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Some yroyerties of a charged two-dimensional isotroyic Fermi liquid
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The results obtained by using the Landau-Silin theory of a charged Fermi liquid to calculate some

properties of an interacting two-dimensional electron gas are presented. The static properties considered are
the specific heat, spin susceptibility, and compressibility. The dynamical properties discussed are the
frequency-dependent magnetoconductivity tensor and the wave-vector-dependent transverse dynamic spin

susceptibility in the long-wavelength limit. We compare these results with the analogous we11-known formulas

valid for a three-dimensional Fermi liquid and conclude that there are no new sects associated with the
1educed dimensionality.

I. INTRODUCTION

The purpose of this note is to present the re-
sults of calculations of some properties of a two-
dimensional Fermi liquid and to compare these
results with analogous standard formulas valid
for a three-dimensional system. I find that,
aside from some unimportant changes in overall
multiplicative factors, there are no new or un-
expected effects associated with the reduced di-
mensionality. The details of the calculations are
omitted because the Landau-Silin"' theory of a
charged Fermi liquid has been fully discussed
in the literature' and the extension to two-di-
mensional systems is straightforward. '

al Fermi liquid, it is useful to define two sets
of dimensionless parameters (A,) and (B,) to
characterize the interactions. These parameters
are defined by the expansions

va(k ~ k') = QA, g, cosl(P —P'), (2.2a)

gi =b~, o+2(& —bi, o) (2.2b)

for l = (0, 1, 2, . . . , ~) and g, = 0 otherwise. On
inverting the above expansions, we find that

A

and similarly for b(k k'). We have introduced,
v =m*/v, the quasiparticle density of states per
unit area for both spin directions and have defined
the weight function

II. NOTATION

The energy h ~(k) of a. quasiparticle of mo-
mentum k can be written in the usual form

g (g) =h,~(k)+25 ~ P a(k ~ k') bf(k')

~
d(f&

A, = v — a(k ~ k') cos l($ —P')
0 27T

and similarly for 8,.

III. STATIC PROPERTIES

A. Specific heat

(2.2c)

+2 m 8
~ Q b($ k') 5((k'), (2.l)

where 8 8(k) is the energy of a single excited
quasiparticle which in the presence of an external
magnetic field H, is given by

h 8(k) = (k'/2m +) 5, -g ps H, a ~, (2.1a)

where rn* is the quasiparticle mass and the other
quantities have their usual meanings. 'The func-
tions a(k ~ k') and b(S ~ 5') describe, respectively,
the spin-independent and exchange interactions
among the quasiparticles. The quasiparticle num-
ber. and spin-density functions are denoted, re-
spectively, by 5f (k) and 5$(k). In an isotropic
two-dimensional Fermi liquid & = ~k

~
(cosp, sing)

so that the Fermi perimeter (the analog of the
Fermi surfa. ce in three dimensions) is a circle
of radius k~. As in the case of a three-dimension-

The specific heat at constant volume C„ is given
by

C„=3pff k~T~ (3.2)

which is identical in form to the standard result
valid for a three-dimensional Fermi liquid.

B. Spin susceptibility

The susceptibility X is easily obtained by cal-
culating the magnetization M=X H, produced by
applying an external magnetic field. We find that

where F =E —pÃ is the free energy of the system.
A simple calculation shows that the low-tem-
perature specific heat is given by
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X/X"' = (m*/m)/(1+B. ),
which is the same as for a three-dimensional
Fermi liquid.

(3.4)

X=(g p, )'v/4(1+B, ),
which is identical in form to the spin susceptibility
of an isotropic three-dimensional Fermi liquid.

It is useful to compare y with y"', the spin
susceptibility of noninteracting electrons. The
ratio X/X~" is given by

1 +A~ (d+

((d + AT +) —(d ~+

(4.2)

with (o + = +,(1+A,) and 7*= v'/(1+A, ) where ~,
= ~e ~If,/m*c is the quasiparticle cyclotron fre-
quency and 7' is a phenomenological momentum
scattering time. For a uniform Fermi liquid it
is easy to prove that the mell-known result,

C. Compressibility
m*/m = 1+2, , (4.3)

The compressibility, I(:, of a two-dimensional
quasiparticle gas can be defined by

(3.5)

~ = v/n', (1+A,), (3.6)

where n, is the number of quasiparticles per unit
area. The ratio of x to the compressibility, I&"',
of noninteracting electrons is

x/~'0' = (m +/m)/(1+A, ), (3.7)

which is the same as for a three-dimensional
Fermi liquid. From the compressibility we cal-
culate the speed of sound c,. Vfe find that

c', = k2~(1+A,)/2mm + = -,'(m +/m) v~(1 yA, ) . (3.8)

The above equation is identical to that which one
finds for a three-dimensional Fermi liquid if the
factor of ~ is replaced by 3.

where I' is the pressure and A is the area of the
sample. Performing a calculation which parallels
one given by Pines and Nozieres' in discussing
the compressibility of a three-dimensional charged
Fermi liquid, we find that

is still valid in two dimensions.

8. V4ve-vector-dependent transverse dynamic-spin susceptibility

The transverse wave vector and frequency-
dependent spin susceptibility, y, (q, w), has been
calculated to O(q') in the presence of an external
magnetic field H, =II,z'. This response function
is obtained by calculating the transverse mag-
netization, M, (q, u&) =X.(q, to) h„(q, &u), produced
by applying a weak frequency and wave-number
dependent magnetic field, h, (q, a&) =h„(q, v)
+ih, (q, &u), transverse to the static field H, . We
find that

(4.4)

where X is the static susceptibility calculated
previously [e.g. , see Eq. (3.3)], ~~=gpsH, is
the Larmor spin-precession frequency, 1/r,*
=1/r, (l+Bo) where r, is a phenomenological spin-
flip scattering time, and D, is a spin-diffusion
constant. To see the effects of the quasiparticle
interactions, we consider the case Bo finite and
I3, =O. In this case D, is complex and in the ab-
sence of collisions (i.e., r-~) is pure imaginary.
The susceptibility then has a pole at

(d = (dJ +q Bog&/2[((d& Bo) —M ] (4.5)
IV. TIME-DEPENDENT PROPERTIES

A. Magnetoconductivity tensor

The frequency-dependent conductivity tensor
has been calculated in the presence of an applied
magnetic field H, =H, z. We find that

which gives the dispersion relation for paramag-
netic spin waves. The dispersion relation (4.5)
is essentially identical, in the corresponding
bmit, to that of a charged three-dimensional
Fermi liquid (the factor of 2 in the second term
is replaced by a factor of 3).

2 1+A.
~

(d+L/t+
(r„„((o)= o„((o)= in, e'

(4.1)
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