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Application of the Tripathy-Mandal dielectric function to the study of some properties of an
electron liquid
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Using the expression for the dielectric function derived by Tripathy and Mandal in a previous paper, the
pair correlation function g(r) and the correlation energy of the electron liquid are calculated in the range of
metallic densities, It is observed that the g(r) in this case exhibits an oscillatory behavior for r, ) 2. This
establishes the similarity in the behavior of the electron liquid with that of the classical liquids. Our
calculated values of g(0) are found to be positive up to r, 4.

I. INTRODUCTION

In a previous paper' hereafter referred to as I,
an expression for the dielectric function for an
electron liquid bas been obtained by Tripathy and
Mandal (TM), solving the equations of motion for
the double-time retarded commutator of the
charge-density fluctuation operators. This meth-
od is based on a decoupling of the higher-order
Green's functions, which is achieved by conserving
frequency moments to an infinite order. In this
theory, the expression for the dielectric function
is written in the form'

E(k, (o) = 1+Qo(k, (o)/[1 —G(k, (o)QO(k, (u)], (1.1)

where Q, (k, ~) = -v(k)y, (k, a&), Xo(k, &u) is the usual
free-electron polarizability' and v(k) = 4me'/k'.
The function G(k, ~) represents the local-field
correction, which takes into account the sbort-
range correlations arising from both exchange and
Coulomb effects. Numerical values of G (k, 0) as
a function of k have been given in I. As one can
see, an interesting feature of this G(k) is that it
has a very sharp peak around k = 2k~, which is in
contrast to the results of other existing theories.
The other important result of the TM theory is that
it satisfies the compressibility sum rule, that is,
one finds

lim k'&(k, 0) = (4nr, /m)(C/Co), (1.2)
k~0

where k has been measured in the unit of k~, ~, is
the usual density parameter, and n = (4/9m)'i'. In
the above equation, C and C, denote the compres-
sibility of the electron liquid and the free gas.
The ratio C,/C in the TM theory is given by

C,/C=1 r4~r, /V, (1.3)

where y= +. With this value of y, the value of the
compressibility obtained by using the above for-

mula agrees well with the compressibility data of
Rice for metallic densities, following his calcula-
tion of the second derivative of tbe ground-state
energy with respect to the volume of the electron
gas. It is further seen that the values of G(k) ob-
tained in the TM theory in the limit k-~ is 3,
which agrees with the value of G(~) evaluated in
the self-consistent Hartree-Fock approximation. '
Using tbe results of this G(k), we have already
evaluated the structure factor S(k) for different
values of the electron densities. In this calcula-
tion, ' we have found that there exists a sharp peak
in S(k) [value of S(k) at the peak exceeding unity]
around k = 2k~ for the entire metallic densities.
This very interesting feature observed in our
structure factor is not seen in the calculations
followed from other theories.

In this paper, we present the result of some of
the properties of the electron liquid, like the pair
correlation function and the correlation energy
based on the TM theory for the whole range of
metallic densities, and compare them with those
of the earlier theories. These calculations have
been done by using the expression for the dielectric
function (1.1), with G (k, (q) takin in the static limit
(~ = 0). We find that our pair correlation function
g(r) exhibits oscillatory behavior in tbe whole range
of densities starting from ~,) 2. Such behavior
of g(r) is observed in the case of classical liquids.
It is seen that the positions of the peak in our g(r)
for a certain ~, correspond to the average inter-
particle spacings for the x, concerned, and the
values of g(r) at the peaks increase with r, The.
other interesting result that follows from the pres-
ent calculation is that the values of g(0) is positive
for all values of x, up to x, = 4. Comparing our
g(0) values with those of the Toigo-Woodruff (TW)
theory'(where the latter canbe derived from the TM
theory' by conserving the first frequency moment
only), we find that our values are relatively more
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FIG. 1. Pair correlation function g(r) vs rk& for
r,=2. The plots 1, 2, 3, 4, 5, 6, and 7 are, respec-
tively, from the results of the present work, Refs. 12,
8, 11, 10, Hubbard, and the RPA. Other figures also
use the same labels.
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FIG. 3. Plot of g(r) vs rk E for rs= 4.
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II. CALCULATION AND DISCUSSION OF RESULTS

A. Pair correlation function

The expression for the pair correlation function
g(r) can be written

00

g(r}= 1+ k sin (kr)[S(k) —1]dk,2f
Q

(2.1)

where jW| is expressed in units of k~ and x in units
of kz'. The structure factor S(k) of the electron
liquid is related to the dielectric function a(k, &u)

through the relation'

l.O

positive for all values of ~,. This shows that our
theory takes into account the short-range correla-
tion effects to a reasonably good extent. The g(r)
calculated from a completely dynamic G(k, ~}may,
however, show a more improved behavior.

@a' 00

S(k}=, , 1m[a(k, (u)] 'd(u.
4w'e'n (2.2)

Using the G(k) values of the TM theory, the func-
tion S(k) is calculated with the help of (1.1) and
(2.2). From these numbers, the g(r) is evaluated
following (2.1) for various values of r,. These
results are shown graphically in Figs. 1-5 for
2 &r, &6. For the sake of,comparison, we have
also given the corresponding plots of g(r) vs r of
Singwi et al. '0 "and of T%,' along with those of
Hubbard and the random-phase approximation
(RPA). It is to be noted that in the present theory
g(r) at r = 0 remains positive up to r, = 4. It may
be mentioned here that in all the earlier theories,
the g(0) becomes negative for r, & 2, except in that
of Singwi, Tosi, Land, and Sjolander (STLS),"
where the g(0) is positive up to r, =4. But it is
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FIG. 2. Plot of g(r) vs rk& for rs=3. FIG. 4. Plot of g(r) vs rkz for r~=5.
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P&«of g(~) vs rk~ for ~$=6.

known that in the STLS theory, the compressibility
sum rule is badly violated. Besides, since this
theory is based on an ansatz, a first-principles
justification is not understood yet. In the Vashish-
ta-Singwi (VS) theory, "which is a modified ver-
sion of the STLS theory, though the compressibil-
ity sum rule is satisfied, the g(0) turns out to be
negative for x$&2. In the TW theory, which is
based on a first-principles calculation, although
the compressibility sum rule is satisfied, the
g(0) becomes negative for x, &2. Thus we see that
all these theories seem to have the deficiency of
simultaneously satisfying the compressibility sum
rule and producing a goody(x) at x=0 in the range
of metallic densities. This is obvious because
satisfying the compressibilities sum rule only
means that tbe small-momentum behavior of tbe
dielectric function is good; whereas, to get a
good g(r), one should have the dielectric function
which is to be well behaved, both in the region of
small and large momenta. Using the TM theory,
we have partly succeeded in overcoming the above
deficiencies. This is because we have not only
satisfied the compressibility sum rule, but also
obtained a good g(0) over a major range of metal-
lic densities. The fact that the g(0) in this case
becomes negative for x$ ~ 4 simply means that
some higher-order correlation effects are to be
included in the local-field correction term G(k, &u)

of the TM theory. ' This can be done by extending
the TM theory beyond the free-particle approxi-
mation, while conserving the frequency moments

TABLE I. Va1ues of g(0) for various r~.

9$

Present theory
VS
TW
SSTL (Ref. 10)
STLS (Hef. 9)
Hubbard
HPA

0.163
0.034
0.04
0.06
0.11

—0.16
-0.53

0.02
-0.04
-0.14
-0.02

0.04
-0.43
-0.95

-0.105
-0.07
—0.31
—0.07

0.006
-0.68
-1.33

-0.22
-0.075
-0.46
-0.10
—0.02
-0.92
-1.70

-0.327
-0.08
-0.61
-0.11
-0.03
-1.14
-2.04

to an infinite order. From the results of our g(0)
given in Table I, one can see that there is a con-
sistent variation of its value in going from one
~, to the other, compared to those of other theo-
ries. For the sake of convenience, we have quoted
the g(0) values of the previous theories.

A very interesting feature of our g(x) is that it
starts to exhibit an oscillatory behavior from x,
= 2 and thi. s becomes more pronounced with the in-
crease of x,. The values of g(x) obtained by Singwi
et al." show a very small and broad peak which,
even at x, =6, has a value of only 1.013. The re-
sults of Chakravarty and Woo" also show small
peaks beyond x, = 3.4. The positions of the peaks
in boih these calculations roughly correspond to
those of our first peaks and their amplitudes are
much smaller than even our second peaks. The
pseudopotential calculation of Dunn and Broyles"
for r, ~. 5.6 shows a peak in g(x) like that of Chak-
ravarty and Woo; even the peak positions and its
heights remain almost the same in both the cases.
The behavior of our g(x) for the electron liquid
is very similar to that observed in classical
liquids, where the g(~) is known to possess very
pronounced narrow peaks at the average inter-
particle spacings, followed by many secondary
peaks. Tbe only difference in tbe electron liquid
case is that the peak heights observed here are
not so large. One can see that the position of the
first peak in our g(x) for a certain x, almost coin-
cides with the corresponding average interpartiele
spacings. From Figs. 1-5, it is seentbat the peak
heights in g(~) increase with the increase of r,.
This is obvious because as one goes to low den-
sities, the correlation among the particles be-
comes increasingly important. The secondary
peaks observed in our g(r) are relatively broad-
ened out, as compared to the primary peaks.
From this, one can conclude that like any classi-
cal liquid, the electron liquid also shows the ten-
dency for the localization of particles. The reason
why the previous theories on the electron liquid
fail to show this tendency is that they all lack in
accounting properly for tbe short-range correla-
tion effects.
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TABLE II. Correlation energy (By/electron).

f $

Present result
VS
T%
SSTL
STLS
Hubbard
RPA
Nozieres and Pines

—0.137
-0.112
-0.134
-0.124
-0.125
—0.131
-0.157
—0.115

-0.103
-0.089
—0.095
—0.092
-0.097
-0.102
-0.124
-0.094

—0.085
-0.075
-0.079
—0.075
-0.080
-0.086
-0.105
-0.081

-0.074
-0.065
-0.068
-0.064
-0.070
-0.076
-0.094
-0.072

—0.065
-0.058
-0.061
-0.056
-0.063
-0.069
-0.085
-0.065

-0.059
—0.052
-0.052
-0.050
-0.057
-0.064
-0.078
—0.060

B. Correlation energy

The expression for the total energy per particle
is written as

(2.3)

y(Z) = — [S(k) lj dk.
1
2 p

(2.5)

Using (2.4) in (2.3), E, can be expressed in a con-
venient form as

3 4

p
(2.6)

Following. (2.6) the correlation energy per particle
is given by

0.9163
Carr

$ 71 &$

r$
y(r,') dr,' Ry. (2.7)

Using our computed values of y(r, ), the correlation
energy has been evaluated from (2.V) and the re-
sults are given in Table II, along with those ob-
tained'by previous authors. We have given a few
values of y(r, ), for r, = l to 6 in Table IIL With
these values of y(r, }, it canbe easily seen that the
Ferrel condition" is satisfied.

where X is a parameter representing the strength
of the interaction and &~ is the Fermi energy. The
interaction energy is given by

(2.4)

where

III. CONCLUSION AND SUMMARY

In this paper, we have calculated certain prop-
erties of the electron liquid using the TM dielec-
tric function, where the local-field correction
term has been taken in the static approximation.
We feel that the TM theory on which the present
calculations are based has the merit of accounting
for the short-range correlation effects much bet-
ter than the other existing theories. This is mani-
fest in the fact that this theory gives rise to fea-
tures like the peak in S(k),' and the oscillatory be-
havior in g(r}, which are not observed in the earl
ier theories. With all these properties, it is a
little surprising that the TM theory does not pro-
duce a positive value for g(0} for r, ~ 4. This may
be due to the lack of some higher-order correla-
tion effects in the local-field correction term.
However, one can not be sure of this unless one
includes the dynamic dependence in G(k) and looks
for the new g(0) values. At any rate, it will be
nice to see whether the inclusion of higher-order
correlation effects at all upset the trend of the
present result. One of the possible ways of ac-
counting for the higher-order correlatio~ effects
is to go beyond the free-particle approximations
in the TM theory, while conserving the frequency
moments. It is our feeling that when these higher-
order correlation effects are included, it will re-
sult in more numbers of oscillations in S(k), and
thereby it will establish the similarity between the
behavior of electron liquid and:the classical liquid
without any ambiguity. What we mean by this is
that the peaks in g(r) will be more pronounced,
followed by many secondary peaks. We are now
investigating these in detail.

TABLE III. Values of y(~$).

$

y(y $) 0.4610 0.4978 0.5227 0.5386 0.5525 0.5640
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