface (surface plane at z =0, area
A). The operator a~@ creates a surface plasmon
of wave vector Q parallel to the surface with an
associated electric potential e '"e'~'. The one-
particle potential V(z) represents the Hartree
field of ions and electrons acting on the particle
when it is inside the metal (z &0). This type of
Hamiltonian has been widely used in connection
with surface problems, e.g. , multiple plasmon
excitation in thin films, ' core level shifts" and
satellite structure" in x-ray photoemission from
absorbed atoms, and also to evaluate the dynamic
image potential for a recoilless particle moving
along a classical trajectory. " The Hamiltonian
(2.1}can be straightforwardly generalized to in-
clude bulk-plasmon excitations; we will do this
later and for the moment discuss the surface-
plasmon part, which in our case is by far the more
important one.

Solutions of Hamiltonians of the polaron type
(2.1) have been reviewed for the bulk case by
Frohlich" and discussed for the surface case by
Sak' and Evans and Mills. By analogy with the
bulk polaron the different'types of solution may be
classified by a dimensionless coupling constant
which is n, = e'(m/25'&o, )'t' for the surface Ham-
iltonian (2.1). Values of the surface-plasmon fre-
quency w, and the coupling constant a, are given in
Table I for some simple metals. The weak coupling
solution, appropriate when 0.,« 1, has been con-
sidered by Sak. ' Although our values of n, are of
the order of unity, we discuss the weak coupling
solution in short because it enables us to make
a connection with an approach to the problem of
dynamic corrections to the image potential used by
Hodges. " That approach uses diagrammatic
methods and the RPA and is therefore exact only in
the weak coupling limit. In this limit the ground
state of (2.1) is described by a wave function in-
cluding at most zero- and one-plasmon excitations.
Its most general form is

TABLE I. Values of the surface plasmon energy Iu,
and the associated coupling constant 0, for simple
metals.

I'~ {eQ

Li
Na
K
Rb
Cs
Mg
Zn
Cd
Hg
Al
Ga
In
Tl
Sn
Ib

5.7
4.3
3.1
2.8
2.5
7.7
9.6
8.0
7.7

11.2
10.2
8.9
8.5

10.1
9.6

1.55
1.78
2.09
2.20
2.33
1.32
1.17
1.30
1.33
1.&0

'

1.15
1.24
1.26
1.16
1.19

~
g) = P(z)+ Q c~ ye(z) e'e ~a&~

~

0}.
Q&Qc

(2.2)

Here we have taken the ground state with zero
total momentum parallel to the surface; ~0} repre-
sents the plasmon vacuum. Equation (2.2} is
analogous to the use of first-order perturbation
theory for the bulk polaron wave function. " Sak'
substituted (2.2) into the Schrodinger equation for
Hamiltonian (2.1) and for the case of weak binding
(the binding energy Es is much less than the lne-
dium excitation energies, see Introduction) db-
Irived the classical image potential and a dynamic
correction term proportional to I/ur, . In fact, this
latter term is the first in a series of corrections
ascending in powers of 1/&u, derived in the RpA. ~

In the present work we est&mate the ground-state
energy vayiationally using (2.1) and (2.2). The
weak coupling condition corresponds to assuming
(2.2} to be already normalized, i.e. ,

In this case minimization of the expectation value
of the Hamiltonian (2.1) with respect to cg, keeping
P(z) and Pz(z) constant, leads to

c@=-(m&uP/QA)' 'M~/(&oP+ 0 Q'+ z@ —z0), (2.3)

and the estimated ground-state energy is

g(0 lu- I'.8 Q
0 0 qA ~ +1q2+ 0 P

&c s 2 Eg 6p

(2.4)

where
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—(y
~

z-Ql el
~
y.-.=(e-.lh( ) i ~;&,..=(e[h( ))e&,

(2.5a)

(2.5b)

(2.5c)

1 82h(z)=-2, + V(z). (2.5d)

The matrix elements in (2.5) involve integrals
over the coordinate z perpendicular to the sur-
face. In principle one should now continue with the
variational procedure by varying p(z) and QQ(z) in-
dependently. In fact we have found it to be a good
approximation to take QQ(z} = Q(z) and then vary
Q ~(see below}. It should be noted that this pro-
cedure leads to the same results as Evans and
Mills' obtained for the ground-state energy using
a wave function containing multiple plasmon exci-
tation. They use the method of Lee, Low, and
Pines' which is valid beyond the weak coupling
limit and in fact provides a reasonable approxi-
mation for the ground state in the bulk up to cou-.
pling constants a, considerably greater than
unity. " In this approximation the surface-plasmon
contribution to the self-energy is

t
Q& [(y [

c-Qisl~ y&P
2 J 1+q/2~, (2.6)

We now proceed to discuss another way to de-
rive (2.6) and to generalize it. This starts from
the Hedin-Lundqvist" expression for the self-en-
ergy operator

e&7lI'(5 P& (2 6)

where translational invariance parallel to the sur-
face has been used to factorize the eigenfunctions;
E„ is the energy eigenvalue of the nth state. The
response function 6V„~/6n can be expressed via
the surface dielectric function gQ(&d)" as

6V„~(r', (u) 1 t,- 1-qQ(ld}, Q. (p g, i
6n( r, ld) 2v 1+qQ((g)

&&
&-Q(l el+la 'I) (2.9)

(2.7}

where E is the energy of the state under consid-
eration, G is the one-particle Green's function,
and 6V„,/6n, the space and frequency dependent
response function. The Green's function for the
surface state may be written

e„*(")e„()

If (2.8) and (2.9) are inserted in (2.7) and the
resulting Z(r', r, E) is applied to a surface state
with a wave vector q„parallel to the surface, the
p' integration can be performed and sets Q=k„+ q~~.

As above, we confine ourselves to states at the
bottom of the two-dimensional band, i.e. , q„, =0.
In that case we fig.d

(ld) Z- Q( I xi+ I I 'll

(z, z, E) —
(2 ), d(o d'Q

1 ( )

4.*(z')4.(z)
~o E„+q'/2 —E+ &d i 6—

(2.10)

To proceed one has to invoke an approximation for
the surface dielectric function qQ(&u), a matter of
continuing interest. In the semiclassical infinite
barrier inodel of a metallic surface, qQ(co) is re-
lated to the bulk dielectric function through the
Ritchie-Marusak" relation. For the latter we
use the Drude formula 1 —&v~2/&d', i.e. , in the
spirit of (2.1) assume the bulk medium to have
single dispersionless excitation frequency co~ up
to a cutoff wave vector q, . The contour integral
in (2.10) may now be evaluated, and one just picks
up the surface plasmon pole to get

~c
g (z~ z E) dqe-Q(lsl+ls'I)

2 gp

s„*(")e.( )
„„1+q'/2(o, + (E„—E}/ld,

'

(2.11)

Taking the expectation value at the ground state
E= Ep gives the self-energy estimate

1 Q~„g I ( Q„l e Q'"I g,&
I'

2 0 „0 1+q /2ld + (E„—Eo)/ld

(2.12}

Upon comparison, [making the identification Q, (z}
= P(z)] the Evans-Mills expression (2.6) is seen
to be the first term of expansion (2.12).

In a full application of this theory, Z, would have
to be evaluated self-consistently with a number of
states Q„(z) and energies E„In the prese.nt case
we have, however, found it to be a good approxi-
mation to consider only the ground state Q,(z) in
the actual calculation; we shall estimate the con-
tribution from states n) 0 in (2.12) to the ground
state by noticing that ~E„~«~E,~. Thus E„can be
omitted from the denominator for n) 0 and the
sum over matrix elements can be performed,
since (QJ is a complete set of states

Omission of higher states from (2.12) is equiva-
lent to setting QQ(z) = p(z) in the variational wave
function (2.2). The wave-number integral of the
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self-energy in (2.6) is limited not only by the cut-
off Q„but also by the matrix elements, which de-
cay from unity for Q values greater than the decay
parameters of the localized state Q. Thus the
magnitudes of 'Z, will be less than —,

'
pn, +„which

would be obtained by integrating just the denomi-
nator up to Q equals infinity. ' However, since the
self-energy will still be a substantial fraction of
&„ it cannot be said that we are truly in the weak
coupling regime. The correction to the normali-
zation of the wave function (2.2) Z o&@ ~

co~' is of
the order of Z, /&e, and not necessarily negligible
(in the application below, Zo&~, ~

co~'=0.2. . .0.5).
In fact for a finite coupling a rigorous application
of the variational principle using (2.2) requires us
to reduce the self-energy (2.6) in magnitude by ap-
proximately the normalization factor I+Zo&~ ~

cc ~'.

Qn the other hand, the generalization of the weak
coupling wave function used by Evans and Mills'
(see also Ref. 14, Sec. IVB) allows a simple ex-
trapolation of the weak coupling result (2.4) to
finite coupling constants, Provided one imposes
the restriction Q@(z) = Q(z).

We complete the theory by considering the bulk-
plasmon contribution to the energy functional. The
fields of the bulk plasmons do not extend into the
vacuum, but if the surface state has an appreciable
overlap with the interior medium, the possibility
of exciting a bulk plas~on must certainly be con-
sidered. From various analysis"" we know that
a substantial compensation exists between the con-
tributions of surface and bulk plasmons to the self-
energy just inside the surface. A particle well
outside the surface layer couples only to the sur-
face plasmons. The strength of the bulk modes,
which are suppressed near the surface region,
where surface modes dominate, gradually take
over deeper inside the metal.

The Hamiltonian linear in bulk-plasmon opera-
tors b;, 5; is readily written as

Z/2

H, = Q, ' e'u' sinq, ze(-z)(bt + b ~),
«c

(2.13)

0 being the crystal volume. The analysis pre-
sented above could be repeated for the bulk term;
the dependence of (2.13) on the perpendicular mo-
mentum q, somewhat complicates the algebra.
However, as it turns out, the bulk-plasmon con-
tribution to the total binding energy is small and
we may do the q„ integration in the self-energy by
neglecting the "perpendicular" cutoff (Q~ —Q')'~'.
This leads to a self-energy formula, which also
could be obtained from an expression for the weak
coupling vertex given by Feibelman et al." An
analysis analogous to that leading to (2.11) gives

the bulk-plasmon contribution to the self-energy,
and the lowest-order approximation yields the ex-
pectation value at the ground state as

Z»= — I dg I
dz

~o
d '/ 0( ) /'

f e( ') /'

8-Ql »-» 'l -Q( I » 'I+ I » I)—8
X

1 + Q /2(d»

(2.14)

Summarizing, the total energy functional to be
minimized with respect to the ground-state wave
function Q(z) is, from (2.5c), (2.6), and (2.14),

E'[P] =z, +Z'+Z' (2.15)

This will be done in Sec. III for the special case of
positron surface states on metals.

III. APPLICATION TO POSITRON SURFACE STATES

0
~ »

~

~~
~~

i

Xe"' (z&0)
e()=

B(z + z,)e 8' (z )0),
(3.2)

and impose normalization and continuity conditions.
In Table II, we give the one-particle energy po

(2.5b), the surface-plasmon self-energy Z', (2.6),
and the bulk-plasmon self-energy Z'» (2.14) corre-
sponding to the optimum parameters p and y for
a number of simple metals. The contribution Z,"~
from the states n&0 has been evaluated by keeping

p and y fixed and approximating E„&,= 0 in (2.12).
No higher-order corrections to Zb have been con-

A. Binding energies

Following the positron pseudopotential idea, ' the
Hartree potential V(z) in (2.1) may be modeled by
a potential step, which we shall place at the image
potential plane z=0, i.e. , V(z) = V,e(-z). The
height of the step may be determined from positron
work-function calculations. "»" This step mimics
the effects of electrostatic surface dipole and of
the kinetic energy of the positron in the interior
metal due to the repulsive ion cores (see Fig. 1):

go=a+ Eo,

where D is the surface dipole, measured from the
electrostatic potential at a Wigner-Seitz cell boun-
dary, and E, is the kinetic energy of the positron
in the discrete lattice. It would be wrong to add
the bulk correlation potential to V(z) because of
the compensation between bulk- and surface-plas-
mon contribution to the correlation just inside the
metal, as discussed above. Instead the correla-
tion, in terms of the coupling to bulk plasmons,
must be considered explicitly as was indicated in
Sec. II. We minimize (2.15) using a two-parame-
ter trial function
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TABLE II. Values of the Hartree potential step Vp, the optimum wave-function parameters
P and y, the one-particle energy &o [Eq. (2.5c)], and various contributions to the self-energy
from variational calculations. Z~ is the first-order surface plasmon contribution [Zq. (2.6)],
Z& the bulk plasmon contribution [Eq. (2.14)], and Z" the estimate of higher-order correc-
tions to &~ [Eq. (2.12)]. &z= —&tot is the total binding energy and Q& is the positron work
function (Ref. 21). All energies are in eV. A stable surface state is predicted for metals
with @~ & Q.

V, P [a.u.] ~ [a.u.] gn&0
S

Stable
surface states

Li 3.0
Na 2.4
K 1.8
Hb 15
Cs 1.2

Mg 5.2
Zn 7.5
Cd 6.3
Hg 5.0
Al 8.2

0.766
0.749
0.755
0.771
0.831

0.634
0.536
0.561
0.644
0.540

0.225
0.200
0.166
0.153
0.132

0.351
0.503
0.432
0.342
0.532

2.56
2 .23
1.82
1,65
1.32

2.86
2.59
2.63
2.87
2.69

-3.86
—3.47
-3.00
-2.84
—2.58

-4.24
-3.93
-3.99
—4.26
—4.02

—0.39
-0.34
-0.28
-0.27
-0.26

—0.46
—0.56
-0.49
—0.45
-0.62

-1.11
—1.10
-1.17
-1.22
-1.37

—0.47
-0.15
—0.23
-0.51
—0.14

2.8 4.4
2.7 4.6
2.6 5.2
2.7 5.4
2.9 5.7

2.3 2.7
2.0 0.9
2.1 1,8
2 4 2.9
2.1 0.7

No
No
No
No
No

No
Yes
Yes
No
Yes

Ga 6.5 0.616
In 5.6 0.644
Tl 4.5 0.732
Sn 5.8 0.664
Pb 4.6 0.759

0.424
0.368
0.297
0.375
0.300

3.02
3.01
3.11
3.17
3.27

-4.43
-4.41
-4.48
-4.50
-4.65

-0.56
-0.50
-0.48
-0.54
-0.52

—0.34
-0.47
-0.85
-0.51
-0.94

2.3 2.0
2 4 2.6
2.7 3.5
2.5 2.7
2.8 3.8

Yes
No
No
No
No

sidered. The total binding energies Ez = -(q, + Z,
+ Z,) are also given. Surface states can only occur
if the binding energy E~ relative to the vacuum is
larger than the positron work function P~. In Ta-
ble II, we give values of Q~ calculated by Hodges
and Stott." Comparing our results with those of
the simple static potential model" we find that in-
cluding corrections to the classical image poten-
tial reduces the binding energy relative to vacuum
by 15 to 30/0. According to this calculation, sur-
face states would be stable in Zn, Cd, Al, Ga, and
possibly In and Sn of the simple metals.

B. Lifetimes

It is clear that if the positron really annihilates
from the surface state of this sort, characteristics
such as the lifetime should show a saturation effect
becoming constant for void sizes larger than a
few A. We have estimated the lifetime corre-
sponding to a large void limit in two different ways.
The positron annihilation rate is for the surface
state

Within the plasmon model, hn(p, z) can be writ-
ten in terms of the surface- and bulk-plasmon
fluctuations as

z/2
Sn( p, z) = e'~' ' U„(z)(ay+ at@)

Q&Q~

, p(~,(Q'+~.*))'*

+A. + A.„ (3.5)

where A. , is the rate due to the static profile in
(3.2), and

dz z 'U, z d

& U„,(q. , z)(b;+ b';), (3.4)

where b; creates a bulk plasmon with an associated
density oscillation U„,(q„z)= e(-z) sinq, z, U„(z)
is the surface-plasmon density fluctuation. In-
serting (3.4) into (3.3) together with the wave func-
)ion including surface- and bulk-plasmon excitations
yields the weak coupling result

A. =pa' dr r ' n, z +An p, z (3.3) (3.6)

where n is the fine-structure constant, n, (z) is the
static electron density profile at the surface, '4 and
hn(p, z) is the screening charge density due to the
presence of the positron.

~s Q~ (Q~-0 &
[ ~(q }P

5Q Q 9 qg I+ (q2 2)/2

(3.'I)
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TABLE III. Estimates of lifetime enhancement factors
for surface states. &3p and ~b„are the surface- and
bulk-plasrnon contributions to the total annihilation rate
A, within the random-phase approximation [Eq. (3.5)],
and ~& is the corresponding lifetime enhancement for a
surface state. ~LD is the enhancement from the local
density approximation (3.11) for the annihilation rate.

~LD

Zn
Cd
Al
Ga
In
Sn

0.49
0.52
0.45
0.46
0.48
0.42

0.02
0.03
0.02
0.03
0.04
0.04

3.0
2.3
3.2
2.5
2.7
2.1

2.3
1.9
1.8
2.0
2.2
1,8

are the surface- and bulk-plasmori contributions
to the annihilation rate. Above, M(Q) is given in
(2.4), and

W(q, }=(Q
~

e"~*sinq, z 8(-z)~ Q}. (3.8)

It may be recalled that the bulk-plasmon coupling
vertex" used above to derive (2.14) corresponds
to neglecting the cutoff (Q2 —Q')' in the q, inte-
gration of the self-energy integral. We keep the
cutoff here because the annihilation rate may be
more sensitive to it. The density oscillation
U„(z) of a surface plasmon is localized at the
surface region; we choose to approximate it as

dn, (z)
U.,(z}= (3 q)

S~- Xb ib/&. (3.10)

In Table III, we give estimates of the enhancement
factor S~ for Zn, Cd, Al, Ga, In, and Sn computed
from Eqs. (3.5)—(3.10). We also give the relative
contributions of surface and bulk plasmons to X in
Eq. (3.5). As for the self-energy, the bulk-plas-
mon contribution is again seen to be clearly the
smaller one.

The above estimates of the lifetime enhance-
ment ignore the nonlinear response effects, which
become very important at the density range of
interest, and also the core electron contribution.
to the annihilation rate, which may be quite size-
able. Furthermore, the approximation (3.9} to the
surface-plasmon field is quite arbitrary. Thus we

All the metals which we, according to the ener-
getic considerations, expect to have surface states
have fairly high electron densities and thus the
ylasmon approximation underestimates the absolute
annihilation rate A.„„»in the bulk by a factor of
roughly 2. Thus it is more appropriate to consider
the relative lifetime enhancement for a surface
state, defined as

have thought it advisable to obtain another esti-
mate of S using a local density formula

ALn =
~t dz I'{n,(z)}

~
Q(z) ~', (3.11)

where I'(n} is the annihilation rate" in a homo-
geneous electron gas of density n. To account for
the core electrons, we have used the recipe of
West" by renormalizing the static profile n, (z)"
in (3.11}to

n, (z) (z&0)

n, (z)+(r,/1„)n,(- ) (z&0), (3.12)

where I',/I'„ is the probability ratio of core and
valence annihilations. "

The bulk Xb» is calculated from an analogous
formula, and the enhancement estimates, denoted
by SLD, are given in Table'III. It must be noted
that the expression (3.11) corresponds to the case
where the positron carries its screening cloud
across the surface, the lifetime going the spin-
averaged positronium limit with decreasing elec-
tron density.

The experimental data on lifetime enhancement
is still scarce: of the metals considered here
Petersen et al. ,

"report S= 3.0 for Al. For the
transition metal Mo, S=4.0."

IV. DISCUSSION

One of the motivations for this work was the
question whether dynamic and microscopic correc-
tions to the classical image potential could make
the particle surface binding much weaker than an
adiabatic calculation would suggest. We have,
therefore, tried to obtain a lower bound to the de-
gree of binding to the surface. For example, the
variational principle has been used throughout and
any coupling to the single-particle excitations
which could only increase the binding energy have
been neglected. The question of a possible dis-
placement of the effective image potential plane
into the vacuum, "which would also lower the en-
ergy, ' has again been disregarded. A variational
upper bound on the ground-state energy is provided
by an analog of the formalism of Evans and Mills, '
which neglects the response of the medium to par-
ticle motion perpendicular to the surface, but takes
into account the multiple plasmon excitations im-
portant at finite coupling constants. It should be
noted that although the Evans-Mills formalism
goes beyond the weak coupling wave function (2.2),
it still gives an energy linear-in the coupling con-
stant. It therefore does not include any of the ef-
fects on nonlinear response, which are known to be
important for the positron annihilation rate and
correlation potential in the bulk. " According to



P I, AS MON MO DE I. . FOR IMAGE-POTENTIAL-IN D UCED. . .

Frohlich, '4 terms nonlinear in the coupling con-
stant 0., only become important for polaron Ham-
iltonians of the type (2, 1) at values of n, &6, i.e. ,
much larger thap those that apply to the present
case. For positrons, however, the nonlinear re-
sponse is provided by coupling terms quadratic
and higher order in the plasmon operators a~ and

5;, ' whichare neglected when oneattempts to treat
the positron electron gas coupling by a linearized
interaction as in (2.1) or (2.13). Once again, the
inclusion of nonlinear response could, as in the
bulk, only serve to increase the positron metal
binding. Also it may be noted that nonlinear effects
are likely to be less important at the surface than
in the bulk because the interaction there is, on the
average, weaker.

For positron surface states, the proper evalua-
tion of the image interaction is important. Our
results suggest that a simple static approximation
overestimates the binding energy by up to a third.
There is good evidence for positron surface states
in Al"" and in Mo. '9 On the basis of our calcu-
lations we would expect similar states to exist in

Zn, also in Ga and Cd, and possibly in Mg, In, and
Sn, but not in the alkalis or Hg, Tl, and Pb. If the
present model was extended to the transition met-
als, some of which have fairly well-defined sur-
face plasmons, we would expect to find a whole
host of materials where positron surface states
exist. This comes about mainly because the tran-
sition metals have generally low and in some cases
even negative positron work functions. "

Much of the basic evidence of positron surface
states comes from the huge lifetime increase
which clearly distinguishes these states from any

other defect-induced levels. Using two different
ways of estimating the annihilation rate, we pre-
dict the localized surface state on the simple
metals mentioned above to have a lifetime 2-3
times longer than a bulk propagating state.

Some words concerning the reliability of the
numerical results obtained are in order. Although
we do not find the binding energies or lifetime en-
hancements to be very sensitive to the plasmon
cutoff Q, (another "natural" cutoff is provided by
the spatial extent of the state), the basic crudeness
of the model must be kept in mind, and any num-
bers should not be taken too literally. The stable
surface states predicted are fairly localized, and
thus, details of the electronic and ionic structure
at the surface region may become important.

We have concentrated on assessing the impor-
tance of nonadiabatic effects within a simple ap-
proximation for the responding electron gas. The
underlying lattice and the static surface proper-
ties are included in a very approximate manner.
Also our plasmon approximation is questionable
for a very localized state. A better theory should
incorporate a more realistic description of the
surface structure and of the excitation spectrum
of the metallic electrons. The latter can, in prin-
ciple, be included in the present theory by using a
better surface dielectric function in calculating the
self-energy.
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