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The response of an fcc crystal to unconstrained [I10] uniaxiai loading has been studied theoretically.
Numerical calculations were made of load, stress (cr»0), lattice parameters„and elastic moduli (C„,) along the
primary loading path, and the domain of M stability (as defined by Hill and Milstein) was determined. The
crystal model was that used by Huang et al. to study the shear of a crystal. In tension, the limit of M
stability was at the maximum load (with corresponding o»0 ——8.78 && 10' dyn/cm' at a strain of 7.5%%uo, these
values are comparable to other estimates of the "theoretical strength" of crystals, including experimental
values of whisker strengths). The domain of M stability in compression was remarkably large, and the
magnitude of o.»0 in compression at the limit, of M stability was about 100 times the maximum tensile stress.
With very large compression, the Poisson's ratios along the two principal axes normal to the load
approached zero, and the lattice tended to arrange itself with successive planes in a particular "two-
dimensional close-packed relationship. " This latter tendency, in a sense, can "explain" the difference in

algebraic sign of the Poisson s ratios along the principal axes normal to the [110] direction in some fccicrystais.
In elongation, the primary equilibrium path intersects the path corresponding to unconstrained [100] uniaxial
loading of a fcc or bcc crystal at the invariant eigenstate C22 C23 The Poisson s ratios approach infinity as
this state is approached along a primary equilibrium (but unstable) path. Such studies of crystal response are
of interest in a variety of applications, including, possibly, martensitic transformations,

I. INTRODUCTION

Previous papers have reported, in detail, the
theoretical response of ideal simple crystals to
[100]uniaxial loading's and to shear forces applied
to the (100) plane in the [010]direction. ' In the
present paper we give a detailed account of the
theoretical response of an fce crystal to [110]
uniaxial loading. In order to perform numerical
calculations, a relatively simple model for inter-
atomic interactions in the crystal has been em-
ployed. Nevertheless, the results have exhibited
a variety of interesting behaviors (not all of which
could have been anticipated beforehand) and there-
by provide insights into the nature of possible phe-
nomena during homogeneous, large strain defor-
mation of crystals.

These studies are of particular interest in appli-
cations to systems in which large, elastic (but not
necessarily linear) deformation may occur, i.e.,
in cases where large deformations may occur eith-
er without significant dislocation movement or
before deformation by dislocation movement be-
comes dominant. Relevant examples may include
(i) deformation of whiskers, (ii) martensitic trans-
formationS, (iii) very rapid shock deformation
(e.g. , if the rate of deformation is greater than the
dislocation velocity), (iv) powder technology and
size reduction (e.g., the "theoretical strength" of
solids forms a basis for calculating the efficiency

of grinding processes), and (v) mechanical prop-
erties of small structures such as metallized in-
tegrated circuit structures (presuming that regions
relatively free of defects can occur).

II. CRYSTAL MODEL

The potential energy of interaction Q(&) between
any two atoms in the crystal is assumed to con-
sist of an attractive and a repulsive term, each of
which depends exponentially upon interactive spac-
ing &. In Ref. 4, explicit functions @(&)were deter
mined for a number of cubic crystals (from the
stress-free lattice parameter and elastic constants
C„andC») and the applicability (and limitations)
of such a model was discussed. Subsequent stu-
dies" of the response of a crystal to selected
modes of loading employed the particular set of
functions Q that were determined' for the element
nickel for the reasons that (i) among the fcc metals
which were examined, Ni comes closest to obeying
the Cauchy condition C» =C«, (ii) reasonably good
agreement was obtained between theoretical and
experimental pressure-volume relations in the
region of anharmonie behavior; (iii) the theoretical
model exhibits a reasonably accurate stress-strain
curve in the linear region (since experimental
values of elastic moduli were used to determine
the atomic parameters defining Q). Included in
this set of functions Q were both short-range,
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steep functions and long-range, shallow functions.
For example, in the "steepest" potential Q em-
ployed in the calculations, about 92% of the co-
hesive energy per atom in the crystal comes from
nearest-neighbor interactions and less than 0.1%
from, say, all of the sixth- or seventh-near-
neighbor interactions; whereas in the "shallowest"
potential, only about 51' of this cohesive energy
can be attributed to nearest-neighbor interactions,
while as much as 3.1% comes from seventh-near
neighbors. Nevertheless, the model was found to
be self-consistent in the sense that the response of
the crystal, even after very large strains, was
found to be surprisingly insensitive to the details
of the function P (assuming, of course, that the
same empirical data were used to specify each
function Q in the set).

In view of these considerations, calculations in
the present study are carried out using one of the
functions Q employed in the previous studies. "
We arbitrarily selected the particular function for
which the repulsive exponent is twice the attractive
exponent (often referred to as the Morse function),
V1Z.

y(r) =D(e 'n&~-~0& 2e "'" "o')

with D = p.350 59x 1p '2 erg, mao = 8.766p, and
&0/a' =0.7172"/; the value of the stress-free lattice
parameter a =3.5238 A.

Because of the simp1. icity of the crystal model,
we are more interested in exploring the qualitative
or semiquantitative behavior of the crystal than in
presenting the specific numerical results. Never-
theless, since the numerical parameters describing
the crystal model are derived from experiment,
and since the quantitative results are not unrea-
sonable, we also report our results quantitatively.

Figure 1 illustrates a portion of an initially fcc
lattice that is subjected to [110]uniaxial stress.
A face-centered (fc}unit cell (which is initially
cubic) is shown with "solid centers"; four body-
centered (bc) unit cells, each with edges /&„b„
and &„arealso shown. The applied force is paral-
lel to edge &, and perpendicular to edges &2 and &3.
Thus edges b» &» and b, will remain mutually
perpendicular throughout the loading path (at least
for the stable crystal), and no shear forces act
on the faces of the bc cell. The complete state of
loading for the crystal is then specified [see Ref. 1,
Eqs. (52)] by the three equations

of the fc cell is then

110 1/ 2 3/ (3)

to insure that this is indeed a uniaxial s.ress, the
lattice parameters &„b„and&3 must be such that

ggQ t; ,',—. =0, i =2, 3.
gl g2 i3

The l; are integers that must be either all even or
all odd for a given site in the be lattice. The oper-
ator 8/s(r') is the same as (1/2r)(s/sr), and ex-
plicit expressions for the first and second deriva-
tives of Q with respect to &' can be found in Refs.
2 and 3. The summations are performed over a
sufficient number of lattice sites to obtain con-
vergence to the desired number of significant
figures. Starting from the state of zero stress,
the lattice parameter /&, can be increased (or de-
creased) by a small amount. The parameters /&,

and b3 are then "relaxed, " using a generalized
Newton-Raphson method of iteration, until the
summations in Eqs. (4) are zero. Then, the set
b„b„b,is used in evaluating I', and o„from Eqs.
(2) and (3), and the complete procedure is repeated.
A positive stress indicates tension, and a negative
1s compress1on.

DIREC TION OFAPPLIED LOAD

The summations in (2) and (4} are over the indices
L„l„l3that identify the lattice sites in the crystal;
the values of the summations depend upon the &;,
since the distance between the (arbitrarily select-
ed) origin site and another site at /„l„l, is

y & {12/&2 ~/2/&2 ~/2/&2)lk

lj. l2 l3

(2)

where the I'"; are the forces, acting in directions
parallel to the respective b„onthe faces of the
bc cell. The applied stress in the [110]direction

FIG. |.Portion of the initially face-centered-cubic
lattice, showing a face-centered unit cell {lattice sites
shown with "solid centers" ) and four body-centered unit
cells, each with edges b„b2,b3. The [110] stress {with
respect to the fc cell) is parallel to edge b&. {For clarity,
the sites on the two "rear faces" of the fc cell are not
indicated. )
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&2lV
f's

Pq Pq
r, s =1, ... , 6, (6)

III. IDEAL CRYSTAL STRENGTH

The concept of "ideal crystal strength, " regarded
as an instability of a loaded crystal, has been dis-
cussed in detail in a recent paper by Hill and Mil-
stein. ' Briefly, elastic moduli C„,can be defined
by

D =C +0, D = 11 12&0
1 11 y 2

C12 C22

11 12 13

D, = C„C,2 C„O,
C13 C23 C33

(9)

where the q„aregeometrical variables or "coor-
dinates" used to define the state of strain of the
crystal, and S' is the internal energy of the unit
cell. These moduli, if known numerically along
the prescribed loading path, can be used to exam-
ine the convexity of the internal energy S' accord-
ing to the positive definiteness of the quadratic
form C„,bq„bq, (summation implied over repeated
indices}. In previous studies by a variety of au-
thors, ' 'c' the range over which the internal
jenergy remains convex has been associated with
the range of stability of the crystal, with the
point of instability representing the "theoreti-
cal or ideal strength" of the crystal. However.
as was first noted by Hill, ' in a crystal under load,
convexity of the internal energy is not coordinate
invariant,

The three sets of geometrical variables princi-
pally favored in the literature are (i) the so-called
Milstein or M variables (for & =1,2, 2, the q„are
theedgesoftheunitce11; andfor&=4, 5,6, theq, are
the included angles), (ii) the components of the
Green's tensor, and (iii) the components of the
stretch tensor. Hill and Milstein' have employed
the terms M strength, G strength, and S strength
to indicate the ranges of deformation over which
the respective Hessians C„,&q„&q,remain positive
definite.

In the present study we calculate the Milstein
moduli relative to the bc cell, along the primary
path, using the relations'

. . s'4(&)
C,, 4b;b)QQ—Q l, l,'

1 2 3

Pgg 12 s@(+)
(7)

ll 12 g3

for i,g ~3, where &,~ is the Kronecker delta. The
bc cell is orthorhombic; thus, in general there are
nine independent elastic constants. However, for
the pairwise central force model there is a Gauchy-
like symmetry among the M moduli, viz. ,

Thus, for a given state of strain, the number of
independent M moduli is reduced to six. The C;&,
calculated from (7), are used to determine the
range of ~ stability according to the criteria'

One question of particular interest is whether the
predictions of "stability, "via the respective con-
vexity criteria, depend sensitively upon the par-
ticular choices of strain variables. Although we
do not attempt to answer this question in the pres-
ent paper, we have taken a step in that direction
in the sense that other sets of maduli C„*„defined
in terms of other sets of variables q„*,can be cal-
culated directly from the known values of the M
moduli and the state of strain and loading of the
crystal. It is intended, in the immediate future, to
make such calculations, and thereby examine quan-
titatively the question of the sensitivity of the sta-
bility predictions to choice of strain variables,
along the present loading path, as well as along
the paths of Refs. 2 and 2 (for which the M moduli
also have been calculated).

IV. RESULTS AND DISCUSSION

Figures 2 and 3 show the "initial" behavior of
the crystal in compression and tension. (In order
to facilitate comparison among the various figures
presented herein, a number of states of the crystal
are labeled in the figures with upper case let-
ters; each letter indicates a particular state of
strain and rotational orientation of the crystal. }
It is convenient to think of the crystal as originally
residing in the unloaded (&r», =E,/b, b, =0) fcc state
A. , in which the fcc unit cell has the orientation,
with respect to edges &» &» &» as shown in Fig. 1.
In this state, the fcc lattice parameter ao =3.5238
A; the lattice parameters of the bc cell are, of
course, b~c=b,'=a'/v2 =2.4917 A and b;=a'; the
energy W=Q, ,g,,g, , Q(&) is at a minimum. In
the neighborhood of A, the load E, is tensile (E, &0)
for b, »~c, and compressive (E, &0) for b, & bc, . In
Figs. 2 and 3, the curves of force and energy
versus &, give the impression of being very "flat
or shallow" in the vicinity of A. ; however, this
impression is somewhat misleading because the
ordinate scales for these quantities cover a very
large range of values. [Other curves, to be dis-
cussed shortly (viz. ,Figs. 5 and 9) show these
quantities in a somewhat different perspective. ]

Throughout the range of deformation between
states P and &, in Figs. 2 and 2, the criteria (9)
are satisfied and, accordingly, the Hessians
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C„,&q„&q,are positive definite. The Hessians be-
come semidefinite at states P and 8, where the
conditions C» & 0 and D, &0 are violated, respec-
tively. From (8), the former condition is equiva-
lent to C«&0. In compression, at state P, the
critical variation ~q„that causes the semidefinite
Hessian C„,&q„&q,to vanish is ~q„=0for && 6 and

~q, &0, where q, is the angle between edges &, and
This eigensolution represents a shear, parallel

to the reference axes of the bc cell in the 1-2 plane.
In tension, state & occurs at the point of maxi-

mum force E, in Fig. 3; at that point, the critical
variation &q„that causes the Hessian to vanish is
the actual variation along the primary path, viz. ,
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5q =5b,

bq. =[(CimC. s
—CisC22)/(C22Css —Cms)] b~ ~

Oq =5q, =6q, =0.
The maximum force F, at this point is = 7.36 x10"'
dyn, the corresponding stress o», =8.78&10"
dyn/cm', and the stretch b, /b,' =1.0752. These
values compare reasonably mell with various esti-
mates of the theoretical strength of crystals, in-
cluding the strengths of whiskers, which have ex-
hibited maximum stresses in the range of about
1.7X10"dyn/cm' (for Ag) to about 13.1X10'c
dyn/cm (for Fe), with corresponding strains esti-
mated to be at least (3-5}%.' " These values are
also comparable to (although somewhat less than}
the values calculated for the same crystal model,
loaded uniaxially in the [100]direction (i.e., paral-
lel to a cube edge in the fc cell), at the limit of
M stability in tension, viz. , v«c-—16.78X10 dyn/
cm' at a stretch a, /ac =1.107, where a, is the edge
of the fc cell parallel to Oooo.

One aspect of Figs. 2 and 3 that is particularly
noteworthy is the very large values of compressive
load and strain that occur at the limit of I stability
in compression at state P, E, = -7.34 &&10 ' dyn,
a»c =-7.68X10"dyn/cm', and the stretch b, /bc
=0.7490. The magnitude of this compressive
stress is about one hundred times greater than the
stress at the limit of M stability in tension (which,
as has been noted, is comparable to various esti-
mates of the theoretical ultimate strength of crys-
tals). Intuitively, one might expect very much
larger values of theoretical crystal strength in
compression, at least for some modes of loading.
Nevertheless, the present calculations are appa-
rently the first to have given any indication of
theoretical "stability" at such very large com-
pressive stresses.

Previous studies, '6 involving uniaxial compres-
sion, had the applied load parallel to a cube edge
of an fcc lattice. In those studies, the cornpres-
sive stresses that mere obtained at the limit of M
stability ' (occurring Rt R force minimum) Rnd Rt
the limit of G stability" (occurring at a minimum
of the Green's conjugate stress} were comparable
in magnitude to the maximum stresses in tension
along the primary path as well as to the stresses
at the limits of I stability or' G stability in tension
(the latter stresses were somewhat less than the
maximum tensile stresses). However, as was
shown by Milstein's studies" of [100]loading of a
bcc and fcc crystal, the range of stability of the
fcc lattice in this mode of compression is limited
by the appearance of a transition to the stress-free
bcc state along the primary path of deformation,

a--9 the stress and force minima mentioned above
are a natural consequence of this transition.

In the present calculations, no such stress-free
states or force minima appeared in the compres-
sion region (starting from state A); calculations
mere made in this region for values of b, as small
as 0.75 A. Even at the smallest values of b„the
quantities -E„-O„„D„D„andall of the elas-
tic moduli C,, (with the exceptions of C» and C»)
are positive and increasing with further compres-
sion. Although C» remains positive throughout
this compressive range, its magnitude appears
to approach zero asymptotically with decreasing
b, . The only criterion for M stability that is vio-,
lated in the compressive range (along this path)
is C» ~ 0 at, and to the left of, state P. The quan-
tity Ci2 reaches a minimum at b~ = 1 49 A and
with further compression also appears to approach
zero asymptotically (although from the negative).

Another interesting feature of the [110]loading,
of the crystal, shown in Fig. 3, is the difference
in the algebraic signs of the Poisson's ratio v
along the b, and b, axes. The principal stretches,
normal to the applied loads, at the limits of M
stability are b, /b,' =1.0106 and b, /b,' = 0.9446 in '

tension (at B),and b, /b', = 0.9734 and b, /b,' = 1.1180
in compression (at I'). Increasing tension, say,
in the vicinity of state A, results in a decrease of
b, and an increase of b, . Such behavior is ap-
parently characteristic of an actual (i.e., a real)
Ni crystal (as well as of the present model), as
can be seen from substituting experimental values
of elastic constants into the linear elasticity ex-
pressions for the initial values of the directional
Poisson's ratios. That is, along the b, axis,

M, /b,' R —2C„
bb, /b,' R +2C„

and, along the b, axis,

bb /b; 4C„C„

where R =C»+C»(1 —2C»/C„) and (here only)
the C&& represent experimental values" of the
usual elastic moduli (i.e., the zero-load Green's
moduli at 0 'K} relative to the fcc unit cell, viz. ,
C»='2. 612, C» =1.508, and C44

——1.317, in units
of 10" dyn/cm'. Also (here only), the bb; are the
initial variationp along the primary path, starting
from state A..""

For curiosity we also calculated, in the above'
manner, the initial Poisson's ratios for a number
of other fcc metals. In all cases v was found to
be positive along the b, axis, mhile along b„v
was positive for Al, Au, and Pd, and negative for
Cu, Pb, and Ag (as well as Ni); in each case, the
magnitude of & along b, mas less than that along b,.
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It might be of interest to mention some additional
observations about the behavior of the lattice, par-
ticularly at very large compressive strains, along
the primary equilibrium (but not necessarily sta-
ble) path that is reached by starting from state
A and repeatedly decreasing &, while adjusting
&, and &, to insure uniaxial force J",40, in gen-
eral, while E, =E, =G, always. First, as &, de-
creases, &, continues to decrease and&, to in-
crease {at a faster rate than b, decreases)
throughout the range of compression investigated
(to about b, =0.75 A). Second, the Poisson's ratio
appears to approach zero asymptotically along
both principal axes normal to the load (i,e., b, and
b, appear to approach constant values} at very
high compressive strains. This observation is
consistent with the earlier mentioned observation
that Cz2 and C» appear to approach zero asymp-
totically as b, becomes small. That is, if &&&

represents a small variation in force E; at some
point along the equilibrium path, and &b; are the
corresponding smaB variations in the b„then to
first order in the & quantities, &E, =C,~&6, . Thus,
if C~2 =C„=O,along the primary path, (i) ~F,
=C»bb, (independent of &b, and bb, ); (ii) 6&, =—0
=C,25b, +C„&b„and(.iii) &E, =—0 =C„&b,+C„&b,
Conditions (ii) and (iii) are, of course, satisfied
by &b, =&&, =0. Thus, &, and &, remain constant
along the primary path if C» =C» =0. Third, as
&, decreases, the ratio of &, to &, seems to be

0

approaching M3; e.g. , at b, equal to about 1 A,
(b, /b, )' =2.997, and at b, equal to about 0.75 A,
(b,/b, )' =2.99996. Thus, throughout the compres-
sive region, the ratio b,/b, apparently remains
between v 2 (the initial value at A) and W3. Although
this behavior (i.e., b, /b, approaching &3) was
first noticed empirically, it can be readily under-
stood as the tendency of the atoms in successive
planes, normal to the load, to form a close-packed
pattern as the planes approach one another. That
is, the two-dimensional lattice, formed by pro-
jecting the lattice sites of the three-dimensional
lattice onto a plane perpendicular to the load, be-
comes close packed (i.e., each lattice site in this
two-dimensional lattice has six equidistant near-
est-neighbor sites) at large compressive strains.
Thus, in a sense, the difference in the signs of the
Poisson's ratios in the b, and b, directions (at
least in the region of high compression) can be
understood as the tendency of the atoms in suc-
cessive planes to arrange themselves in such a
close-packed relationship as the compressive
load increases in magnitude.

Examination of Fig. 3 leads us to presume that,
generally, for a fcc lattice loaded uniaxially in a
[110] direction, the values of b, and b, will even-
tually become equal at some point along the equi-

librium (although not necessarily stable) path of
deformation. (In principle, a possible exception
might be a crystal for which the &, curve remains
parallel to the &, curve, or the two curves di-
verge, as b, increases and decreases. ) In view
of the probable generality of this occurrence (i.e.,
b, and b, becoming equal) and (with the benefit of
hindsight) in view of the special nature of the bi-
furcation that was found at the point at which &,
and &, first become equal, we now examine, in
detail, this occurrence and its effect upon the
primary equilibrium paths.

From general considerations, once the state
at which &, =b, is reached, it follows that there
must be a branch of the primary equilibrium path,
along which &, remains equal to &„which can be
reached from state A. by moving along the path
for which &, & &,. In other words, there must be
at least two branches of the primary equilibrium
path (defined by the conditions E, =E, =0 and b„
b„and b, mutually perpendicular} that intersect
at the point at which &, =&, on both branches; along
one branch, b, + &„in general, and along the
other, b, =b, . Furthermore, the latter branch
(i.e., b, =b, ) is the same as the primary path that
would be obtained for [100] loading of a fcc crys-
tal, prescribed by the following conditions. If
a„a„anda, represent the edges of the fc cell,
then in the unloaded fcc state a, =a, =a„along
the path in general the load is applied parallel
to the edge a„the forces or stresses parallel
to the edges a, and a, are zero; a, =a„and the
edges a„a„anda, . are mutually perpendicular.
For the present crystal model, this [100] loading
path was studied in detail in Ref.- 2. This equiva-
lence between the [100] and [110] loading of a fc
lattice along the branch &, =&, is illustrated in
Fig. 4, which shows four of the bc cells and also
shows the orientation of a fc cell with respect
to the bc cells. Along the bx'anch &2 =b„the sym-
metries of both the bc and the fc cells are at least
tetragonal.

Figure 5 shows the energy W per unit bc cell
and the applied load &, acting on the face of the
cell along both branches of the primary path.
Along branch ABCD, b, o b, (except at state D
where the two branches meet) and along branch
FGHDI&, b, =b, . (The W and E, ordinate scales
in Fig. 5 are markedly different from those in
Figs. 2 and 3 since the latter were selected with
the intention of displaying phenomena near the
limit of M stability in compression at P, where
there were very large compressive forces. ) A
number of stress-free states are observed, viz. ,
A. , C, 6, I, and ~. The stress-free states along
the "&,=&,"branch have been identified previous-
ly' as the fcc state (G), the bcc state (I), and a



THEORY OF THE RESPONSE OF AN fcc CRYSTAL TO [110).. . 2535

DIR ECTION OF APPLIED:—LOAD

FIG. 4. Illustration of the fc cell {"solid centers")
. that becomes tetragonal {edges mutually perpendicular

and u2=e3) when b2=b3.

tetragonal state without any apparent higher sym-
metry (&}. The orientation of the fcc cell in state
6, with respect to the edges b, of the bc cell, is
indicated by the orientation of the fc cell in Fig.
4. Except for a spatial rotation, the fcc states
6 and A are identical. I'n the stress-free bc state
I, the cube edge b, =b, =&, =2.8138 A,"and in
state &, b, =2.6247 A, b, =b, = 2.9143 ~. Along
the "&,&b,"path, state A has already been identi-
fied as the "starting fcc state, "with the fcc cell
orientated as in Fig. 1; the other zero stress
state is C, where b, =b, =2.9143 A, b, =2.6247 A.
Thus, except for a rotation in space, states C
and ~ are identical. The zero-stress tetragonal
configuration appears at a local energy minimum
(state &) along the "b, =b," path and at a local

energy maximum (state C) along the "b,+ b," path.
The bcc state (I) also occurs at a local energy
maximum along the primary path.

The limits of M stability along the "&,=&,"branch
are at H (in compression, E, &0) and E (in tension,
E, &0). In Ref. 2, these states were identified
as the states at which C„(C»+C»)-2C,', =0 (state
H} and C»- C» =0 (state E), where the C, &

of Ref.
2 are the M moduli relative to the fc cell. State
II occurs at a local force minimum, "and at this
state, the particular eigensolution causing the
semidefinite C„,~q„~q,to vanish is' &q„~(2C„,
-C», -C», 0, 0, 0), i.e., the critical variation is
the same as the actual variation along the pri-
mary path. ' The critical variation at state E, rel-
ative to the ~ variables and the fc cell, was iden-
tified in Ref. 2 as &a, =-&a„i.e., bq„~(0, 1,-I,
0, 0, 0). In Ref. 5, it was shown that this type of
eigenstate (i.e., C» =C»), together with the eigen-
solution, is invariant (i.e. , its location, on the
primary path of [100] loading of a cubic crystal,
wQl be the same for any reasonable choice of
strain variables). In the present study, state E
appearS at C»=0, Which iS the Same aS C4, =0
[from (8)], relative to the bc unit cell, with the
corresponding eigensolution ~q„~(0, 0, 0, 1,0, 0),
where &q4 is the angle between bm and b,. The
eigensolution represents a shear parallel to the
reference axes in the 2-3 plane, which, to first
order in the & quantities, is the same as the vari-
ation ~q„~(0, 1, -1,0, 0, 0}relative to the fc cell.
The proof of the invariance of the C» =C» eigen-
state in Ref. 5 assumes a cubic cell as a reference
basis with "coordinates assigned so that q„q»q,
remain fixed and equal when the cell stays rec-
tangular, while generally each of the groups q„
q2y q3 and f4 y q5 q, accord equal weightings to the

.5 x)0

0.5

-0.5

QQ e

c
V
Cl- 4.2
lb

C)

g.c, &

FIG. 5. Energy per unit
bc cell and applied force
acting on the face of the
cell along two branches of
the primary equilibrium
path. Along branch
~ - .I GIIDIJ. . ~, b2 = b3',

along branch. . .ABED, b2
&b3 {except at D).

I I I I ~ ~

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2
b, (A

- 4.8
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5.00 -
C2~

4.95-
2940 b I

gg& r
C.1~

C~3

—C33

2.945

C}2 =C}3

C22

C22 =C33

(c

~D
C 11

2. 90
I

2. 98

FIG. 6. Elastic moduli in the neighborhood of the inter-
section (at D) of the two branches of the primary equil-
ibrium path. The moduli along the "b2 ——b3" branch are in-
dicated by "broken line" curves and those along the "b&

&b3" branch by "solid line" curves ~ From symmetry at
state D (b2

——b3), it follows that C~2 = C&3 and C22 = C33 ln
addition, the theoretical calculations show that state D
coincides with the invariant eigenstate C&~

——C~3. State
C (b&

——b3 and hence C&& ——C33, C&2
——C23) is also indicated on

the "b2 &b3" branch.

furcation, viewed as leading from the "&,=&,"
path to the "&,& b,"path, it is immaterial whether
one considers that &&, is negative, say, and &b,
positive, or vice versa. (Indeed, the choice of
which of the two lattice parameters, perpendicular
to the load, is to be called &, and which &, is en-
tirely immaterial along path . ..HDI. . . .) From
this consideration, it follows that the path
...ABCD represents only one half of the full
branch . . .ABCDC'B'A'. . . , such that, if the lat-
tice moves along the path in the direction
DC'B'. . . , then &, decreases and &, increases,
while in the direction DCB. .. , the reverse is
true. In other words, the lattice parameter b,
can be thought of as continually increasing and
b, continually decreasing along the path
. . .BCDC'B'. . . . It also follows that the portion
of the branch DCBA. . . bears a special relation-
ship to the portion DC'B'A'. . . , viz. , if a state Q,
with lattice parameters (b„b„b,) =(P„P„P,), is
an equilibrium state along path DCBA. . . , ,then
Q', with lattice parameters (P„P„P,), 'is a cor-
responding equilibrium state on the portion
DC'B'A'. .. . Figure 7 shows this relationship
among the lattice parameters along the full branch
PABCDC'B'A'P'. In this figure, the three-dimen-
sional space curves (b„b„b,) for both branches
(i.e, DIJ. . . and. ..CDC'. . . ) are projected
onto the "faces of a box, " the edges of which form
the Cartesian coordinate system b„&„b„and

three cubic directions. " For the [110]loading
of a fcc crystal, one may select the bcc state
(as at.I, in Fig. 5) or the fcc state (as at 6) as
the reference state, and accordingly, define the
edges of either the bcc or the fcc cell as the three
cubic reference directions. Thus, along the pri-
mary [100] loading path (of, say, force or stress
versus lattice parameter), the "invariant" C»
=C» eigenstate, relative to, say, the bc cell, will
appear at the same point on the path as the C44 ——0
eigenstate relative to the fc cell, and vi.ce versa.

We now focus our attention on the behavior in the
im.mediate neighborhood of state D. Figure 6
shows the I moduli (relative to the bc cell) versus
&„along both branches near state D. The path
branching at P is found to be a bifurcation as-
sociated with the invariant eigenstate C22 C23
(relative to the bc cell). That is, at state D, C»
=C», and the bifurcation leading from
path. . .IIDI. . . to path DCB. . . is of the type
&b, =-bb„~b,=0 (b, and b, approach one another
with infinite slopes, with respect to &„asstate
D is approached along. . .BCD). For such bi-

o+
P)

C)

--3

--3

--3

--2

3.8 3.4 3.0 2.6 1.8
'

b2(A)
26

2'. 2 2'. 6
' 3'.

3.0

oQ

t

3.4

3.8

FIG. 7. Variation of the lattice parameters b„b2, and
b3 of the bc cell along the primary equilibrium path.
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DIRECTION OF APPLIEi3 LOAD Cii=Cix Ca3 =Cas C~s =Cia

C„C,3y C33 —Caa, Caa = C33

b) J

FIG. 8. Illustration of the fc cell ("solid centers") that
becomes cubic in state A'.

the faces of the box are "unfolded" for a two-di-
mensional representation of the simultaneous vari-
ation of the three variables. States A' and C' are
the stress-free fcc and tetragonal states, re-
spectively. Starting at state A, where the fcc unit
cell has the orientation as shown in Fig. I, and
moving along the primary path ABCDC'B'A' to the
state A', results in the fcc cell at A' orientated
as shown in Fig. 8. The crystal is I stable in the
ranges between states P' and B' (as well as be-
tween P and B). Because of the "interchange" of
the roles of &a and &, along the regions DCBA. ..
and DC'B'A'. .. , the elastic moduli C;, in state
Q are related to the elastic moduli C,'; in state
Q' (where the numerical value of b, is the same
as at Q, but the values of b, and b, are inter-
changed) by the relations

It is noted in Fig. 6 that C» and C» approach one
another with infinite slope at state D along path
. . .BCD,- likewise for C» and C». This behavior
is consistent with the last four relationships in
(11).

The applied force and internal energy, when
plotted versus b„will appear identical along
. ..A.BCD and. ..A'B'C'D. Thus states A and A',
etc., coincide in Fig. 5. However, this "degen-
eracy" is removed when the force or energy is
plotted versus ba or b,. For example, Fig. 9 shows
the applied force versus b, . (The identical curve
would appear for the applied force versus &3 how-
ever, A and A' would exchange places, as would
B and B', etc.) At state D, along path CDC', the
force is, of course, stationary, i.e., 6E, =C,~6b~=0
along the primary path at that point (since
Ci3=Ci2 C3. =C2a=C. s bbi=0' bb. = bb3) -The
reason that the force does not "give the appear-
ance" of being stationary on path DC. .. at state D
in Fig. 5 is simply because the first-order vari-
ation in the b; along the primary path at that poi.nt
has &b, =0. Also, in Fig. 5, it is interesting to
note that the energy curves approach one another
with the same slope at D (along both branches),
although the force curves have different slopes
at D. At any stage on the primary path
. ..ABC. .. , &E, =C,„~q„,where the &q„aregiven
by (10); an incremental change in energy, com-
plete to second-order terms is' &~ =~,&&,

+26F,&b,. Thus, along the path. . .ABC. . . ,

0.8-

0.4
C4

E

C

0IO

FIG. 9. Applied force vs
lattice parameter b2.

3.0
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Modulus C,2 vs
b& and b2. The plot of C

b f is identical to C f3 vs
b1 (with states & and P,
etc. , interchanged).

--0

I I I I I I I I I

R R
I I I I

4.0 3.0 2.2 2 0

bf 00

bg =E,bb, +-,'& c„+[(c„c„-c„c„)/(c„c„-c;,)1c,.+[(c„c„-c„c„)/(c„c„-c;,)]c„j&b*, . (12)

The same relation also holds along the path
...I"GH. .. , although with the added symmetry
C„=C„andC„=C„;thus along ...EGII. ..

&w =E,&b, +-,'(c„-2c;,/(c„+c„)j&b;. (1s)

The slope of the W-vs-b, curve, for both branches,
is thus simply E, . The slope of W vs b, (or b, ),
however, is not the same for both branches at
D; this is easily seen from the fact that the mag-
nitude of ~b, (or ~b, ) at state D is much larger
along path ...CDC'. . . than along . . .HDI. .. for

a given small &&,. The quantity within the brackets
j in (12) or (1S) is &E,/&b, along the respective

branches; thus, in general, this quantity repre-
sents the slope of the E,-vs-b, curve at any stage.
However, at state D, along path. . .CDC'. .. , both
E, and b, are stationary, and the quantity within
the( j in Eq. (12) is not determinate from the
values of &e first-order C,.&

at state D (although
this quantity can, of course, be determined di-
rectly from our E,-vs-b, calculations near D).

Although (in the present study) state D is em-

-- 2x10 5

FIG. ii. Modulus C3~ vs
b& and b2. The plot of C33
vs b& is identical to C22 vs
b& (with states P and P',
etc. , interchanged).

4.0 3.0 2.2
b (A)

1 2 3
bi(A)
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respect to the &; are apparently not, in general,
readily described (or well approximated) by sim-
ple analytical functions throughout the full path
. ..A.BCD. . . .
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~3In the present study, the Poisson's ratio v is defined as
the ratio of the infinitesimal incremental strains at any
specified stage on the primary loading path, rather than
the ratio of the total strains. It is clear that the values
of v have opposite algebraic signs along the b2 and bs
directions, at any stage on the primary path shown in
Fig. 3; likewise, the ratios of the total strains, (b2
—b2)/(b& —b&) and (b3 —b3)/(b, —b, ), also have opposite
signs at any stage on this path.
Macmillan and Kelly (Ref. 7) studied the behavior of a
model NaCl lattice in unconstrained [110] tension, in the
range of total [110] strain from zero to about 0.3. Ow-
ing to important differences in the nature of the respec-
tive crystals, one would not necessarily expect behavior

similar to that observed in the present study. Never-
theless, it is interesting to: note some similarities and
differences. As in the present study, at large strains,
their calculations showed v to be negative along the
[1T0] axis and positive along the [001] axis (our [110]
and [001] axes, respectively, are b2 and b3). However,
with increasing [110] strain, the magnitude of v along
their [1TO] axis seems to be decreasing slightly, where-
as it increases rapidly in the present study. Their ini-
tial magnitude of p along the [001] axis was considerably
larger than that along the [110]axis (as in the present
study), although initially their lattice exhibited a posi-
tive value of v in the [1TO] direction (in contrast with
the present case). Macmillan and Kelly (Ref. 7) also
studied [110] loading of a model argon lattice, although
not unconstrained (as in their NaCl calculations and as
in the present study).

' In Ref.2, the bcc cube edge was reported as 2.8134 A in-
stead of 2.8138 A; this small difference resulted from
different numerical iterative techniques for "zeroing in"
on the stress-free lattice parameters; in the previous
study, a (slightly less accurate) graphical interpolation
was used; in the present study the numberical inter-
polation was done entirely on the computer.
In the discussion of Ref. 2, there is some ambiguity
over whether the state identified as H in the present
study occurs at a minimum of the load or of the stress.
This was clarified in Ref. 5. For [100] uniaxial loading
of a cubic crystal, the condition C2)+C)3=2C)p/C(( oc-
curs when the applied load is stationary if the Co are
the M moduli, and when the Green's conjugate stress is
stationary, if the C;& are the Green's moduli.


