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Turbulence in superfluid helium: Steady homogeneous counterflow
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The fully developed turbulent state of a superfluid is considered in the simple limit of homogeneous

counterflow. The vortex tangle is described in statistical terms which focus on the distribution of line length

with respect to the local self-induced velocity &, of the line. The equation for the motion of a line element is

found to contain driving terms arising from the interaction of the normal fluid with the line element, and

randomizing terms arising from its self-induced motion. A geometrical argument indicates that a random

tangle has a characteristic distance over which all local derivatives randomize. A dynamical argument

suggests that line-line crossings lead to a characteristic randomization distance equal to the typical interline

spacing 8, and to a characteristic randomization time of order 8/(u, ). Setting the geometric

randomization distance equal to 5 then allows one to model the effect of the self-induced motion as a kind of
random walk. The resulting complicated differential equation predicts steady-state properties in good

agreement with those observed experimentally. It is also found that the well-known Vinen equation follows as

an accurate consequence of the theory. The physical interpretation of this equation, however, turns out to be

different from that which was originally proposed.

I. INTRODUCTION

The flow of superfluid helium in channels of
various geometries has been investigated in an
enormous number of experiments. These range
from studies of unsaturated helium films, where
the characteristic channel diameter d approaches
a few angstroms and only the superfluid compon-
ent can move, to the kind of experiment of par-
ticular interest to us here where d lies in the
range 10 '-1 cm and both the normal and super-
fluid velocities can be large. The classic version
of the wide-channel experiments is illustrated in
Fig. 1. A steady heat input Q generates an excess
of elementary excitations in the dead end, leading
to a volume flow rate of normal fluid Q/pST out
through the channel. Here p is the total fluid den-
sity and S is the entropy per unit mass, carried
entirely by the normal fluid. In order to conserve
mass, the normal fluid motion must be balanced
by a flow of superfluid p„Q/pPT in through the
channel, where p„and p, are the normal and su-
perfluid densities, respectively. In this way, a
steady-state counterflow is set up with an average
normal fluid velocity V„=Q/ApST and an average
superfluid velocity V, =-p„Q/Ap, pST, where& is
the cross-se. ctional area of the channel and the
positive direction is taken outward. Other wide-
channel experiments in which only V, is nonzero,
or in which V„and V, are independently variable
have also been reported, but those done in the
simple counterflow geometry have been the most
extensive and seem to give the least ambiguous
results.

A flow such as that shown in Fig. 1 will generate
observable temperature and pressure differences

between the two ends of the channel, with the char-
acteristic behavior shown in Fig. 2. At low veloc-
ities both &1 and AP exhibit a linear dependence
that can be quantitatively understood from the
usual two-fluid equations by assuming the laminar
flow of both the normal and superfluid components
through the channel. ' As the flow is increased to
some critical value, a new regime appears which
is characterized primarily by a rapid nonlinear
increase in &T, although careful measurements
also show small systematic variations in bP. The
onset of this extra dissipation arises from the in-
stability of the laminar two-fluid motion against
the appearance and growth of quantized vortices
in the super) luid. The velocity field near the core
of a quantized vortex varies rapidly over distances
comparable to the wavelengths of the ambient el-
ementary excitations and it will scatter these
strongly. Thus-, the generation of quantized vor-
tices provides a mechanism for the dissipative in-
teraction of the normal and the superfluid compon-
ents of the motion.

The breakdown of laminar flow seems to be de-
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FIG. 1. Schematic of a typical counterflow experiment.
The measured quantities are ET and AP.
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FIG. 2. Typical qualitative behavior of 6, I' andAP,
in arbitrary units.

termined, first, by the mechanis'ms available for
generating vortex-line perturbations in the laminar
flow field and, second, by the conditions under
which such perturbations, once they are present,
can grow because of their nonconservative inter-
action with the normal fluid and the walls of the
channel. The interplay of these two factors leads
to a very complicated phenomenology for the onset
of dissipation, with at least two well-defined types
of possible behavior. In sufficiently narrow chan-
nels the controlling element appears to be the rate
at which microscopic vortex fluctuations of a cri-
tical size are thermally nucleated in the fluid.
Each such fluctuation is assumed to grow and an-
nihilate at the walls of the channel, resulting in
a well-defined amount of energy exchanged be-

I

tween the superfluid and the thermal reservoir.
In this intrinsic regime, ' the onset of dissipation
is found to exhibit a number of regular and repeat-
able features consistent with the idea of a thermal-
ly activated relaxation process. In wide channels,
however, one observes R distinctly diff erent extrinsic
behavior, which is qualitatively similar to the onset
of turbulence in a classical fluid, and which is
strongly influenced by geometrical effects as well
as ambient noise levels. In this regime, the dis-
sipation at onset is often observed to switch on
and off intermittently and to show hysteresis in a
manner suggesting that vortex lines are randomly
initiated by end effects or vibrations, and then

grow or decay in some irregular way which de-
pends on the detailed dynamical interaction of the
line with the walls of the channel and the elemen-
tary excitations. Beyond the onset region, the
dissipation becomes well defined, presumably be-
cause any vortex-line perturbation will grow into
a random self-perpetuating vortex tangle filling
the whole channel and possessing mell-defined
average properties.

It seems to be rather difficult to interpret the
complicated properties of the onset region, but the
fully developed turbulence achieved as the flow
rates are i~icreased should be more amenable to
theoretical analysis. As the amount of vortieity
in the Quid increases, the microscopic vortex
tangle grows denser and the characteristic inter-
line spacing 5 becomes smaller. When 5 becomes
much smaller than the typical dimensions of the
channel, the dynamics of the vortex tangle at a
given point in the channel is presumably determin-
ed by its local properties and not by the geometry
of the channel. Similarly, the random vorticity
sources which are important in producing the in-
termittent behavior characteristic of the onset
regime should become irrelevant when vorticity
is constantly being created and destroyed every-
where by the hydrodynamic interaction between
the normal fluid and the vortex tangle.

Indeed, there is considerable evidence that the
fully deve'oped turbulent state has some remark-
ably simple and general features. The most gen-
erally recognized of these was indicated by the
early' observation that in the turbulent regime the
excess temperature gradient along the channel in
experiments of the type shown in Fig. I is simply
proportional to Q'. From a phenomenological
point of view, one can derive such temperature
gradients by adding a mutual friction force' acting
between the normal and superfluid components to
the usual two-fluid equations describing laminar
flow. This force density takes the form

7,„= A(T)p,p„(V„, v,)'V„„-(l)
I

where V„,=p„—p, , A(T) is an experimentally de-
termined function of temperature, Rnd 0 ls R

small, adjustable parameter of order 1 cm sec '.
In a beautiful experiment wherein he measured
the attenuation of a, small and rapidly varying sec-
ond-sound field v„, by the turbulence, linen' found
a frictional force density

F' = A'(T)p, p„(V„,—v, )~-v„, . (2)

As noted above, F,„arises from the scattering of
the elementary excitations, which compose the .

normal fluid, by the dense mass of quantized vor-
tex lines characterizing the turbulent state. Since
this force must be a linear function of the small
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perturbing field v„„Vinen concluded that the ob-
served relationship (2) implies that the steady-
state density of the vortex tangle has the depen-
dence

I.= a(T)(V„,—v,)', (3)

~ii3 (V V )7i 3 (4)

That this dissipative contribution should indeed
be discussed in terms of a superfluid eddy viscos-
ity is, however, by no means established.

In addition to those experiments in which the
temperature and pressure differences between the
two ends of a channel are measured, there have
been several ingenious attempts to gain more de-
tailed insights into the nature of the superfluid
turbulent state. We have already mentioned the
work of Vinen using second sound to detect the
vortex tangle. This technique is currently being
applied by Moss and co-workers' to investigate
fluctuations in the vortex-line density. Another
technique uses externally injected ions. Although
it raises certain additional difficulties of inter-
pretation, it has perhaps the. greatest potential.
Ions are trapped and released by the core of a
quantized vortex in a reasonably well-understood
way, and they can in principle be used to probe
the local structure of the turbulent state. So far,
several interesting insights have been obtained by.
means of these probes. The initial study" of the
attenuation of an ion current as it passes through
the turbulence provided striking additional evi-
dence for the physical picture of a dense vortex
tangle permeating the superfluid. Further mea-

where I denotes the line length per, unit volume,
and a(T) can be determined from the experimental
function A'(T). In this early work it was assumed
that A' and A are the same. However, since the
vortex tangle is not in general isotropic, the re-
lationship between A and A' is somewhat more
complicated, and (I) and (3) in principle provide
different kinds of information. '

Because the temperature gradients observed ex-
perimentally are rather large, the usefulness of
the mutual friction idea has long been established.
Somewhat more controversial has been the con-
cept of an additional effective force F„acting
on the superfluid alone, which may arise from an
"eddy viscosity" associated with the motion of the
vortex tangle. Brewer and Edwards' did observe
that the onset of turbulence led to small excess
differences AP', which could be ascribed to the
existence of such a force. The more recent mea-
surements of Childers and Tough, ' although limit-
ed to narrow channels, show that this excess pres-
sure drop also seems to have a rather simple
variation, something like

surements along these lines" have lent detailed
support to the experimental relationship expressed
by Eq. (3). Perhaps more interesting is the dis-
covery of Ashton and Northby" that in simple
counterflow the vortex tangle as a whole has an
average drift velocity (u, ) with respect to the
superfluid rest frame. Again, this quantity ap-
pears to obey a simple law

(u, ) = I (T)V„,. (5)

The existence of (u,)a 0 is of importance in demon-
strating that the vortex tangle is not isotropic in
its properties. While such a result is not surpris-
ing given the anisotropic nature of the counterflow
which drives the turbulence, previous discussions
had always assumed an isotropic vortex tangle.

It is important to realize that relationships (I)-
(5) have at present only a very approximate signi-
ficance. All of the experiments discussed above
have been interpreted by assuming that the local
driving velocities in the channel are the average
flow velocities V„and V„and that the derived
quantities F, F„L, and (u, ) are constantthrough-
out the channel. This, of course, is a gross
simplification. In actual fact, the normal fluid
velocity must vary from a maximum value of or-
der V„at the center of the channel to zero at the
walls, and a realistic analysis should allow for a
corresponding variation inthe local properties of
the vortex tangle. Thus, while various experi-
menters have claimed to measure accurate values
of, e.g. , F and 1., such values can be meaning-
ful only in a semiquantitative sense.

We here try to sum up what is a very complica-
ted experimental situation. The functional rela-
tionship between E,„and V„, of Eq. (I) appears to
be a well-established property of uniform vortex
turbulence, having been observed by many inves-
tigators. The coefficient A(T) derived from vari-
ous experiments is given in Fig. 3. For counter-
flow experiments (solid curves), one sees a rea-
sonably universal temperature dependence, but
only approximate agreement in the magnitude of
A. It is one of the features of the theory to be de-
veloped in this paper that E,„ is predicted to oe a
function of the relative velocity V„, only, regard-
less of the actual values of V„and V, . It is there-
fore most interesting to note (curve d) that a mea-
surement" in which only V„ is allowed to be non-
zero gives compatible results. An experiment"
in which only V, is nonzero (curve e) seems to
give a somewhat different temperature depen-
dence, but this appears to be contradicted by a
later explicit finding by the same group" that +
is indeed a function of V„, only. The properties
represented by Eqs. (2)—(5) have only been ob-
served in particular experiments. As we shall
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perhaps arising from line length lost through
line-line collisions in the vortex tangle. Here X,
is another unknown temperature-dependent para-
meter of order unity, and & is the quantum of
circulation h/m, . It is further proposed that the
effect of the walls on the turbulence in the channel
can be accounted for by simply assuming that the
vortex generation mechanism is inactive within
a characteristic distance from the wall for order
I. '~'. This is taken into account roughly by mul-
tiplying the vortex-generation term by a factor
(I —y/I. '~'d), with y a parameter of order one.
Thus the line density is supposed to be determined
by the Vinen equation

FIG. 3. Mutual friction coefficient observed under
various conditions: (a) d - 0.5 cm, counterflow (Bef. 5);
(b) d -0.01 cm, counterflow (Ref. 13); (c) d - 0.3 cm,
counterflow (Bef. 14) (d) d -0.03 cm, pure normal
fluid flow (Bef. 15); (e) d-0.03 cm, pure superf low
(Bef. 16).

see later, property (5) appears to have a physical-
ly straightforward interpretation in terms of the
expected nonisotropic nature of the homogeneous
turbulent state driven by uniform counterflow. The
explanation of property (4), however, is unclear,
pa, rticularly since hP' seems to arise from the
inhomogeneous nature of channel flow. An experi-
menter setting up his own experiment is likely to
observe features in addition to those already dis-
cussed. These can include the onset of turbulent
flow in the normal fluid, the dependence of A(T)
on the nature of the channel walls, and various
complic ated geometry-dependent effects.

Qn the theoretical side, the most substantial
contribution to our understanding of superfluid
turbulence has been the early work of Vinen. ' Qn
the basis of a suggestion by Feynman" that the
turbulent state consists of a tangled mass of quan-
tized vortex lines, Vinen developed a phenomeno-
logical picture of a vortex tangle maintained in
equilibrium by competing growth and a.nnihilation
processes. It was proposed, first, that the non-
conservative interaction between the normal fluid
and the vortex lines leads to a net vortex-genera-
tion term of the form

~n y 8/2B
N 2p

where B is a known parameter describing the in-
teraction between the line and the normal fluid,
and X, enters as an unkown function of temperature
of order unity. Second, Vinen postulated a decay
term

(8)

Given the freedom provided by its three adjust-
able functions X„ii„and y, Eq. (8) can be used
to fit various experiments. First, it gives an
equilibrium line density in agreement with Eq. (3).
Second, it has been used to describe experiments
on the transient behavior of vor'tex turbulence, '
although the interpretation of these experiments
in terms of homogeneous growth or decay mech-
anisms is open to question. Third, the work of
Childers and Tough"" has demonstrated the re-
markable fact that Eq. (8) gives a reasonable des-
cription of the steady-state vortex line density in
the region near the onset of turbulence, where 5
becomes comparable to d and the model of a dense
vortex tangle is not expected to hold at all. Final-
ly, ion experiments" show that vortex lines re-
lease ions at a rat;e proportional to 1.', R result
which has been interpreted in terms of a line-
annihilation rate with the same dependence. While
Vinen's equation has thus proved to be phenomeno-
logically useful, its theoretical pedigree is ob-
scure. 'The functional forms of the growth and an-
nihilation terms in Eq. (8) have been supported
only by dimensional arguments. and an assumed
analogy with classical turbulence, Not only is
there no clear justification of Eq. (8), our sub-
sequent discussion will in fact show that the dy-
namics of a vortex tangle is determined largely
by effects that were ignored in Vinen's derivation,
and that the physical interpretation of Eq. (8) must
be radically modified.

As the preceding summary indicates, our under-
standing of superfluid turbulence is quite incom-
plete. A number of ingenious experiments have
been devised to measure general properties of the
turbulent state, but these continue to be interpre-
ted in terms of a problematical phenomenology
which represented a great step forward in its
time, but which has neither been justified nor im-
proved upon in the last twenty years. 'The work
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presented here represents an effort to remedy
this situation. We take the simplest physically
relevant ease, that of a vortex tangle in homogen-
eous counterflow, and develop a description con-
sistent with the basic vortex-line dynamics. The
predictions of the theory are then compared with
those experimentally observed properties, rep-
resented by Eqs. (1), (3), and (5), which seem to
characterize homogeneous counterflow. Although
the derivation involves a number of gross simpli-
fying approximations, the problem is complicated,
and the resulting equation is still quite cumber-
some. We therefore derive in Sec. V a r'educed
equation which turns out to be exactly of the form
proposed by Vinen. A preliminary report of our
work has been published previously. "

I

II. MOTION OF A VORTEX LINE

Bu 7'P—'+(u ~ V)u =—
S S

p

V'. u =0.

(9)

(10)

A vortex-line velocity field in the superfluid will
change under the combined influence of the ideal
fluid equations and of the nonconservative forces
exerted near the core of the line by elementary
exeitations. We first consider the motion within
the context of the ideal fluid equations which here
take the form

P~ = P~s'x s"

S

FIG. 4. Self-induced velocity of a curved vortex fila-
ment.

arising from the macroscopic boundary conditions.
Although the prescription offered by Eq. (14) is

straightforward, its nonlocal nature will make it
an extremely tedious matter to calculate the time
development of a complicated vortex configuration.
An important simplification is obtained through the
localized-induction approximation. ' '2 If in Eq.
(14) the line is treated as an infinitely thin fila-
ment, the integral will diverge logarithmically as
$, approaches $, . The finite size of the core can
be taken into account. by introducing a suitable cut-
off parameter g» confining the integration to
) g, —t', ( ~

8 s/a ( ~

~ a,. Itis also convenient to assume
an outer limit of order

~

t', —t',
~ )

Bs/9 ( )
sR, where

A is the local radius of curvature of the line. Then
the local self induced velocity-at a point on the
line is given by

In addition, the superfluid velocity field u, obeys
the quantum restrictions

&s/et x 9's/s('
i es/a(l' (15)

Vxu, =0,

u, ~ dl=, n=0, &, 2, ~ ~ ~,nh
Vl 4

(12)

(14)

where s»= s($„t)—s($„t), and Q is the term

where m, is the mass of the helium atom. To
construct a quantized vortex one may simply draw
a continuous curve, represented by the parametric
form s($, t,), through the superfluid and require
that the circulation v about this line equal h/m, .
The solution of Eq. (11) subject to this boundary
condition then consists of a macroscopic potential
flow plus the field

(s —r) x ds
s( 71 0) 4 ~~ ~3

where r is any point in the fluid. Equation (9) im-
plies the Kelvin circulation theorem, which states
that every point on the vortex line must move with
the local fluid velocity. Thus the line moves ac-
cording to the equation

where P =(v/4m) ln(R/a, )." This neglects nonlocal
terms of order a/2m5, where 5 is the character-
istic interline distance to be discussed later.
When $ is takentobe the arc length, Eq. (15)simpli-
fies to u, =Ps'x s", primes denoting differentiations
with respect to the arc length. The geometrical mean-
ing of this relation is shown in Pig. 4. 'The rela-
tion

~

P'~ =R ' implies that the neglect of nonlocal
terms gives rise to fractional errors in u, of or-
der R[6 ln(R/a, )j '. Since a, is found experimental-
ly to be about 10 ' cm, the localized induction ap-
proximation is accurate to about 10%.

We now discuss the effect of the force exerted
by the normal fluid on the vortex core. A not-too-
highly-curved vortex placed in the two-fluid veloc-
ity fields v„and v, experiences a force per unit
length of the general form"

f = [D(v„' —v, —u, —u„)
+ D s (v„—vq —u( —u~q)]g, (16)

where the L indicates that only the components
perpendicular to the line are to be considered.
The quantity in parentheses is just the local aver-
age drift velocity of the excitation gas with re-
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FIG. 5. Values of the mutual friction parameters used
in our calculations.

spect to the vortex, which itself moves under the
combined influence of the local average super' luid
velocity v„ the self-induced velocity u, of Eq.
(15), and the velocity u„generated by the noncon-
servative force f. In general, a distinction is
drawn between v„and the effective normal fluid
velocity v„' felt by the vortex core, since the pre-
sence of the vortex core can lead to a local drag-
ging of the excitation gas.

The nonconservative motion u„of the vortex
arises from the fact that the external force f act-
ing on the core region must be passed on to the
superfluid as a reaction force. For a rectilinear
vortex this leads to

U =(s'X f)/p K. (17)

Equation (17) applies also to curved vortices" pro-
vided R» a, . One may then insert Eq. (17) into
Eq. (16) and solve for u„:

where

~tl 0 f
(

t )
zp

s x [s x (v„—v~ —U()] 1

2p
(18)

Bo= (2p/p„)Dp, r/[D2+ (p, v —D')2], (19a)

B|=(2p/p. )[D' D'(p. ~ —D')]/[D—'+ (p.~ D')']. —

(19b)
Substituting back into Eq. (16), one obtains for the
force per unit length exerted on the vortex

f = p,v(p„B,/2p) s'x [s—
' x (v„' v, g, )]

—p, f&(p+o/2p) s' x (v„' —v, —u, ) .
A bucket of helium rotating with an angular ve-

locity 0 is filled with axially directed vortex lines
distributed with a density 2Q/v per cm'. Thus,
the average force exerted by the lines on the nor-

mal fluid is -2Qf /g, with f given by Eq. (20).
This force can be determined by measuring the
extra second-sound attenuation which is observed
in rotating helium. Such experiments are custom-
arily analyzed in terms of Eq. (20), with v„' set:
equal to the local average v„, to yield phenomeno-
logical values of the mutual friction coefficients
B,B'. Throughout the following discussion Eqs.
(18) and (20) will be used in the same spirit, i.e. ,
with Bo&Bg set equal to the experimental coeffic-
ients B,B', and v„' set equal to v„. This neglects
the fact that roton-dragging corrections in a dense
vortex tangle may differ from those appropriate
to a rotating-bucket array. A similar approxima-
tion is involved in our assumption that these equa-
tions apply to vortex lines with characteristic
radii of curvature of order 10-' cm. The experi-
mental values of n = p„B/2p and n' = pQ'/2p have
been obtained fromthe paper by Lucas, 26 and are
shown in Fig. 5.

III. DYNAMICS OF A VORTEX TANGLE

By the application of Eqs. (15) and (18) it is
possible in principle to take a very complicated
vortex configuration and to calculate how it will
develop in time. Our much humbler aim is to find
a simple approximate description of the vortex
tangle which yet is sufficiently detailed to provide
an explanation of the experimental observations
discussed in Sec. I.

In order to avoid needless complications, one
may suppose that the turbulence is driven by a
constant and uniform counterflow velocity V„„
and that it is then possible to have a vortex tangle
with spatially homogeneous properties. For the
present we limit our considerations to this simple
case (Fig. 6). The most basic feature of interest
is then the length I, of vortex line present per unit
volume. A more detailed description could give

FIG. 6. Schematic rendering of a homogeneous vortex
tangle subj ect to counterflowing normal and superfluid
velocities.
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the distribution of the line length with respect to
some local properties of the line, such as the der-
ivatives s', s", s'", . . . , or some combination
thereof. It is clear that the problem of describing
such a random curve in greater and greater de-
tail leads to mathematical considerations beyond
the scope of our paper. On the other hand, if one
works with a distribution involving only the first
few derivatives, the question arises whether the
specification of such a distribution at some par-
ticular time provides eno gh initial information
to determine the subsequent development of the
distribution. As we shall see, the answer is that
it does not. Our method of dealing with this dif-
ficulty is to find a limited description of the tang-
le which is in sufficient harmony with the under-
lying behavior represented by Eqs. (15) and (18)
that the d'ynamical effects of s' and s" are included
in a natural way, and to obtain closure by treating
the higher-order derivatives s ~, s~', . . . as r an-
dom variables subject to certain physically rea-
sonable restrictions.

Figure 5 shows that n' is rather small compared
to n, and we therefore drop the corresponding
terms in Eqs. (18) and (20). The basic equation of
motion of the line then becomes

u=ps'x s"+o'.s'x (V„,—ps'x s"), (21)

where, again, a prime denotes differentiation
with respect to the arc length. It is apparent that
the instantaneous motion of a point on the line is
determined entirely by u, =Ps' x s . Thus, a limit-
ed description of the tangle might usefully be given
in terms of a distribution function X (u„ t). Al-
though we assume this distribution to be homo-
geneous, the counterflow velocity V„, defines a
preferred axis, and one is clearly not justified in
assuming that X' is isotropic. We do, however,
limit our considerations to the azimuthally sym-
metric case X' = x'(

l
u, l, 8, t), where 8 is the angle

that v, makes with the polar axis defined by V„,.
Since the local radius of curvature R is just
P/ ~u, ~, one can define an equivalent distribution
X(R, 8, t), such that X(R, 8, t)2mR'sin8dRd8 is equal
to the line. length per unit volume with local radius
of curvature in the range R to R+dR and ~, head-
ing into the cone between 8 and 8+ d6. 'I'his will
prove the more convenient.

For certain purposes, such as the evaluation of
the mutual friction force, it will be necessary to
consider the question of how the line length is
distributed with respect to s' and s, rather than
u, . We recall (Fig. 4) that s', s", u, make up an
orthogonal set of vectors with magnitudes,
1/R, P /R, respectively. For a given u„one may
choose an arbitrary s' perpendicular to u„s then
being determined. In principle, this freedom in

From these relations one computes other local
properties of interest by use of the chain rule,
e.g. ,

8 Bs Bs/8$ .Bu

Btl

goal

=
I as/9&l ag '

8 Bs/8$ Bu/9$ Bs (Bs/8$) ~ (Bu/9$)
Bt I Bs/8$ I I Bs/Bgl 8$ I Bs/8[I'

(23)

9 8's/8(2 8'u/8(' 9's (as/ag) (au/8()
at I as/8(l' I as/8(l' 8(' I as/apl'

(25)
Since &t= les/8$

l
&$, Eq. (23) determines the rate

at which Al changes. Equations (24) and (25) can
be applied to Eq. (15) to determine the time rate
of change of u, . The resulting equations, with (
again set equal to the arc length parameter, are

(26)

—u, =P[s' x u + u' x s" —3s' x s"(s' u)) . (27)

Here the time derivatives are to be i.nterpreted as
the rates of change observed for a particular ele-
ment as we follow its motion, and the arc length
derivatives are to be evaluated from the instant-
aneous configuration of the line. Insertion of the
u given by Eq. (21) into these expressions leads,
after considerable algebrai. c manipulations, to

choosing s' allows one to construct a variety of
distributions over s' and s for a given X, pro-
vided one is willing to permit the s' associated
with a given U, to be distributed nonsymmetrically
about the axis defined by u, . Such an artifical dis-
tribution of s is of course not required by our in-
formation about v, and would in fact correspond
to a very peculiar arrangement of the vorticity,
such as might be present near a boundary. For
homogeneous turbulence far from boundaries it is
reasonable to take the line elements associated
with a given u, to be pointing with equal probability
in all directions perpendicular to u, .

Let us now consider what, happens to a line ele-
ment of length b, l, every point of which is in motion
according to Eq. (21). Since our description of the
tangle keeps track of how much line there is and
how it is distributed with respect to v„ it wil~ be
of particular interest to determine how ~l and u,
are changing. The nonconservative term can
stretch or shrink the line, and it is temporarily
convenient to specify a point on and moving with
the line by a parameter ( defined so as to be in-
dependent of t'ime, rather than by the arc length.
Then

Bs 9 Bs Bu 9 B~s BV
Bt ' Bt 8$ 8$' Bt 8$
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1 86$ n
sf

=
p

ur (Vns (28)

—u, = ——u, u, ~ (V„,—u, .) ——u, x (u, x V„, )

ip'[(s'xs")x s +s'x(s'x s"")]

—nps' x (s' x s )s' ~ V„,+ 2np's's' ~ (s"x s )

—~P's' x s —n p' s' x s"" . (29)

—u =- —uu (V —u)- —u x(u xv )l
p

l l ns 1
p l g

+p'[(s'x s")x s +s'x(s'x s"')], (29')

which contains only the dominant higher-order
term, arising from the self-induced motion of the
line. The qualitative picture which emerges then
is that each part of the distribution X is driven to
move in a well-defined direction in v, space by
the interaction between the normal fluid and the
vortex tangle. Competing with this there is a
tendency for each part of- A. to spread out in all
directions, arising primarily from the complica-
ted self-induced motions that exist within a ran-
dom tangle.

A. Driving terms

It is easy to show that the driving terms lead to
the simple relations

1 8 eal = —(V„,cos8 —P/R), (30)

One can distinguish between two kinds of terms
in these equations. The term governing BAl/st,
and the first two terms governing Bu, /Bt depend
only on the known quantities 4l and u, themselves.
These Chiving teems, taken by themselves, would
cause the distribution X to develop in a smooth
nonrandom manner. The remaining terms in Eq.
(29) are not only extremely complicated in their
effect, but they depend on the higher-order local
derivatives s and s™,which in themselves are
not known within the context of these equations.
It is nevertheless clear that in the case of a ran-

'

domly winding line those elements of the line hav-
ing a particular value of U, can still have a variety
of possible values of s', s", s, s~. The higher
order terms in Eq. (29) will therefore cause this
group of line elements to disperse in u, space.

Some simplification can be achieved by noting
that n «1 at all temperatures except those very
near the X point. Equation (29) is therefore well

approximated by
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FIG. 7. Flow field RA +R 00 generated by the noncon-
servative forces, in arbitrary units. The figure cor-
responds to V„~ =10 cm sec ~. Points are spaced 10~
cm apart in the radial direction, and 20 apart in angle.
V„~ points from left to right, and the line-growth region
lies to the right of the dashed line.

A given line element will increase in length if the
component of V„, in the direction of u~ is greater
than ~u&~

= P/8, i.e., if the normal fluid is "push-
ing" the line element from behind. This growth is
accompanied by an increase in R. Line. elements
for which (V„,cos8 —p/R) & 0, on the other hand,
will shrink and decrease in R. In addition, the
angular term (32) rotates u, into the forward direc-
tion. The effect of these factors on the distribution
is indicated schematically in Fig. 7. It is apparent
that II is consta, ntly gaining line length in a region
where u, points in the forward (small 8) direction,
and is losing it elsewhere. It follows that the driv-
ing terms can lead either to a net growth or decay
of the total line length, depending on how A. is dis-
tributed, but that they are always working to po-
larize the vortex tangle so that u, points preferen-
tially in the direction of V„,.

To express the effect of the driving terms on A

analytically, consider what happens during a time
interval dt to the line length X(R, 8, t)d'w initially
contained in a particular volume element d'se of
R, L9 space. The values of 8, 0 associated with this
particular collection of line elements will change
according to Eqs. (31) and (32), the actual length
of line will increase or decrease according to Eq.
(30); and the volume element d'w will become
distorted to a new shape d'w(t+dt) Hence, we.
have

BR = n(V„,cos8 —P/R),

Bg = —nU„, sin8/R.

(31)

(32)

A(R+Rdt, 8+ 8dt, f+dt)d'w(t+dt)

1+— XR, H, td~m t . 33
ZEdt

The change in d'u may be calculated by thinking
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of Rdt, Bdt as a displacement field q(&, 9) in 8, 0

space and using the result d'co' =(1+V q)d'w
familiar from the theory of elasticity. The result
1s

d'w(t+ dt) = [I —(oP/A ') dt]d'w(t) . (34)

It is now a simple matter to expand Eq. (33) to
first order in dt, and to insert Kqs. (30) to (32).
One finds that the nonconservative driving terms
generate a contribution

~ P BA, sine gA,
A. „,= n ——V cos0 —+@Vtt. C

~A "' A 89

coso
(35)

B. Higher-order terms

It is apparent from Fig. 7 that the driving terms
alone do not lead to a physically reasonable state.
Any initial distribution with nonzero values in the
forward region will grow without limit, while con-
tinuously moving to larger R and smaller 0. The
idea nom is that by including the higher-order
terms in Eq. (29') one may hope to generate addi-
tional contributions to &1/&f which limit this run-
away behavior.

It has already been argued that the qualitative
effect of the higher-order terms is to cause a kind
of diffusion of & in v, space. Since, however, the
description of the vortex tangle in terms of ~

( )

FIG. 8. Likely and unlikely candidates for the structure
of the vortex tangle.

gives no information about s"' and s"", the develop-
ment of a specific model for this process requires an
extension of our arguments. To develop the dis-
cussion in an iptuitively appealing manner, we
consider various possibilities for the local struc-
ture of the tangle (Fig. 8). Since the normal fluid
effects almays tend to decrease the line length
associated with regions of high curvature, it seems
reasonable to suppose that the vortex tangle would
tend to an open structure, such as shown in Figs.
8(a) and 8(b), rather than the highly kinked struc
ture shown in Fig. 8(c). A useful way of visualizing
some of the properties of such an open structure
is in terms of the artificial configuration shown in

Fig. 8(d). The total line length per unit volume
here is I.=3/b, ', which permits one to conclude
that the characteristic interline distance in an open
configuration is given by & -L, ' '." In this gen-
eral sense, the configuration of Figs. 8(a) and 8(b)
are similar, and in terms of the 1ocalized induc-
tion approximation alone the configuration of Fig.
8(a) could in fact persist unchanged. It is, how-

ever, clear that if such a configuration is allowed
to develop in time lt will quickly become more
highly kinked through the action of nonlocal veloci-
ty fields and line-line crossings. Thus, a random
open structure as in Fig. 8(b) appears to be the
most reasonable candidate.

We now ask more specifically how the nonlocal
effects neglected in the derivation of Eq. (15) act
on the tangle. Because of the other lines in its
vicinity, a given line segment is constantly sub-
jected to random velocity fields of order z/2m&.

It will be shomn later that these "long-range"
fiel. ds are not a major factor. More important,
the random motion of the line in Fig. 6 will lead to
frequent line-line crossings. Computer simula-
tions" of the motion of two closely approaching
vortex lines show that during the crossing only
very localized regions on the two lines are strong-
ly distorted. These distortions then propagate
relatively slowly along the lines. Such calcula-
tions cannot predict the eventual outcome of a
crossing event but one reasonable set of possibili-
ties is shown in Fig. 9. Whether this scenario is
valid or not, the calculations imply that the quali-
tatively significant effect of the crossing is to
generate large random disturbances at local
poInts on the Ilneq without causing major changes
in I. or the distribution of v~ .

Consider a line element at some point A on the
tangle. Its properties will be changing in a coher-
ent way according to Eq. (29') and the higher-or-
der equations which can be derived from Eq. (15).
However, its properties also mill eventually be
changed in a random way when a crossing event
occurs at some other point on the line, and the
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To estimate v„, and to see how the existence of
the characteristic randomization quantities 7, l
enters into Eq. (29') it is necessary to consider
some general properties. of the random tangle that
we have not yet used. To begin, we note that s',
s", s'", s"", . . . are not entirely independent of
one another. From the geometrical relation

s' s"= 0,
it is possible, by taking derivatives with respect
to the arc length, to derive a series of constraints:

pl sll/ ~ ( ~s11(2 0
(39)

s // s /// + s / ~ s /// 0

(c)

FIG. 9. One guess about what will happen when two

vortex lines cross (a). They break and reconnect (b),
or break and cross-connect (c).

which apply at every point on the line. This im-
plies that in a random tangle where s"', s""are
not expected to be strongly correlated with s', s//

one has the order of magnitude relations

( s t'ai( &s &2 li[ ~+isa
( &s ts& 3 (40)

"signal" from this event propagates to A. Now a
random tangle such as shown in Fig. 8(b) will
have a nonzero characteristic curvatures (s "&, and
therefore a representative line element will be
moving through the tangle with a characteristic
velocity (u,&-P(s"&. The motion of the line through
the tangle is shown schematically in Fig. 10. If
the signal propagation velocity u„, along the line
is large, then the signal which randomizes A. is
likely to occur very quickly and to come from a
line crossing very far from &; whereas if usq, is
small, the signal is likely to come from nearby
and to take a long time to occur. Thus, the exis-
tence of a finite u„, means that there must be a
characteristic time ~ in svhich a typical line ele-
ment becomes randomized by line-line crossing
events, and that this randomization occurs over a
characteristic length l =u„,& of the line. More
precisely, it may be seen by inspection of Fig. 10
that the probability of a crossing in the space and

time intervals (x, x+dx) and (t, t+ dt) is
((u, &/g') dxdt. If the line in Fig. 10 is assumed to
be coherent at t =0, the probability of a. signal ar-
riving at 4 in (t, t + dt ) is then ((u, )u„, t/5')dt. The
probability that a signal has not arrived at A by the
time t is e x(p-( ,u&„u, t ' /62'), so that

t ((u,&u, t /&') exp(-&u, &u, t'/2&') dl . (88)

Thus,

~ pl ~ 0

(v+)
X

Sl g

FIG. 10. Schematic of a line moving through the
tangle. The dots represent places where the tangle
intersects the plane of motion of the line.

where &s "& has been defined before as the average
curvature in the vortex tangle. Equations (40) may
be interpreted as indicating that the characteristic
distance one must move along the line before s",
s'", s"", . . . become uncorrelated with their initial
values is of order (s "& '.

The effective velocity ~&, for the propagation of
the large random distortions characteristic of the
tangle down the line can now be derived in a very
general way by considering the self-induced mo-
tion of the vortex. For the self-induced motion,
the line length is conserved. Hence, one can take
higher order iterations of Eq. (22) with ( equal to
the arc length and & =Ps'~ s", to obtain a series
of equations
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Bs ~ ~ Bs
PS l X Sll =ps'x

Bt i at i

II

P( S l X S «l + S~ l X S «l)
&t (41)

g ~ffI

P(2s x sllll +s lx s l«ll)
~t

(s ll)2
P((S «)(S )3 +(S )4)at (42)

or

1

p(s «)2 (43)

Consideration of the higher-order equations shows
that all derivatives change in the same character-
istic time. In a general sense, this change repre-
sents the hydrodynamic propagation of the random
deformation shown in Fig; 8(b) for a distance (s ") '
along the line, and in this sense

Usig P '(S ) ~ (44)

This, however, is just (u,), so that Eq. (37) be-
comes

z-6/(u, ), l -6. (45)

To recapitulate, by considering the effect of
line-line crossings within the tangle, we have
found the elegant result that such events random-
ize the line over a characteristic distance of the
order of the interline spacing, and that a given
point on the line will become randomized in a
characteristic time equal to the time it takes the
line to move a distance of order & through the tan-
gle. pie nogg make the explicit assumption that
the randomness of the tangle is maintained Pri-
marily by line-line crossings, in the sense that
the characteristic distance one has to go along the

line before s", s"', . . . become uncorrelated zvith

their initial values is assumed to be equal to l -5.
It is then intuitively plausible that

) s «l
[ (s ll)/6 [s l«l

[ (s «)/62 (46)

These relations in fact follow from the geometri-
cal requirements of Eq. (40), provided (s") -6 '.

describing the correlated, self-induced motion of
the line. Locally the line will be curving as shown
in Fig. 8(b), over a characteristic distance (s") ',
with values of s", s"", . . . of the typical magnitudes
given by Eq. (40). This structure will undergo a
complicated motion such that after some charac-
teristic time the properties of the line at some
point A will have changed by a large amount. Thus,
for example, from the fourth of Eqs. (41) one can
estimate the characteristic time in which s"'
changes by an amount equal to its typical value:

(u &
s'z sx

34/ ++Cote (47)

The fourth-order term gives rise to a relaxation
over a, distance tI =P/& in u, space, in the eharac-
teristie time 7. For reasonably large v, 's, this
corresponds to a distance Jt'b/P-R2/& in A space.

Since (s") can be evaluated from the distribution
~ itself, it is not desirable to use this restriction
explicitly. It will, however, be necessary to check
that the model is self-consistent: the computed
distributions should naturally exhibit the property
(s") -L' '. It is interesting to note that the struc-
tures of Figs. 8(a) and 8(c), which were rejected
on intuitive grounds, correspond to (s")«L' '
and (s")»L'(2, respectively, and hence do not
satisfy this criterion, whereas that of Fig. 8(b)
does.

Our physical model now is that line-line cross-
ings keep the tangle random on a scale &, implying
that a given line element will have values of the
higher-order derivatives which are randomly di-
rected, but whose order of magnitude is restricted
by Eq. (46). The line element will undergo corre-
lated motion according to Eqs. (41), for a charac-
teristic time T-&/P(s"). It follows from the third
order term in Eq. (29 ) that during this time u, will
undergo'a random rotation through an angle of or-
der Ps"'r-1, while the fourth-order term gener-
ates a randomly directed displacement of the line
element in U, space of magnitude p's'"T-p/b.
Since the line element plays for a new set of val-
ues s'", s'", . . . after each ~, its motion is some-
what like a random walk, but one which involves
large steps.

It may be noted at this point that, as stated ear-
lier, the long-range velocity fields pIay an insigni-
ficant role. An element subject to a velocity field
of order ((/27(& coming from a line a distance 6

away will undergo a, rate of change s " -I(/27(62.
This is to be compared with s" -P(s")'/6, from
Eqs. (41) and (46). With (s") -& ' and P written
explicitly, this becomes s" -(((/4v62) ln (A/a).
Since the logarithm is of order 10, the self-in-
duced motion dominates.

The random motion of the line elements obvious-
ly leads to a relaxation of ~, in competition with
the effects of the nonconservative driving terms.
For example, the angular motion generated by s"'
implies that a ~ peaked at some angle would spread
out over an angular distance of order 1 in T. In
the heuristic spirit of the present discussion we
model this in terms of a diffusive relaxation pro-
cess. Since diffusion on the surface of a sphere
of unit radius for a time t leads to an rms spread
in angle equal to (4Dt)' ', we accordingly set &
=1/47, and include a contribution
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However, points near u, = 0, which on the average
move to a much larger value of v„relax over a
distance of order R. A reasonable interpolation
between these extremes is

If this process is also to be modeled as a diffusive
mechanism, the appropriate diffusion constant
can then be determined from the three-dimensional
formula. (4A') 6Dr-. The resulting contribution to
X is then

+, +cot0-——
Bg2 80 (49)

describing the fact that random changes in curva-
ture are much more likely to kink up a straight
line then they are to straighten out a highly curved
one.

IV. CALCULATIONS

The equation describing the evolution of P,(A, 8, t)
now becomes

A =A.„, +A. +A. „+A

The characteristic self-induced velocity (u,) and
the interline distance & =L ' ' are to be evaluated
self-consistently from A. Thus, Eq. (52) contains
no adjustable parameters whatever. It must be
kept in mind, however, that our derivation has
been based on order-of-magnitude arguments, and
that we have modeled the randomization processes
in a very crude and somewhat arbitrary manner.
%e now explore how well this approximate equation
repl ocluces the experimental data discussed ln
Sec. T.

A. Method of integration

Equation (52) is difficult to integrate even nu-
merically, and a survey of our procedure is ap-

One important factor which has been ignored in
Eq. (49) is that an element with u, -(u,) undergoing
a random step of order (u,) is more likely to ex-
perience an increase in

~ v, j than a decrease.
If u', =u+pa/6, where a is a random vector
of order I, then uI-((u,'+2Pu ~ a/6 + P /6')' ')
-((u,)'+P'/6')'~'. Since P/& ~ U, , this can be rep-
resented approximately as giving rise to a flux

A --(u,)ft'/&'. (50)

Equation (50) translates into an additional "kinking"
contribution

(u,), Bz

propriate here. In order to find the steady-state
distribution corresponding to a given ~, and tem-
perature, we start with some ar tificial distribution
and integrate Eq. (52), with the appropriate &,
and o(T), forward in time. The equation is first
converted to one in the dependent variable M =~A'
and the independent variables z =cos 8, $ =InB. It
is then written as a difference equation on a two-
dimensional grid of equally spaced z, g values.
The boundary conditions at z =+1 arise naturally
from the polar symmetry of the problem. How-
ever, there are no natural boundary conditions
to be applied at the maximum and minimum values
of (, and some additional arguments are required.
At very small A, the dom. inant physical effect is
that the nonconservative terms cause the line to
decay rapidly to even smaller values of 8, and all
that matters is the convective &A/&R term in X„,.
However, this convective term is evaluated in our
difference equation by referring to values of ~ at
larger A. It therefore turns out that the boundary
condition at („, has very little effect on the solu-
tion, and in practice Bu/S$ is set to zero there.
At very large 8, on the other hand, the behavior is
dominated by the convective kinking term ~,„. If
the distribution is zero for 8 larger than 8,„ it
will never get large there. Thus u at (,„can also
be set equal to zero. The validity of our procedure
is indicated by the fact that if (;„is taken small
enough and ( „large enough, the computed distri-
bution becomes independent of these limits. "

As is usual with complicated equations of this
type, an explicit forward integration of the result-
ing difference equation is unstable. The usual im-
plicit methods, in which time-forward values are
substituted 'for some of the terms in the difference
equation and the resulting coupled system of equa-
tions is solved by a matrix diagonalization, proved
much too time-consuming to be practical. A reso-
lution of these difficulties was found in the use of
the recently developed hopscotch algorithm, '
which proved to be both stable and efficient. An-
other problem arises from the fact that, because
of the variation of the self-induced velocity with R,
those parts of ~ which are at small 8 adjust them-
selves much more quickly that those at large R.
The range of A-included in the integration is
large, "and a straightforward time integration re-
qui. res very short steps in order to deal properly
with the small-A region. For the purpose of find-
ing the steady state solution, this difficulty can
be overcome by using a time step adjusted to be a
linear function of A. Equation (52) then still re-
laxes mathematically to the steady state sX/st =0,
but the manner in which it does so no longer rep-
resents the physical behavior of the system.

Figure 11 shows how the distribution relaxes from
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various artificial initial states. The first point to
note in favor of Eq. (52) is that & does relax to a
well-defined steady state, independent of the ini-
tial conditions. The peculiar oscillations seen in
this figure are connected with the nonlinear nature
of the equation: both &v,) and & =L ' ' are evalu-
ated as integrals over ~ at each step of the integra-
tion. If, instead, one sets (v,) =P(s") =cP/&, the
convergence is much faster (Fig. 12). Thus, it is
generally more efficient to let A relax assuming
various values of , and then to pick that solution
for which the computed & =(v,)&/P equals the as-
sumed c. It is at present not clear whether the
transient oscillations of Fig. 11 or Fig. 12 are in-
dicative of a real phenomenon or whether they rep-
resent some artifical feature of our equation or
our method of solution.

IO'

5000 IO,OOO I5,000
NUMBER OF ITERATIONS

FIG. 11. Relaxation of A, to a steady state, according
to Eq. (52}. Startingconditions are (a}AR CG(l+coso}6(R
—1.12x 10~}with the proportionality constant adjusted
so that L =3.4x106; (b} AR2=constant, with L =2.1
x10~. The beginning of curve (b} has been omitted.

B. Results

A typical steady-state solution of Eq. (52) is
shown in Fig. 1.3. It is apparent that the predicted
distributions are strongly polarized in the 7
(8 = 0) direction, and that they peak at a rather
well-defined R. Once such a distribution has
been calculated, the quantities E,„, L, and (v, g
can be computed as simple integrals over the
distribution. Figures 14-16 show how these quan-

IO'

IO

(b)

T=l.6K
V«= IO cmsec ~

IO—7

IO—6

'E
. O
gl
O

N
K

4—

IO'

0 IOOO 2000 3000
NUMBER OF ITERATIONS '0

FIG. 12. Belaxation of A when (v, ) is set equal to
cP/6. The starting conditions are the same as those of
Fig. 11.

R (10 cm)

FIG. 13. Typical equilibrium distribution. Curves are
given for various values of cos0.
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FIG. 15. Predicted behavior of the total line length
density. The dots are the values actually computed,
the lines are the best straight-line fits. The experi-
mental result [Eq. (3)] is that L cx: (V„~ —vp),

20

FIG. 14. Predicted behavior of the mutual friction
E,„. The dots are the values actually computed, the
lines are the best straight-line fits. The experimental
result [Kq. (1)] is that. F,'„~(Vgg 3@p), to an accuracy
(&p/V„' ) ~

FIG. 16. Predicted behavior. of the mean drift velocity
of the tangle. The dots are the values actually computed,
the lines are the best straight-line fits. The experi-
mental result Eq. (15) is that (g&g) «x- V«.

tities depend on I/„, . The predictedbehavior of all of
these quantities is in remarkably good agreement
with the experimental observations IEqs. (l), (3), and

(5)]at all temperatures. The theory predicts not only
the observed power-law dependences, but also the
existence and magnitude of the small parameters
v, . It is amusing to note further that a small
deviation of &,„above the cubic behavior has oc-
casionally been observed, and our calculation
seems to show an effect of this kind. Given the
approximate nature of the theory, however, and
the fact that significant approximations are made
in the numerical analysis, it is probably wise
at this stage not to place too much confidence in
such detailed features.

From the straightline fits in Figs. 14-16 one
ca.n obtain A(T), a(T), and b(T). The computed
values of these coefficients are compared with
experiment in Figs. 17-19. In making the com-
parison it should be kept in mind that the experi-
mental data are quite approximate, that the theory
is expected to give only rough results, and that
the predictions of the theory depend very sen-
sitively on o. (T), the effective behavior of which
near the X point is not well understood. " Never-
theless, there appears to be surprisingly good
agreement, both in the magnitude and in the tem-
perature dependence of the coefficients.

It is of interest to ascertain how dependent our
predictions are on the details of the modeling
used to develop Eq. (52). Considerable effort
has been devoted to exploring this question. Qur
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conclusion is that reasonable changes in the
modeling do not spoil the approximate agreement
with experiment seen in Figs. 17-19.

It is most informative to see how the structure
of X varies with t/'„and 7.'. Suppose one wishes
to compute the average value of some function
f(R, 8) over the distribution. Then,

(f(B, H)) =t. ' f (—,8)

I' o'
x /I(.

- 8 —R '2 dR g yg
C C

FIG. 19. Predicted and measured values of b(T). The
solid line is the theoretical prediction; the points are
from H,ef. 12.

where we have made a change of variables to R'
=cR/t) in the integral. From inspection of the
computed X's, we find that L 'X(6R'/c, 8)5'/c' is
approximately a universal function of R', provided
c is allowed to vary with temperature in the pxo-
Pex zvay. Let us consider R„~, the position of
the maximum in XR', which can be approximately

0.5
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FIG. 18. Predicted and measured behavior of a (Tj.
The solid line is the theoretical prediction, the dashed
line shows the data of Ref. 5.
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FIG. 20. Linear relation between A~~ and 6=L
indicative of the radial scaling discussed in the text.
The points are the computed values, the lines are
straight-line fits.
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FIG. 23. Test of the universal relation (v„)=constpc/&.
The computed (u„) values from Fig. 16 are plotted here
as points. The straight line corresponds to a propor-
tionality constant equal to 0.65.

FIG. 21. Computed values of c (T) = 6/Rpe~.

identified as the characteristic radius of curvature
of the tangle. The first corollary of the universal-
ity is then that R„,„=5/c(T), where c(T) has now

been chosen such that R,'„„=1.Figure 20 shows
that indeed R„,„ is exactly proportional to 6 at
any given temperature. The. proportionality con-
stant c(T) can be determined from the slopes of
these curves and is given in Fig.- 21 for later
reference. The universality also implies that

0.4

the angular variation of X at a given R' is the
same under all conditions. Figure 22 shows that
this becomes more approximate at larger 8, but
of course the region 8-0 dominates the integral
of Eq. (53). As a concrete illustration of the effect of
universality on aquantity depending on 8, one may
consider the average driftvelocity (U„) which is
evaluated from Eq. (53)by using f(R, 6) =P cos8/R.
The immediate implication then is that (u„)
= const. Pc(T)/5. This relationship is certainly
well obeyed (Fig. 23), demonstrating that vari-
ations in (u„) arise entirely from va. riations in
the radial scale of X.

A final point to be considered is the question
of self-consistency; i.e., whether the condition
(s")-5 ' is in fact a property of the computed
solutions. Since (s") =R,,'~, this condition is
equivalent to c(T)-1. While c does not turn out
as close to 1 as one might have hoped, the order-
of-magnitude consistency is reasonable. Further
efforts to improve the self-consistency of the the-
ory would probably be of value.

O.l—

0.0
0.0 2.00.5 1.0 1.5

R

FIG. 22. Illustration of the scaling found to be a
property of the steady-state A, 's. The reduced ~'s are
plotted for the two very different cases T=2.0'K, V„s
= 20 cm sec ' (dashed curves) and T=1.2 K, V„,= 5
cm sec i (solid curves). The actual magnitudes of the
unreduced distributions AR ~ differ by a factor of order
10 for these two cases.

V. THE VINEN EQUATION

It was mentioned in Sec. I that the simple phe-
nomenological equation developed by linen to fit
his data has been used to analyze a number of
subsequent experiments. The present work shows
that the standard interpretation of this equation
is, in part, incorrect. Furthermore, it is clear
that some of the phenomena to which Eq. (8) has
been uncritically applied really require a deeper
study of the type we have attempted here. Nev-
ertheless, an equation on the simple level of Eq.
(8), properly interpreted and with its limitations
kept firmly in mind, can obviously be useful. We
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FIG. 24. Predicted values of the Vinen parameters.

now show that such an equation can indeed be ob-
tained, and that it does in fact take the form pro-
posed by linen.

To obtain the desired equation, we simply in-
tegrate Eq. (52) over R, 8 space, and use the
scaling properties of X discussed in the previous
section. " The V„, terms in Eq. (35) then yield
a quantity nV„,cb 'g,L, and the P term gives
-o.pc25 'g, I . The terms X„ji.«, and X, , make
no direct contribution to I., since they merely
describe the redistribution of line length in R, 8

space. Since 5=L, 't', the integral over Eq. (52)
then becomes

L = ncg, V„,L't ' —oPc'g, L', . (54)

where the g's are constants of order 1, and c(T)
has been given in Fig. 21. This result is identical
to linen's equation, provided

k g
= cg'g ~ X2(&/») = &pc~F2 ~ (55)

The derivation of Eq. (54) is exact within the
limits of the approximate scaling behavior pre-
dicted by our theory. The Physical iriterPxetafion,
houevex, is xadicalty different from that originally
PxoPosed by Vinen. Both the creation and the
annihilation terms are due entirely to the action
of the nonconservative forces, which cause A, to
increase in one part of R, 8 space and to decrease
in another. The system reaches a steady state
when X has adjusted itself to the point where these
competing effects balance.

It should be emphasized that the derivation of
Eq. (54) was based on a property of the computed
steady-state distributions, and does not neces-
sarily apply when the system is far from the
steady state. Equation (54) should therefore not

be used to describe time-dependent properties
unless there is reason to believe that the system
always remains near one of its steady states. In-
deed, the results shown in Figs. 11 and 12 raise
the possibility tIlat the transient behavior fal
from the steady state may turn out to have rather
unusual properties.

'The coefficients g, and g, can be evaluated from
any of the steady state distributions. As expected,
they are roughly independent of V„, and T, g,
varying from 0.62 to 0.'72 and g, varying from
1.6 to 1.0 as the conditions are varied from T
=1.2'K, V„,=5 cmsec ' to T=2.0 K, V„,=20
cm sec '. .y, (T) and y, (T) take the values shown
in Fig. 24. Again, the quantitative accuracy of
these predictions should not be taken too seriously.
Even allowing for this, however, the predicted
values of the linen parameters differ considerably
from those in the literature. At present this does
not seem to present a major difficulty, since the
claims of various authors to have measured these
coefficients separately are all open to question.
The quantity which has been measured with rea-
sonable reliability is L'~'/V„, = (2m+/~)(y, /k, ),
and this has already been displayed in Fig. 15.
Further experimental studies to determine the
magnitudes of X, and y, separately would ob-
viously be of great interest.

VI. CONCLUSION

The physical insights provided by our model
are not in disharmony with the received wisdom
on the subject. The possibility that the vortex-
tangle structure might be subject to some kind
of scaling was first raised by linen. ' Ashton
and Northby" have modeled the turbulent state
as a gas of vortex rings with R -6 and with u,
polarized in the direction of V . The present
work, however, goes far beyond such earlier
conjectures in that it presents a coherent picture
of the nature and development of the turbulent
state. The approximate universality of the vortex-
tangle structure, the phenomenological equation
of linen, and the notion that most of the line has
R-6 and v, polarized in the direction of V„, are
all consequences of the theory.

In addition to clarifying the relevance of some
of the earlier ideas about the subject, our work
raises a number of qualitatively new issues.
Most important among these are (a) that the self-
induced motion of the line and not the random
interline velocity dominates the dynamics of the
tangle; (b) that both the creation and the anni-
hilation of line length arises from the noncon-
servative interaction with the. normal fluid; and
(c) that line-line crossings are probably the dom-
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inant mechanism which keeps the tangle random.
Finally, our theory, which contains no adjustable

parameters, quantitatively predicts all of the
experimentally well-established gross properties

of the fully developed turbulent state. One may
hope that this initial success will stimulate fur-
ther experimental and theoretical work on this
interes ting problem.
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