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Some properties of a charged two-dimensional isotropic Fermi liquid
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The results obtained by using the Landau-Silin theory of a charged Fermi liquid to calculate some
properties of an interacting two-dimensional electron gas are presented. The static properties considered are
the specific heat, spin susceptibility, and compressibility. The dynamical properties discussed are the
frequency-dependent magnetoconductivity tensor and the wave-vector-dependent transverse dynamic spin
susceptibility in the long-wavelength limit. We compare these results with the analogous well-known formulas
valid for a three-dimensional Fermi liquid and conclude that there are no new effects associated with the

reduced dimensionality.

I. INTRODUCTION

The purpose of this note is to present the re-
sults of calculations of some properties of a two-
dimensional Fermi liquid and to compare these
results with analogous standard formulas valid
for a three-dimensional system. I find that,
aside from some unimportant changes in overall
multiplicative factors, there are no new or un-
expected effects associated with the reduced di-
mensionality. The details of the calculations are
omitted because the Landau-Silin*2 theory of a
charged Fermi liquid has been fully discussed
in the literature® and the extension to two-di-
mensional systems is straightforward.*

II. NOTATION

The energy guB(E) of a quasiparticle of mo-
mentum k can be written in the usual form

8,5(R)=8 5(R) 426, , > alk-kr) of (k")
<
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where é’aB(E) is the energy of a single excited
quasiparticle which in the presence of an external
magnetic field H, is given by

8 o5(K) = (R2/2m*) 6, 5 —gup Hy Gog, (2.1a)

where m* is the quasiparticle mass and the other
quantities have their usual meanings. The func-
tions a(k - %’) and b(E - £’) describe, respectively,
the spin-independent and exchange interactions
among the quasiparticles. The quasiparticle num-
ber and spin- den51ty functions are denoted, re-
spectively, by 6f (k) and ﬁzp(k) In an isotropic
two-dimensional Fermi liquid k= Ik! (cos¢, sing)
so that the Fermi perimeter (the analog of the
Fermi surface in three dimensions) is a circle

of radius 2. As in the case of a. three-dimension-

18

al Fermi liquid, it is useful to define two sets

of dimensionless parameters {4,} and {B,} to
characterize the interactions. These parameters
are defined by the expansions

va(k-k')= ) A,g cosl(¢-¢"), (2.2a)
1=0

and similarly for b(l% -I;’). We have introduced,
v=m*/m, the quasiparticle density of states per
unit area for both spin directions and have defined
the weight function '

g,=51,0+2(1-—61,0), (2.2b)

for1=(0,1,2,...,») and g, =0 otherwise. On
inverting the above expansions, we find that

A,:Vfom-;i—?a(lgoﬁ')cosl(d)—d)') (2.2¢)

and similarly for B,.

HI. STATIC PROPERTIES
A. Specific heat

The specific heat at constant volume C, is given
by

C,= (gi) (3.1)

where F =E - uN is the free energy of the system.
A simple calculation shows that the low-tem-
perature specific heat is given by

C,=3VvmkiT, v (3.2)
which is identical in form to the standard result
valid for a three-dimensional Fermi liquid.

B. Spin susceptibility

The susceptibility y is easﬂy obtamed by cal-
culating the magnetization M= X HO produced by
applying an external magnetic field. We find that
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X=(g#B)ZV/4(1 +BO)’ \0.3)

which is identical in form to the spin susceptibility
of an isotropic three-dimensional Fermi liquid.

It is useful to compare y with x‘*, the spin
susceptibility of noninteracting electrons. The
ratio x/x‘ is given by

X/X© =(m*/m)/(1+B,), (3.4)

which is the same as for a three-dimensional
Fermi liquid.

C. Compressibility

The compressibility, k, of a two-dimensional
quasiparticle gas can be defined by

1 3P

E=_A 0 (3.5)

where P is the pressure and A is the area of the
sample. Performing a calculation which parallels
one given by Pines and Noziéres® in discussing

the compressibility of a three-dimensional charged
Fermi liquid, we find that

k=v/n3(1+4,), (3.6)

where 7, is the number of quasiparticles per unit
area. The ratio of k to the compressibility, k‘*,
of noninteracting electrons is

K/ =(m*/m)/(1+A,), 3.7

which is the same as for a three-dimensional
Fermi liquid. From the compressibility we cal-
culate the speed of sound ¢,. We find that

ci=ki(1+A,)/2mm* =§(m;*/m)v§(1 +A,). (3.8)

The above equation is identical to that which one
finds for a three-dimensional Fermi liquid if the
factor of 3 is replaced by 3.

IV. TIME-DEPENDENT PROPERTIES
A. Magnetoconductivity tensor

The frequency-dependent conductivity tensor
has been calculated in the presence of an applied
magnetic field Hy=H,2. We find that

114, W 43 /T*
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0 (W) =0, (w)=inge el ey et

(4.1)
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and

2 1’*“41 wX
m*  (w+i/T¥)2 = wi? ’

(4.2)

with w¥=w,(1+A4)) and 7*=7/(1 +A,) where w,
= |e|H,/m*c is the quasiparticle cyclotron fre-
quency and 7 is a phenomenological momentum
scattering time. For a uniform Fermi liquid it
is easy to prove that the well-known result,

m*/m=1+A,, (4.3)

Opy(W) =0, =n e

is still valid in two dimensions.

B. Wave-vector-dependent transverse dynamic-spin susceptibility

The transverse wave vector and frequency-
dependent spin susceptibility, x,(¢, w), has been
calculated to O(g?) in the presence of an external
magnetic field Hy=H,2. This response function
is obtained by calculating the transverse mag-
netization, M,(q,w)=yx,(q,w)h,(q,w), produced
by applying a weak frequency and wave-number
dependent magnetic field, &,(g, w)=h,(q, w)
+ihy(q, w), transverse to the static field ﬁo. We
find that

X(—wy +1/7%)
w—-w, +1/T¥+iDg?’

X.(a, @)= (4.9)
where ¥ is the static susceptibility calculated
previously [e.g., see Eq. (3.3)], w, =guzH, is

the Larmor spin-precession frequency, 1/7%
=1/7,(1+B,) where 7, is a phenomenological spin-
flip scattering time, and D, is a spin-diffusion
constant. To see the effects of the quasiparticle
interactions, we consider the case B, finite and
B,=0. In this case D, is complex and in the ab-
sence of collisions (i.e., T~ =) is pure imaginary.
The susceptibility then has a pole at

w=w; +q*B,v%/2[ (0, By)? - w?] | (4.5)

which gives the dispersion relation for paramag-
netic spin waves. The dispersion relation (4.5)
is essentially identical, in the corresponding
limit, to that of a charged three-dimensional
Fermi liquid (the factor of 2 in the second term
is replaced by a factor of 3).
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