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A simple method is proposed for applying the self-consistent boundary site approximation (SCBSA) in

cluster theories of'electronic states in disordered alloys. This method is applicable to lattices of any

dimensionality. The electronic densities of states are calculated for binary alloys having the simple cubic and

the diamond lattice structures. These results are compared with the results obtained from the method of
moments, the disordered Geld formalism, the coherent-potential approximation, and a few other methods. In
addition to this, the averaged Green's function has been calculated in the complex energy plane to study its

analytic structure. It is found that though the SCBSA is computationally simple and yields densities of states

which agree quite well with the available exact results, in three dimensions, the SCBSA shows some

unphysical features such as the negative partial densities of states and branch points off the real axis for the

averaged Green's function in the strong-scattering regime.

I. INTRODUCTION

During the last few years several extensions of
the coherent-potential approximation (CPA) have
been proposed in order to incorporate the cluster
effects in the study of electronic states in disor-
dered alloys. A theoretical advance in this direc-
tion was made by Tsukada, ' who proposed the
molecular CPA (MCPA). However, from a prac-
tical viewpoint, the complete implementation of
such a. theory to real systems is extremely diffi-.
cult. Approximate theories like the self -consis-
tent central-site approximation' ' (SCCSA) and the
self-consistent boundary-site approximation' '
(SCBSA) have been suggested, which simplify the
calculations a great deal. The SCCSA" "yields
the fine structure in the density-of-states curves
as observed in exact machine calculations, and its
results agree fairly well with the MCPA results, '
but it suffers from the difficulties of nonanalyti-
city in the strong-scattering regime, "where the
clustering effects become quite important. But-
ler, ' however, showed that the SCBSA was equiva-
lent to the MCPA" for a linear chain. This equi-
valence of the SCBSA and the MCph doe»ot hold
for real three-dimensional lattices. Nevertheless,
with this unexpected success of the SCBSA, for
a linear chain, it was naturally very tempting to
test the usefulness of the SCBSA for three-dimen-
sional lattices. The authors' suggested a simple
generalization of the SCBSA approach which is
applicable to lattices of any dimensionality. Using
a simple tight-binding model description, it was
found that the nonanalyticities observed in the
SCCSA for a diamond lattice were not there in the

SCBSA for a 50-50 binary alloy A, „B„,with &

= (&s —c„)/&@=1.O. Here e„and es are the atomic
energy levels of the pure A and the pure B consti-
tuents aad (d is the half bandwidth which is assumed
to be the same for both the constituents. Further
it was observed that the SCBSA yielded a density of
states which was not much different from the
CPA and failed to reproduce the fine structure in

the density of states. It is important to mention
that we calculated the densities of states at the
boundary of the cluster. As the number of nearest
neighbors increases (e.g. , the cubic lattices), the

computational effort needed increases a lot be-
ca,use the configurational averages have to be per-
formed over a large number of configurations.
Here we propose another simpler method in which
the number of distinct configurations is greatly'
reduced by making an assumption that for a fixed
number of different kinds of atoms on the shell of
nearest neighbors„ the different configurations of
the atoms on the shell are not distinguished. This
has been applied to calculate the electronic densi-
ties of states for binary alloys having. the simple
cubic and the diamond lattice structures. These
results have been compared with the other avail-
able results obtained from various cluster theo.-
ries, namely the method of moments, " the dis-
rder fi.eld formalism 5 the, SCCSA s, 8, 6 and th

cluster CPA of Kumar et al." It has been. found
that the SCBSA reproduces well the fine structure
if the densities of states are calculated a,t the cen-
ter of the cluster, rather than at the boundary of
the cluster. This has also been emphasized ear-
lier by Butler. ' But, in the strong-scattering re-
gime, it yieMs some unphysical features such as
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negative partial densities of states. To study the
analyticity of the Green's function in this approxi-
mation we extended our calculations for complex
energies. It has been found that the SCBSA yields
average Green's functions which have singularities
off the real axis. Therefore this approximation would
not be acceptable in the strong-scattering regime
for three-dimensional lattices. The region of
analyticity of the SCBSA, is much greater ' than
that of the SCCSA. This indicates that the SCBSA
is superior to the SCCSA.

In Sec. 0 we present the general formulation of
the SCBSA. In Sec. III results of the averaged
densities of states and the partial densities of
states for binary alloys having the diamond lattice
and the simple cubic lattice structures have been
presented and discussed.

This can be expressed in terms of a Green's func-
tion G' of a system in which the central site is also
occupied by a fictitious atom with site energy a.
Then,

(8)

where

T'= V'(I+G T')

and

G =G'+G Y'G' (5)

where V'= ~0)(f, —o)&0 ~, and 0 denotes the central
site.

Now the Green's function G' can easily be ex-
pressed in terms of the effective-medium Green's
function G'

G'= Q+ G T'G,

II. FORMULATION

V =g lf)(., -~)&fl. (8)

We consider a binary alloy 4, „B„described
within a single-band tight-binding approximation.
The one-electron Hamiltonian is

a=+ (,)&g(e, + Q I „);&&,(=n+w

O'= G' — i a, —o i
kgc

(4)

Only the diagonal terms z,.'s are assumed to be
random and can have values c„or e~ with the
probability 1-x or x, respectively. The transfer
integrals k,, are assumed to be nonzero only be-
tween nearest neighbors.

The alloy Green's function is defined as

Gb) =(~1—&) ',
where z =E+ig is the complex energy having an
infinitesimal positive imaginary part q and I is the
unit matrix.

In the MCPA formalism the whole system is
divided into clusters containing several sites. The
coherent potential matrix Z which describes the
effective medium, is then an n &&n matrix, '~

where n is the number of sites in the cluster.
Within the SCBSA one chooses it to be a scalar
coherent potential as in the usual CPA, i.e., Z
=0I„, where I„is the n &&n unit matrix. The effec-
tive-medium Green's function is then

c (z) =[@-0)l w]-'.

Here we consider clusters consisting of a central
site and its Z nearest neighbors. Then analogous
to the single-site CPA, one such cluster c is
thought to be immersed in the effective medium.
The Green's function G' for such a system can be
written

fEs $Es 00 00 les

Equation (6) is then solved to obtain

where
fjes

i g
fjEs

G(R) is the matrix element of G between two near-
est-neighbor sites, and 8 denotes the nearest-
neighbor separation. For a single-band model the
matrix elements of G depend only on the separation
between the two sites. Also,

p G;., =G(0)+—[G(0) —r]' Q T;.,
les fCs

+ [2r G(o)+ (z 2)r']T
and

—g G;,G;,=G'(R)(i+zrT)' i+—[c(o) r]g f„
les Z JEs

+ —IG(0) -p)' 2 ~i&)
les

s denotes the shell of nearest neighbors.
In order to determine the effective medium with-

in the SCBSA, we choose the following condition:

Q(—Q G*,)P, =G(0),

where p, is the weighted probability of a cluster
configuration and G(0) is the diagonal matrix ele-
ment of G.

The matrix elements of G' are obtained from
Eq. (5):
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(14)

Here the matrix elements of the effective-medium
Green's function between two different sites of the
shell s are approximated by I', which is defined as

mond lattice structures. The input densities of
states for the pure constituents were calculated
using the continued fraction coefficients. " The
densities of states calculated at the boundary site
of the cluster using the condition (21) are repre-
sented as SCBSA(B), whereas the densities of
states calculated at the center of the cluster using
the condition (23) are represented as SCBSA(C).

This approximation was initially suggested by
Brouers et al." to simplify the calculations in
their study of the SCCSA. It is exact in the case
of a linear chain.

Expressions for T and 'l'«are obtained from
Eq. ('I):

The quantities G(E) and I' can easily be ex-
pressed'" in terms of G(0) to obtain

G(E) =[(z —(r)G(0) —1]/oo (18)

p'(E) = — Im g G;,
7TZ (20)

p(E) = I/vlmG(0),

respectively; and (ii) at the center of the cluster
using the relations

p'(E) = -1/)) ImGoo (22)

(23)

The expression for G;, can be obtained from (5)

oo
= Goo/( Goo +oo)

where G» is given by Eq. (11).

(24)

III. RESULTS AND DISCUSSION

We have calculated the densities of states for
binary alloys having the simple cubic and the dia-

I' = [Z(g —o)G(R)/o) —G (0)]/(Z —1) .
Once the effective medium is determined by solving
the condition (9), the partial and the total averaged
densities of states are then determined in the. two
following ways: (i) at the boundary of the cluster
using the following expressions for the partial and
total averaged densities of states:

A. Simple cubic lattice

Our results for binary alloys having the simple
cubic lattice structure are shown in Figs. 1-5.
The half bandwidth of the pure constituents is taken
to be unity. In Fig. 1, we have shown the minority
band of an alloy with &=1.25, and x=0.05. The
CPA result', and the results obtained from two
other cluster theories, the SCCSA" and the Bethe-
Peierls approximation' (BPA) of Brouers et al;,
and the method of moments" have also been shown
for comparison. It can be easily noticed from the
figure that the various peaks in the SCBSA(B) and

the SCBSA(C) are centered at about the same en-
ergies as in the SCCSA, the BPA, and the method
of moments. However, we also notice a difference
in the results obtained from the SCBSA(B), and
the SCBSA(C). In the case of the SCBSA(B) various
peaks are less prominent as compared to the re-
sults obtained from other methods. Particularly
the central peak in the SCBSA(B) which looks very
similar to the one in the CPA, is not well de-
fined. The results of the SCBSA(C) agree fairly
well with the SCCSA, the BPA, and the method of
moments, except that the peaks in the SCBSA(C)
are more intense. The method of moments gives
a band which is wider than the one obtained from
any other method mentioned here. This is because
of the smaller size of the cluster considered in the
SCBSA, or the SCCSA, as compared to the method
of moments where a cluster of 7175 atoms has been
used. Lifshitz' has argued that the tailing becomes
more prominent as we increase the cluster size
very much. The results of the moment method
given here are more or less the same as the exact
results obtained by Alben et al." Therefore the
SCBSA(C) results are in good agreement with the
exact results.

Figure 2 corresponds to an alloy with ~ =1.0, and
x =0.5. The SCBSA(B) results are more or less
the same as the CPA results (not shown in the
figure). The SCBSA(C) result shows peaks at E
=+0.635 which agrees well with the one obtained
from the method of moments. This corresponds to
configurations where a B(A) atom is surrounded
by 5 A or 5 A (5 B or 5 B) atoms as can be seen
from Fig. 3 where we have plotted the partial. den-
sities of states in the SCBSA(C). However, the
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FIG. &. Minority band of
the density-of-states
curves for a binary alloy
having the simple cubic
(sc} lattice structure. The
half bandwidth co is taken
to be unity, 6=1.25, and
x = 0.05.
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we extended these calculations to the complex en-
ergy plane. n . ig.l I Fig. 5 we have plotted contours of
equal, real, and imaginary parts of the averaged
0 ' f t' The correct solution was chosen
by starting at a very large value of the energy
where we know the asymptotic behavior of the
averaged Green's function (G =1/z). This root
was then followed towards the energy region of
interest. It is noticed that branch points off the
real axis occur for He@ = 0.91 where a branch cut
has been drawn parallel to imaginary g axis. The
density of states is different if we cross . ~ =Z = 0491
from right to left, and from left to right. From
this calculation it is apparent that the SCBSA is

l t' ' the strong scattering regime and

for concentrated alloys. It is our conjecture thai
one will face the problem of nonanalyticity of the
average d Green's function in a region where the
partial densities of states become negative. These
difficulties have already been discussed in detai
by ¹ickel and Butler" and Butler. '

B. Diamond lattice

Gur results for binary alloys having the diamond
lattice structure are shown in Figs. 6- .6-9. The
half bandwidth of the pure constituents has been
taken to be 4. In Fig. 6 we have shown the results
for ~ = 1 0 and x = 0.5. The curves are symmetric4 j
about E =0. As in the case of the simple cubic

l
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S =1.0 FIG. 6. Density-of-states

curves for a binary alloy
having the diamond lattice
structure. 6 = 1.0, x = 0.5,
and co= 4.0. The curves
are symmetric about E
= 0. The SCCSA result
shows a discontinuity at
E = 2.25. The result of
SCBSA(C) and those of
Kumar et al . are very much
similar.
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= 0.1. This corresponds to the split band region.
The SCBSA(B), as well as the SCBSA(C} show fine
structure in the densities of states. However, the
peaks are more intense in the case of SCBSA(C).
There are no results available for this particular
case from other methods. As in the case of the
simple cubic alloys, here we also face the problem
of negative partial densities of states. In the case of
the SCBSA(B)the partial densities of states are shown
in Fig. 8. In a small region of energy between E
=3.461, and E=3.473, some of the partial densi-
ties of states become negative (this feature is
shown in an insert at the lower part of the figure),
whereas the total averaged density of states is
positive. In the case of the SCBSA(C) the partial
densities are positive in this region. But near
E= 3.2, in both the SCBSA(B) and the SCBSA(C),
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FIG. 7. Minority band of the density-of-states curves
for a binary alloy having the diamond lattice structure
5=2.0, x=0.1, and ~=4.0. The horizontal arrow shows
the region where some of the partial densities of dates
are negative.
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lattice, the SCBSA(B) results are not much differ-
ent from the CPA results, except that in the case
of the SCBSA(B) the band is wider and there is no
band gap. On the other hand the SCBSA(C) shows
a peaky structure. This matches mell with the re-
sults obtained from the disorder field formalism"
(DFF), and the cluster CPA of Kumar et al." The
only marked distinction between the SCBSA(C} re-
sult and the DFF is that in the DFF the band splits,
whereas in the SCBSA(C) it does not. In fact the
DFF results obtained by Mookerjee are not reliable
at the band edges and at the center of the band be-
cause of some mistakes in the calculation of the
environment. ' The DFF is equivalent ' to using
a full cluster self-energy as in the MCPA. There-
fore we see that the SCBSA(C) is a good approxi-
mation for the diamond lattice. In contrast to the
simple cubic lattice, here there is no difficulties
of nonanalyticity or negative partial densities of
states with 6=1.0, and x=0.5. The SCCSA is
nonanalytic for this ease. %e expect that even for
the diamond lattice, the band will not split for &

=1.0, and x=0.5, if an exact calculation is done
similar to the one done by Alben et al.2 foi the
simple cubic lattice.

In Fig. 7 we have shown the minority band of
relatively dilute binary alloy with ~ = 2.0, and x

O
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FIG. 8. Plots of. the partial densities of states in the
minority band in the SCBSA(B). The parameters are the
same as in Fig. 7. The solid, dashed, long-dash, dash-
dot, and dash-double-dot lines, respectively, corres-
pond to cluster configurations in which an impurity atom
B is surroundedby4B, 3&, andlA, 2B and2A, lB,
and 3 A and 4 A. See the missing peaks near E = 3.2.
The arrow indicates the region where some of the par-
tial densities of states become negative. This has been
shown on an enlarged scale in the lower part of the
figure. Also in the region near E= 3.2 Some of the
partial densities of states are negative.
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FIQ. 9. Densities-of-states curves for binary alloys
with 5=2.0, and @=0.5, and having the diamond lattice
structure. The curves are symmetric about E= 0.

some of the partial densities of states are nega-
tive. In the SCBSA(C) even the total averaged den-
sity of states is negative. This shows that the
applicability of the SCBSA for the diamond lattice
in the strong-scattering regime is limited and
questionable.

In Fig. S results have been presented for an alloy
with 5=2.0, and x=0.5. The SCBSA(B) is more
or less similar to the CPA result, but the
SCBSA(C) shows a peaky structure. Here we do
not face any problem of nonanalyticity or the nega-
tive partial densities of states.

C. Conclusion

From these results we conclude that the
SCBSA(C) is reasonably good approximation for the
calculation of the electronic structure of disor-
dered. alloys. But it should be applied with care,
because in the strong-scattering regime it leads
to negative partial densities of states and averaged
Green's functions which have singular points off
the real axis. Our calculations show that the region
of analyticity of the SCBSA is much greater" than

the SCCSA, and thai it depends on the underlying
lattice structure of the alloy. This is apparent
from our calculations on the simple cubic and the
diamond lattice structures. The SCBSA(C) is
found to be successful for diamond lattice over a
larger range of parameters in contrast to the sim-
ple cubic lattice.

The negative partial densities of states observed
in both the simple cubic and the diamond lattices,
are unphysica, l. We feel that this defect is inherent
in the boundary-site condition and it does not
stem from the additional approximation that we in-
troduced through Eq. (15). Equation (15) approxi-
mates the matrix elements of G between two dif-
ferent sites of the shell by their averaged value
I' (this is also equivalent to neglecting detailed
configurations of the shell for a fixed number of
different kinds of atoms) and is exact on a diamond
lattice. We have not searched for the lowest value
of & and x at which the nonanalytic behavior of the
averaged Green's function (or the negative partial
densities of states) starts showing up, but for the
simple cubic alloys with 6=1.0, and x=0.5, and
for alloys having the diamond lattice structure
with &=2.0, and x=0.1, these unphysical features
are there as seen in Figs. 3 and 8, respectively.
Therefore, whereas the SCBSA is equivalent to the
MCPA in the case of a linear chain, it is found
not to be so for three-dimensional lattices. We
feel that the problem of nonanalyticity will be un-
avoidable in any cluster theory where the coherent-
potential matrix is approximated by a scalar co-
herent potential. Perhaps one should .se smaller
clusters with proper symmetries, and then treat
these exactly.
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