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Theory of surface effects in binary alloys. I. Ordering alloys
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A theory of the (110) surface concentration and short- and long-range orders for an AB body-centered-
cubic alloy is presented. It is based on a model consisting of pairwise interactions between nearest-neighbor
atoms only. The entropy is calculated in the pair approximation following Kikuchi s method. It is found that
depending on the values of the interaction parameters (a) the surface concentration decreases monotonically
as a function of temperature from 100% of one component at T = 0 to a random mixture as T—+00, or (b)
it increases from a perfectly ordered AB layer of equal concentration of either component to a maximum
concentration of one component at the order-disorder transition temperature T, and then decreases again to
the disordered AO, BO& alloy as T~co. Long-range and short-range order parameters as functions of
temperature are also discussed.

I. INTRODUCTION

Order-disorder transformations as well as con-
stitutional short-range and long-range orders in
binary alloys are some of the classical problems
in materials sicence. . But, although copious data
for the bulk are available, the amount of informa-
tion on the phenomena as they apply to the sur-
face is considerably smaller. In fact only a few
special cases have been investigated. '

It is well established that, in general, the chem-
ical composition at the surface differs appreciably
from that in the bulk. ' ' But the effect of the or-
der-disorder transformation on the surface con-
centration and properties has not been investigated
experimentally. In particular the variation in
composition. and short-range order at the surface
should be paramount in understanding the catalytic
behavior of alloys" as well as other chemical
properties. .It is the purpose of this paper to ex-
amine theoretically such problems.

With this in mind we choose the simplest pos-
sible model: we describe a binary A„B, „alloy by
a superposition of short-range (nearest-neighbor-
only) pairwise interactions. These are defined by
three parameters U», U», and U» which give
the various pair energies. We then minimize the
total free energy of the system after the internal
energy and the entropy are calculated in some ap-
proximation.

If the heat of mixing

~= U»+Usa —2UAa

is positive, there is a net attraction between un-
like atoms and the alloy tends to develop long-
range order. If 5 &0, then A. and jg atoms tend to
repel one another and the system tends to segre-
gate into two separate phases. In this paper, we
discuss in detail the surface properties of the or-
dering alloys (g &0) and the following papers is

concerned with the segregating alloys.
The surface behavior of the alloy is of course

intimately connected to the behavior in the bulk.
The theories of the order-disorder transforma-
tions in bulk are almost exclusively concerned,
within the simple nearest-neighbor only pairwise
interaction model, with the calculation of the en-
tropy of the system. The simplest approximation,
the so-called single-site or Bragg-Williams ap-
proximation, gives already qualitatively correct
results in most body-centered-cubic (bcc) and
face-centered-cubic (fcc) A„B, „alloys, 'o except
that is predicts a second-order transition for a
fcc A«B, 5 alloy and a first-order transition is
observed experimentally. '

The first improvement on the Bragg-Williams
approximation is the pair approximation, also
called the Bethe or quasichemical approximation.
It improves considerably the quantitative results,
but it still fails in predicting a first-order transi-
tion for the fcc A, ,B» system. "

Kikuchi" has developed a method to analyze
systematically and by successive approximation
thp entropy required in the study of order-disorder
transformations. In particular, in the first two
orders of approximation Kikuchi's method re-
produces the Bragg-Williams and the Bethe re-
sults, respectively.

'To study surface properties, the Bragg-Williams
theory has been successfully applied to describe
long-range order transformations in Ao 75BQ 25-

type alloys. " Short-range order theories and
segregation studies at high temperatures have also
been presented. ""On the whole, however, there
has been no theoretical study of surfaces which in-
clude short-range and long-range orders as well
as concentration changes over the whole range of
temperatures. We present here such a theory as
applied to the A, sB, s bcc lattice, with a (110)
surface and by means of Kikuchi's method. The
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theory and calculations for ordering alloys are
described in Sec. II and the results are discussed
in Sec. III. Details of the method are presented in
Appendixes A and B. The following paper' studies
in a similar way a (111)surface of an fcc crystal
for a segregating alloy.

The internal energy U is given by

2 ~ (+AA~AA +ABUAB +BB~BB)i (2.6)

where g is the number of nearest neighbors and
hf» is the total number of I-J bonds. With the
probabilities given in Appendix A, we can write

U(o) =U(0) +-,'ZXx(1 -x)oW. (2.7)

~RA PA. B +PBA +PBB (2.1)

and the average concentration x of species A is
given by

H. CALCULATION AND RESULTS

A. Bulk properties

In order to describe long-range order, the bcc
lattice is subdivided into two equivalent sublat-
tices, o, and p. The n sublattice consists of all
corner sites and the p sublattice of all the body-
center sites. All n sites have P sites as nearest
neighbors and vice versa. In the perfectly or-
dered case of the A, p 5Bp 5 alloy, all z sites are
occupied by A atoms and the P sites are occupied
by 8 atoms. In the completely disordered case,
the probabilities to find an A atom in the o and P
sites are the same.

In bulk, there are four site probabilities p„,
p„, p~, and p~ and four pair probabilities p„„,
P„~, p~„, and p~a. The symbol pI denotes the
probability of finding an I atom in the p sublattice
and pz~2 is the probability of finding an IJ bond
with the I atom in the ~ sublattice and the J atom
in the P sublattice. The pair probabilities are
normalized by

Here N is the total number of atoms. For the en-
tropy we use Kikuchi's expression" for the pair
approximation (see Appendix B). With the use of
(2.7) and (Bl), the minimization (2.5) is straight-
forward. It should be noted that, since U as given
by (2.7) is independent of q, the second equation
(2.5) gives a unique (parameter independent) rela-
tionship which yields g as a function of g and 0.

For the Ao 5&0 5 alloy, we obtain a second-order
transition, with a temperature T, given by

(2.8)

At T =T„ the short-range-order parameter is

(2.9)

These results are, of course, those obtained in
the quasichemical or Bethe approximation. '0

8. Surface properties

We classify the atoms in the crystal according
to the (110) planes n they belong to in order to
study the surface properties. Plane n =0 cor-
responds to the surface layer. We introduce four
site probabilities per plane g'.

p,'(n), v= u, P, I=A, I3.

2 ( PAA PAB PBA) ' (2.2) We also define four intralayer pair probabilities

We define the long-range order parameter g and
the short-range order parameter 0 by

QB 0.'g 1
PAA PAB x+ 2 (2 8)

BE BE
a 'Bn ' (2.5)

(2.4)

By means of Eq. (2.1)-(2.4) it is possible to write
the pair and site probabilities as functions of the
alloy concentration x, the long-range order para-
meter g and the short-range order parameter o.
This ls done ln Appendix A. The equilibrium
values of g and 0, for a given concentration ~,
are obtained by minimizing the free energy E
=V -TS with respect to 0 and g.

(~AA UBB) /(UAA UBB ~AB) (2.10)

If in addition we take all pair energies to be in-
dependent of the layer location, i.e., no major
surface rearrangement, we can write

P,"22 (n, n), I,J=A,8'
and eight interlayer pair probabilities

pp,~(n, rn), p,',"(n,n2) for I, J=A, B

(n, m are adjacent planes). They can be defined in
terms of a layer concentration z„, a layer long-
xange order parameter g„, and intralayer short-
range order parameter 0„„, and two interlayer
short-range-order parameters O„and 0„8 . This
is done in Appendix A.

In order to calculate the internal energy, it is
useful to define the dimensionless parameter ~:

U=const+XWg {-,'S,[x„'+x„(n,—1) ——,'a+x„(1 —x„)o„„]
+~ |[xnxn+ |+2( x,+ x,.i)(+ —1)—2 ++ xn(1 - xn ~) on(n i)]] (2.11)
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In (2.11), Gris the number of atoms per layer, Zo
is the number of nearest neighbors to each atom
within the same layer, and Z, is the number of
nearest neighbors to one atom which are in one of
the adjacent layers. When Kikuchi's entropy ex-
pression, as applied to layered structures is in-
cluded [see Appendix 8, Eq. (82)j, we may once
again determine the equilibrium values of the con-
centrations x„and the order parameters, g„, o„„,
o, and a„by minimizing the resulting free-en-
ergy expression with respect to all these. The
condition of chemical equilibrium imposes the
constraints"

—ho

-—1.0

Xp

0.5

0 ho

—(all other x„constant) = (bu]k)
az

8x~ ax

which yields the values of x„.

C. Resultsat T= 0

(2.12)

—h, p

~oo

0 h, o

At zero temperature, through long calculations
it is possible to prove in a rather straightforward
way that only the surface layer can be, at equilib-
rium, different from the bulk. If the bul. k para-
meters are z, g, and g, only xo may be different
from g, only go may be different from g, and only

Goop o oj and 0 py may be different from o . In parti-
cular, the values which minimize the free energy
are —h, o 0 Ao

-x, /(1 —x,), x, ~ —,',
O'no =

—(1 —xo)/xo, xo ~ —,',

~a
l. g n Bx I

& +0
&oz a &&oj. +&oj.~

-(1 -x,)/x„x, o- -', .

(2.13)

(2.14)

FIG. 1. Surface concentration xo, the internal surface
short-range order parameter ooo, and the interplane
short-range order parameter ao~ as a function of 4:—(Ugg —Ugp)/(U~~+ Ugg —2U~g). The discontinuities take
place at + A„where 60 —= (Z —Z~)/Zg, Z is the number of
nearest neighbors inthebulk, and Z~ the number of near-
est neighbors to an atom in a plane adjacent to it. For
the bcc materials and the (110) surface &0= 3.

The values of x, are determined from (2.12). The
results are shown in Fig. 1. For values of 4 such
that -Ao ~L «~„where

~,=(z -z,)/z, , (2.15)

there is no difference between surface and bulk,
g.e.)

l.
&o —z y &oo —

aors
—-~ 'Oo= I ~

For A & Ao, xo takes the value +1, and for ~ & —~o,
go=0. In other words, the surface layer is made
of atoms of only one species, either pure A if U»
&U»+LoS' or pure B if U»&U» —Dog. In either
case ooo = go = 0.

D. Results at finite T

The details of the minimization of the free energy
at finite temperature are given in Appendix B. The
resulting transcendental equations are solved
numerically. For simplicity, and based on the re-

suits at T = 0, we have taken only the surface layer
to have concentration and-order parameters which
differ from the bulk values. The results for dif-
ferent temperatures and values of ~ are exhibited
in Figs. 2-5. Figure 2 gives values of xo as a func-
tion of s for various temperatures, while Fig. 3
gives xo as a function of T for various s values. A
similar pair of graphs for goo and go are given in
Figs. 4 and 5; in the last case we also plot the bulk
values 71(T) and o(T)

HI. DISCUSSION

By means of Kikuchi's method and the pair ap-
proximation, we have developed a theory for the
surface effects on the order -disorder transforma-
tion and applied it to a bcc (A, ,&») alloy. This
type of superlattice is very common. Typical ex-
amples" are CuZn, AuCd, A1Ni, NiZn, LiTl,
FeCo, etc.



&8

c 09

0.8—0
U
L

e 0.7—
'V

0~ 0~—
T:- 5TC

T= ROTC

FIG. 2. SurF . . ur ace concen-
ration x as a function of

4 for the (110) face of a
bcc material d
ous tern
bc an for vari-

emperatures T
th rder-disord ter ransi-
txon temperature.

THEORY OF SU RFACE EFFEC TS IN BINARY ALLOYS. I

I

~ ~ ~ ~

I

+T=Tc&3 - T = &Tc~3

2.0
l

4.03.0

lue

&max —2+ gg ~1

at the transition tern ermpera, ture T and th en it de-

(u„„-u
e main effect, i.e., the se segregation at th

cRused iD t
e

his model by the reductio

the surfa. ce. Th m is here
i cooi"din R

ion

e system is there
OIQS. Rt

o w ich the br on riose atoms for h

u er atomic plan
roken bonds contri

at th
o . riving parameter

energies (U~~ —Uee) ol', nlor
e bond

8

f th t th
fex'eQ

e surface la er
rent concentrat ioD RQd order

yer might hav d'fi

occurs at 4&4
er than the bulk T '

o, where A a
his

pends only on con coordination ar .. orn co parameters. For 0
ur ace concentx ation ' i

e Q1RXin1uIQ VR

creases slowl tOg=z RST For a =Z ihoO

c and equal to 0.75 for 0
ecreases at higher ten1peratu

call
o~ e CODCentrat ion deere

ure8.
ases monotoni-

ransition temp
en inuous slope at th

of Fig. 3. Our th
own in the inset f'

r eory predict
e igure

r ic s that concentration

b„~ of the order of 1

e
sen near the transiti

0

these effects shou
sm l values of Z (a~ 0.12). Al

e

T
imentally observable. ,

a.re -1 and 1 re, respectively, for

h era ures, the order decreases
y Rs R.fuQction of Qo A, as seen in F

emperature
ig. 4.

and the long-
, the surface sh t

-range orders dec
s ort-

maximum and th
zero at 7 =0 u

rRQ e

z — up

ge order vanish" es at the co
again. The long-

ommon transition

l.o

0.9

~
0— 08
O
L

~~ 0.7—

o os-

0.5
0 c 2o 3o

ernperafure, kT/ W

FIG. 3. Surface co
eratu

conc entr ation
face of af th (110

&on of tem-

ous values of 4
a bcc material d

p-
a ' an for vari-

1.0
I

~ ~l

T=T /3~
I

T = 2Tc/3

0 ——
I

~aa rgb~

~
~~

~oo

0
1.0

Lon g range order
70

Short range order

I

5.04.02.0 3.0

FIG. 4. Surface

6.0

og-a e
1 f h

0

t' "'tu .
"' ""' iace o a bcc material

er parameter for a

a ures.
ion o E and for

110)
or vari-



J. L. MORA%-LOPEZ A WD L. M. FALICOV

1.0

4 0.8
U

0.6

O)
0.a0

0.2
0

0
o —1.0

b
~ —0.8I0
g —0.6
Q)
CQc —04—
0
~ —0.2—
0

0
0 0.5 1.0 1.5 Tc 2.0

Temperature, kT/W

FIG. 5. Bulk (q) and surface long-range order para-
meters qo and the bulk (g) and internal short-range order
parameter 0.00 for a (110) surface of a bcc material as a
function of g and for various values of D.

temperature T, given by (2.13). The short-range
order at the transition temperature is finite and
decreases as a function of ~ as shown in Fig. 5.
For comparison we show also in Fig. 5 the tem-
perature dependence of the bulk short- and long-
range orders. In bulk as mell as at the surface the
derivative of the short-range-order parameter
with respect to temperature has a discontinuity at
the transition temperature T, .

Results for segregation parameters obtained from
regular solution theory"" are valid only at high
temperatures where the system can be assumed to
be completely disordered. At lorn temperatures,
these theories yield wrong results. Recently" the
surface properties of FeCo systems were investi-
gated experimentally at temperatures below the
order -disorder transition temperature, It is
found that the segregati. on values calculated from
the regular solution theory do not agree with the
expe rimental re suits.

A better description of the system is achieved by
the Bragg-Williams theory applied to the surface, '
where long-range order is included. Homever, this
approximation gives a relative high transition
temperature (kT, /W= 2) as compared with the
series-expansion transition temperature
(kT, /8'=-1. 587), and the results for segregation at
T &T, would be the same as those in the regular
solution theory.

Theories for segregation taking into account only
short-range order have been also presented. "'6
These theories for T & T, give a better description
of the system than the regular solution theory and
the Bragg-Williams theory, but are not valid for

T (T~.
The theory presented here, including short- and

long-range order is valid over the whole tempera-
ture range. The transition temperature in this
approximation (kT, /W= 1.738) is better than in the
BrRgg -Wllllam s approxlm ation.

The extension of the theory to a higher approxi-
mation (the so-called tetrahedron approximation")
is straightforward. More accurate values for the
surface concentration, short- and long-range
orders at T &0 should be obtained but no nem fea-
tures are expected. At T =0, the results are the
same, since the internal energy depends only on
the pair probabilities.

We have studied only the (110) surface. In gen-
eral, for other surface orientations which have
other coordination parameters pp Rnd- g„ the re-
sults could be very different. In particular, if
either Z, or P, is zero the theory should be re-
formulated.

Nonetheless we believe that with the present
calculation, and within the validity of the pairwise
interaction model (with nearest-neighbors only)
me have obtained general qualitative results which
are found experimentally. For instance Nakamura
and Wise" find that in FeCo, at T=600 K, the
surface (which is of unspecified orientation in their
sample) has a Fe concentration of 0.75. Since

T, =1250 K, this would place our parameter 6 at
approximately 3 if the surface were of the (110)
orientation. From thermodynamic values, A can
be estimated to be 1.9, which would indicate
either a different surface or the type of accuracy
expected from our model.

Extensions of our theory are possible in many
directions: (i) better approximations for the en-

tropy"; (ii) change of the U», U», and U„s
parameters at the surface caused by the very exis-
tence of the surface and the atomic rearrangement
in its vicinity; (iii) extension to neighbors other
than the first; (iv) inclusion of other effects, such
as conduction electron contributions and screen-
ing, which mould make the two-body pairwise in-
teraction inadequate.

We are grateful to Professor H. Wise for com-
municating his results prior to publication and for
a lively discussion. One of us (J.L.M. L.) wishes
to acknowledge the financial support of CoNaCy T-
CIEA del IPN (Mexico) in the form of a Post-
doctoral Fellowship. Work supported in part by
the National Science Foundation through Grant No.
DMB 78-03408.
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APPENDIX A

In the bulk the pair probabilities can be written

p„"~s = x'+x(l —x)a,

p„",'= x(1 - x)(1 -a)+ -.'q,
Pg„' = x(1 —x) (1 a—) ——,

'
rl,

pcs = (1 -x)'+ (1 —x)o .

(Al)

(A2)

(AS)

n ng ng
~A ~ AA PAB

PA ~A A PBA
8 ng ng

PB ~BA+PBB ~ ~ 2 0 ~

PB PAB PBB + 2 6'8 ng ne

(A5)

(A6)

(A7)

(A8)

The site probabilities are obtained from the pair
probabilitie s

P„"„'(n,rn) =x„x +x„(1—x )a„+—,'rl„,

p„"3(n,rn) =x„(1—x )(1 —o„"),
P~„(n,m) = (1 —x„)x„-x„(1—x )o„„

—2(r)„+rl ),
p,",'(n, m) =(1 -x„)(1 „)

+ x„(1—x„)a„+—,
'

r)

p„„"(n,m) =x„x +x„(1 x„—)a8

p„rr (n, m) = x„(1-x )(1 -o 8 ),
p~~„(n, m) = (1 —x„)x„—x„(1 —x )a„8

+2(n. +n.),
p "(n, m) =(1 —x„)(1—x„)

+x„(1—x )a~

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)
The range of possible values for g and. g are

—x/(1 —x) &a &0
1~&2,

0 ~~ 'g ~ 2x
(A9)

a" =1 [p„"~8(n,m)/x„(1-x )] (A27)

The short-range-order parameters a„and o, ~

are defined by

(1 -«)/x &a &0
X ~ g ~

0 &r7 &2(1-x)
(A10)

a„' =1 —[p„"~~(n,m)/x„(1-x )]. (A28)

For the surface studies the four site probabilities
coresponding to the plane a~are

An average short:-range-order parameter be-
tween the nth and the rnth layer can be defined by

p„"(n) = x„+—,
'

rl„,

p„'(n) =x„——,'q„.
pg(n) = 1 —x„—2rl„,

p~8(n) = 1 —x„+

The four intralayer pair probabilities are

p„"„'(n,n) = x'„+x„(l —x„)a„„,
p„"~~(n, n) = x„(1—x„)(1—o„„)+ —,'q„,
pcs(n, n) =x„(1—x„)(1—a„„)—2 rl„,

pg ~~(n, n) = (1 —x„)'+x„(1—x„)a„„,

The eight interlayer pair probabilities are

(Al 1)

(A12)

(A12)

(A14)

(A15)

(A16)

(A17)

(A18)

(A29)

APPENDIX B

Kikuchi's expression' for the entropy in the pair
approximation is

s = kyar
~

—(z —1)Q p,
" tnp",——z Q mrs lnr rs ),f1 „„1

I,v I/'

(Bl)
where N is the total number of sites in the crystal.
The first term corrects the overcounting of con-
figurations which appears in the second term.
This formula, when extended to a layered struc-
ture, reduces to

$=kg Q[~ (Zo —1)Lr (0)+ 2Z~Lr'(1)] —Q{2ZoLqg(0, 0)+ 2Z~[Lq~~(0, 1)+L~~~ (0, 1)]j
I~ v I, J

+Q
I

Q[-,'(ZD —1)L,"(n)+ ,'Z, L,'(n+1)+-,'Z, L-,"(n —1)]
n=1 ~ I,v

—g [2ZOLzz (n, n)+~ZrLzz (n, n+1)+ 2Z~Lz~z"(n, n+1)]
~

I,J' j
(B2)

In all these equations n labels the layer,

rr=n, P, I,J=A, B;
L,'(n) =Pr (n) lnPr'(n),

Lzz~(n, m) = pzz~(n, m) lnpzz (n,m)—
(I)
(B4)

& is the number of sites per layer and %Vhenthe free energy I =U —T$ is written with U
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given by (2.11) and S is given by (82), minimiza-
tion with respect to the O.„„parameters yields

P~es(n, n+1) Pe~s(n, n+1)

g p„,'(n, n) p,„'(n, n)
yT p„"„'(n,n) p,",'(n, n)

Minimization with respect to en n+ &
and gn n+

yields

W P~ss(n, n+ 1)P»s "(n, n+ 1}
kT P„'~(n, n+1)Psss(n, n+1)

(87)
and, with respect to g„, it gives far n = 1, 2, 3.. .

~l 1)ln pg(n)pf}(n) lg ln pcs(n n) lg ln ps'(n n+1)peg(n n+ 1)
p„(n) ps(n) ' ' ps„(n, n) ' ' ps„"(n,n+1) p„"„"(n,n+1)

and for n=0

pse(n —1,n) ps„"(n —1,n)
Ps„'(n —1,n) Psss(n —1,n)

(88)

'(Z +Z 1}ln p~(0)pe(0), » p»(0&0), &» p»(0& ) p»(0&1)
„"(0)p (0) p"s(0, 0) ' '

p s(0, 1)ps (0, 1) (89)

Equations (85)-(89) give all o's and q's in terms of the z„(n =0, 1, 2, . . . ) and T. The concentrations z„are
then obtained from the chemical equilibrium conditions (2.12).
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