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We present evidence from induced-torque measurements of Holroyd and Datars supporting an anisotropy in
the residual resistivity of potassium of about five to one and argue against explanation of their data by
extrinsic mechanisms. We explain how the hypothesis that the conduction electrons are in a static charge-
density-wave state leads naturally to the prediction of a large residual resistivity anisotropy. Resistivity
calculations are performed using several model impurity-scattering potentials. Numerical results are presented
for parameters characteristic of potassium, yielding anisotropies as large as four to one. We suggest that
induced-torque experiments might be used to determine whether a given potassium sample has a single
charge-density-wave domain and encourage that de Haas —van Alphen experiments be performed on such
"single-domain" samples.

I. INTRODUCTION

Reports of a giant torque anomaly in potassium
have generated considerable controversy in recent
years. Potassium is generally considered to be of
cubic symmetry and, according to most textbook
descriptions, to be an example of a nearly-free-
electron metal. Within this simple picture, the
induced torque in spherical samples of potassium
is expected to be independent of magnetic field
direction. For this reason, the large anisotropies
observed originally by Schaefer and Marcus' at
4 K in hundreds of spherical samples of potassium
created a severe dilemma. A four-peaked pattern
of twofold symmetry that contradicted the cubic
symmetry of the metal appeared in the induced
torque. Earlier, Lass had measured the induced
torque in one large spherical sample and had
found the results to be independent of magnetic
field direction. ' In response to the anisotropies,
he suggested that the observations could be ex-
plained if the samples were sufficiently non-
spherical, ' except that torque data at 80 K showed
that most samples were essentially undistorted.

In response to these conflicting reports, Holroyd
and Datars' decided to test the dependence of re-
sults on methods of preparation of samples of po-
tassium. They were able to reproduce results of
both groups in a controlled manner. In addition,
for some samples, they found torque anisotropies
larger than those seen by Schaefer and Marcus,
and in one particular sample, nearly an order of
magnitude larger. No theoretical explanation
was given for the observed dependences on sample
preparation.

In this paper, we will concentrate on the results,
shown in Fig. I, of the sample for which the most
bizarre induced-torque effects were observed.
For this specimen, sample K-IO of Holroyd and

Datars, the four-peaked pattern for the largest
magnetic fields used exhibited an anisotropy of 45
to one, while this pattern at low fields became
two-peaked, with the old minima becoming the
new maxima and minima. This anisotropy, extra-
polated to zero field, is about three to one, im-
plying that the residual resistivity of potassium
has an anisotropy of about five to one, as we shall
see in Sec. II. The purpose of this paper is to
present a possible interpretation of this resistivity
anisotropy. We will show that the assumption that
the conduction electrons in potassium are ina static
charge-density-wave state is consistent with the
observed residual resistivity anisotropy. ' We
make no attempt here to explain the exotic high-
field behavior.

The organization of the paper is as follows. In
Sec. II, we discuss the induced-torque experiments
and include data of Holroyd and Datars. In addition,
we consider the possibilities of extrinsic mecha-
nisms explaining the observed anomalies. In Sec.
III, we explicate the relevant properties of charge-
density waves. In Sec. IV, we introduce the model
impurity scattering potentials to be used for the
residual resistivity calculation of Sec. V and for
the numerical predictions of Sec. VI. Finally, in
Sec. VII we present the conclusions.

H. INDUCED-TORQUE EXPERIMENTS

Induced-torque experiments are performed by
suspending a sample, usually spherical in shape,
in a slowly rotating magnetic field. Because the
field varies in time, currents are induced that
interact with the magnetic field to exert a torque
on the sample. This torque is measured as a
function of both the direction. and magnitude of
the magnetic field. The induced torque in a spher-
ical sample of a simple metal, i.e., a metal with

1978 The American Physical Society



MARILYN F. BISHOP AND A. %. OVERHAUSER

a spherical Fermi surface, should be independent
of the orientation of the magnetic field. For a co-
ordinate system in which the axis of rotation is
along y and the magnetic field of constant magni-
tude B is along'z, the torque induced is in the y
direction and i.s given by' '

(2.1)
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FIG. l. Induced-torque vs magnetic field direction
for several field values for sample K-10 of Holroyd and
Datars, which was prepared in a mold. The sample was
a sphere of diameter 1.11 cm. (a) The field was rotated
about the growth axis and the magnitude of the field was
500 6 for the lowest curve and ranged from 1 to 17 kG,
in steps of 1 kG, for the higher curves. (b) The field
was rotated in a plane containing the growth axis, with
magnitudes ranging from 1 to 23 kG, in steps of 1 kG.

where R is the radius of the sphere, 0 is the ro-
tation speed of the magnet, n is the electron den-
sity, ~, (= e&/m&) is the cyclotron frequency,
T ls the relaxation time, and po is the resistivity.
While de Haas-van Alphen measurements on po-
tassium seem to indicate that its Fermi surface is
spherical to within 0.1%, gigantic anisotropies
are observed in induced-torque experiments, which
are in conflict with this simple model.

In order to study explicitly the results of induced-
torque experiments, we refer to the data for sam-
ple K-10 of Holroyd and Datars4 in Fig. 1. This
specimen exhibits an anisotropy that is nearly an
order of magnitude larger than that observed on
any other sample ever studied and is therefore an
excellent example of the effects that we wish to
discuss in this paper. The induced torque is

-plotted versus orientation of the magnetic field
for various field strengths, with torque an in-

creasing function fo field. In Fig. 1(a), field val-
ues are for 500 Q and from 1 to 17 kQ in steps
of 1 kG. In Fig. 1(b), field values are for 1-23 kG
in steps of 1 kQ. The magnetic field was rotated
at a speed of 22'/min for axes of rotation along the
growth axis [Fig. 1(a)] and perpendicular to the
growth axis [Fig 1(.b)]. The temperature of the
sample was kept at 1.5 K during experiments. In
order to guarantee a precise shape for the sam-
ple, the potassium was grown in a kel-F mold
with a spherical cavity of diameter of 1.11 cm,
machined to within 10 ' in. 4 The angular depen-
dence in Fig. 1(a), obtained when the magnetic
field was rotated in a plane perpendicular to the
growth axis, is essentially isotropic and is thus
in agreement with the behavior expected from a
free-electron metal, as given in Eq. (2.1). Onthe
contrary, an anomalous four-peaked anisotropy
of 45 to one appears in the torque pattern for high
fields for the case in which the growth axis was in
the plane of rotation, as in Fig. 1(b). The magni-
tudes of these peaks decrease with respect to the
minima when the strength of the field is reduced,
until at low fields, the four minima become the new

maxima and minima of a two-peaked pattern. For
this case, the dips occur for the field along the
growth axis and the peaks for the field perpen-
dicular to the growth axis. As a consequence of
these orientational dependences, the growth axis
emerges as a preferred direction in this specimen.
Thus potassium must be electrically uniaxial and
not cubic. Unfortunately, the sample orientation
was not determined by a diffraction experiment.
However, it is known that K films grown on smooth,
amorphous substrates have a [110]direction per-
pendicular to the surface. " Therefore, since the
nucleation of the crystal was at the bottom of a
smooth spherical mold, it is probable that the
growth axis was along some [110]direction.

According to the Lif shitz-Azbel-Kaganov (LAK)
transport theorems, "a metal with a single, sim-
ply-connected Fermi surface must have a re-
sistivity p(B) independent of field B at high fields,
i.e., +,T»1. Since the torque depends on this
magnetoresistance, it too must saturate. In fact,
for the sample of Fig. 1, the torque at the peaks
should have stopped increasing at about 1 or 2

kQ, yet it continues to increase even at 23 kQ.
Thus, the torque patterns prove in addition that
the Fermi surface of K is multiply connected.
This is in direct contradiction with de Haas-van
Alphen measurements. '

In this paper we will not attempt to explain the
high-field torque patterns and instead turn our
attention to the low-field results. The low magnet
rotation rate makes the method nearly a dc mea-
surement. In order to examine the relevant data
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in more detail, we plot with circles in Fig. 2 the
induced torque at 28', or at the minimum in Fig.
1(b) (lower curve), and at 118' (middle curve)
versus magnetic field. The upper circles at given
fields are ratios of the corresponding points in the
lower two curves and thus give the torque aniso-
tropy. Solid curves are drawn through the data,

with dashed curves possible extensions of the ratio
to zero field. Therefore, we estimate the zero-
field limit of the torque anisotropy to be between
2.5 and 3 to I. If a sample is completely spherical
an induced-torque anisotropy can result only if
the resistivity tensor p of the metal is not iso-
tropic. In general, the expression for the torque

N, induced in a sphere is given by":

4v(15c') 'R'B'QA
N~=

9~(pyy+ Pzz) (Pxx +Pzz)Px gPzx (Pxx + Pyy) PxyPyx PxyPyzPzx Pxg gyPyx
(2.2a)

where

(Pxx+ P-zz)(Pxx + Py, ) —P,zPgo ~ (2.2b)

l20

Here, the fp;,.j are elements of p. The magnetic
field B is assumed to be in the z direction with
axis of rotation along y.

For sample K-10 of Holroyd and Datars, for
which the growth axis was determined from Figs.
1 and 2 to be a preferred direction in the specimen,
the zero-field resistivity tensor P is diagonal in
a coordinate system in which the growth axis is
along any Cartesian axis. The resistivities paral-
lel and perpendicular to the growth axis are given

y ypo and po ~~~pe~tively. For low fields, we
use the resistivity tensor that includes the Hall
effect. If the growth axis is along x and 8 along

~, the resistivity tensor for low fields is given by

y a, v 0

p=po —(dot 1 0

(o o

(2.3)

where p, &u, 7' =B/nec and pa=m/ne'r. From Eq.
(2.2), we obtain the torque along y for this case,

(,) 4vR'B'0 (1+y)2

15c'po 2(1+'y)'+(1+y)(a, r)' (2.4)

( 1

p = pol —e, v.

o

4)(.7 0

(2.5)

The torque along J is then

For a second case with the growth axis and B both
along a, the resistivity tensor is
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From Eqs. (2.4) and (2.6), we may find the ratio
8 between N~~'~ and N~~'~, or the torque anisotropy
for low fields,

(1+y)'+(~. r)'
2(1+y) +(e, r)' ' (2.7)

In the limit of zero field, ~, =0, and the expression
reduces to

FIG. 2. Low-magnetic-field values of induced tor-
que shown in Fig. 1, with data points plotted in circles.
The lower curve is the minimum in induced torque
taken at an angle 8= 28' in Fig. 1, while the middle
curve is taken at 8=118'. The upper curve is the ratio
of these limiting values and is the low-field-torque
anisotropy. Solid curves are drawn through the ex-
perimental points, and the dashed curves are reason-
able extrapolations of the anisotropy to zero field.

6l = —'(y+1). (2.8)

Since 8 in this limit is between 2.5 and 3, y must
be between 4 and 5. This is consistent with the
value y=4 that was originally estimated from the
data of Schaefer and Marcus. ' From the data in
Figs. 1 and 2, we find that e, v' -2.5 at 1 kG, im-
plying that r 1 4& 10-io sec9 for the directions



MARILYN F. BISHOP AND OVERHAIj SKR

perpendicular to the growth axis. Along the growth
axis, +, -0.5 or r -2.8& 10 "sec.

The anisotropy versus field in Fig. 2 increases
with increasing field, unlike Eq. (2.7), which de-
creases. This is probably a manifestation of
high-field effects, which are not explained in this
paper. Nevertheless, Eq. (2.7) can provide some
theoretical basis for the extrapolation procedure.
Certainly one cannot easily extrapolate the torque
curves themselves to zero, since they must vary
according to B' as +-0. The ratio removes this
dependence, so that the reasonable curve to extra-
polate is that showing the anisotropy. Suppose
that one tried to extrapolate this curve to unity,
i.e., (R-1 as B-0. This means tha, t y=l at
B =0, as can be seen from Eq. (2.8). Since (R

=3 at B= 1 kQ, then it must be true that y -6 at
1 kG [Eq. (2.7)]. Therefore, this requires a 500%%u&

magnetoresistance along the growth axis for 1 kQ.
However, the observed magnetoresistance in po-

tassium is typically 2%%uo for 1 kG
The postulation of an oriented array of disloca-

tions arising from unusual strain patterns in a
sample could lead to a resistivity that is not iso-
tropic. Strains in samples of interest can be esti-
mated to be on the order of a percent. Jones found
the residual resistance ratio in potassium wires
to decrease linearly by 1.3% per percent longi-
tudinal strain. " Thus, the value of (y- I) deter
mined from a dislocation model could be at most
a. few percent, or orders of magnitude smaller
than that observed.

As an alternative to the above discussion, Lass'
has suggested that the data of Schaefer and Marcus
could be explained within the model of an isotropic
resistivity tensor if the samples had been non-
spherical by 10%-15%. The model that he proposed
was that of an ellipsoid of revolution with the
ra, dius along the axis of the ellipsoid a fraction
of the radius A perpendicular to the axis.

The induced torque is then given by'

2lT 2 5
~

1 —E+6 sin PslI1 8+((o~t) E sin Psln 8cos 8
15' 1 —' ~ r ' 1 —E+E 3+E sin2 cos~0

where P is the angle between the axis of the ellipse
and the y direction, and 8 is the angle between the
magnetic field direction 8 and the projection of
the axis of the ellipse onto the x-z plane. o=ne'r/
m is the electrical conductivity and &=(1—rP)/
(1+ IP) is an asymmetry parameter. With g =0.9,
Lass was able to produce curves similar to those
of Schaefer and Marcus. However, the deviations
from sphericity were determined experimentally
to be 2% or less by performing torque measure-
ments at 80'k, or for ~, r &1.

An even greater difficulty with this explanation
arises in the consideration of the results of sam-
ple K-10 of Holroyd and Datars, given here in
Figs. 1 and 2. The torque anisotropy at low fields
could be reproduced by Lass's model [Eq. (2.9)]
if g =0.45, supposing that the mold had been only
about half filled. " Nevertheless, this could not
possibly explainthe data. For a magnetic field of
1 kG, the torque calculated from Eq. (2.4) with
P =

& r and 8 = 0, corresponding to the minimum in
the angular pattern in Fig. 1(b) (28' in that figure),
could never exceed 3.2 dyn cm, regardless of
relaxation time r. The torque of 5.4 dyncm ob-
served by Holroyd and Datars is therefore much
too large to be consistent with this explanation,

implying that the mold had to be filled. The ex-
ceedingly unlikely possibility that a planar crack
developed in the sample perpendicular to the
growth axis could remove this objection. The two
equal hemispheres thus produced could be repre-
sented by two ellipsoids with g =0.5, yielding twice
the torque of a half-filled mold. On the other hand,
even this hypothesis cannot provide a satisfactory
explanation of the data. If in Eq. (2.9), P= —,'v and
E =0.5, the appropriate value of ~,r is determined
by the criterion that the angular pattern in 8 re-
main two peaked through a magnetic field strength
of 2 kQ and begin the four-peaked behavior by
3 kQ. However, this choice, cu, r =1.8 causes the
ratio dl to be more than 50% too large. In addition,
an enormous Kohler slope, larger than 0.12, is
needed to fit the peaks at 23 kQ. Unfortunately,
with this value, the dips in the angular pattern
no longer agree reasonably with experiment.
Therefore, it is impossible to obtain legitimate
agreement of the results of this model with the
data in Figs. 1 and 2. We conclude, therefore,
that the residual resistivity is indeed anisotropic
and that Eqs. (2.2) are the corresponding expres-
sions for the induced torque.

A search for an explanation of the residual re-
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sistivity anomaly in potassium leads us to the
supposition that the conduction electrons are in a
static charge-density-wave state. Other alkali-
metal anomalies have been explained as a result
of this proposition. " As we shall show, this
hypothesis provides a quantitative explanation for
the anisotropy observed in the zero-field limit
in sample K-10 by Holroyd and Datars. Although
we have used the high-field induced-torque data
in our arguments against proposed explanations
by extrinsic mechanisms, we make no attempt
here to explain the high-field anomalies.

Clearly, the favorable direction for Q is along the
[110]direction. This is because any deformation
energy associated with the neutralization of charge-
density in Eq. (3.1) by displacements in Eq. (3.2)
should be proportional to the wave vector Q'.

The spatial modulation of the electron density
given in Eq. (3.1) will occur only if each electron
experiences a sinusoidal potential. Such a po-
tential arises self-consistently through exchange
and correlation potentials of the electron gas. The
one-electron Schrodinger equation incorporating
these effects may be written-

(p'/2m+Gcosg ~)4f =&g4q (3.4)
III. CHARGE-DENSITY WAUES.

p(r) =p,(l-pcosQ r), (3.1)

where Q and P are the wave vector and the frac-
tional amplitude of the CDW, respectively. The
positive background deforms in order to assure
local-charge neutrality, with the static local dis-
placement given by

u(r) =(pQ/Q')sing r (3.2)

In the deformable jellium model, this adjustment
incurs no energy penalty. Whether or not a par-
ticular real metal has a CD% ground state depends
on how closely it resembles this model.

In alkali metals, the Born-Mayer ion-ion inter-
actions are known to be extremely weak, "enabl-
ing the ions to displace easily from their equili-
brium positions. The magnitude of Q is approxi-
mately the diameter of the Fermi surface, as will
be discussed below. The lowest energy direction
for Q is determined by that direction that mini-
mizes the wave vector Q' of the static phonon of
Eq. (3.2), given by"

Q' =(2w/a)(1, 1, 0) —Q, (3.3)

where a is the lattice constant of the bcc lattice.

For simplicity, since the effects of a lattice are
not important here, we consider a jellium model
in which the positive ions are replaced by a uni-
formly charged deformable jelly. Within the sim-
ple free-electron theory of metals, since the
positive background is uniform, it is assumed
that the electronic ground state will be that of a
spatially uniform charge density. However, it has

' been shown that this is possibly not the case when
electron-electron interactions are taken into ac-
count. " A symmetry-breaking instability can
occur, leading to a spin-density-wave (SDW) or
charge-density-wave (CDW) state. For alkali
metals, theoretical arguments, coupled with ex-
perimental evidence, favor the CDW state.

A CD' is characterized by a periodic spatial
modulation in electron charge density,

2G
1

gG
j.

~k+Q @]f

within the space defined by the basis set ~k) and
~k+@, where ek =k'k'/2m, the unperturbed en-
ergy of the state ~k). The energy for the solution
below the gap is

u
= ~( t + t" o) - z[( t - t -)'+ ']'"

The corresponding eigenfunction is
= cosgei k - r singers(%+Q) ~ r

9

where

(3.'t)

The charge modulation of the electron gas occurs
only if the periodic part G of the exchange and cor-
relation potential is sufficiently large. However,
the density modulation must be large enough to
generate this periodic part of the potential. This
process occurs in a self-consistent manner, re-
quiring a k dependence of G. Solution of an inte-
gral equation for G(k) is required. Since such
analyses overly complicate the problem of interest,
we approximate G as a constant, whose value is
determined by experiments, assuming that such
an assumption does not alter the principal features
of our calculations.

Since Eq. (3.4) is the Mathieu equation, it does
not have compact solutions. On the other hand,
we obtain sufficient accuracy by dividing the
periodic potential into two parts, one that leads
to an energy gap at k, =- 2Q, and the other that
leads to a gap at k, =

2 Q. In the calculation of the
residual resistivity, only the states below the gap
need be considered. Near each gap, the energies
and wave functions are significantly altered, re-
quiring an accurate solution with degenerate first-
order perturbation theory. First, we consider
the case for k, =- —,'Q and assume that the per-
turbed state ~k) mixes with ~k+@ only. This
leads to the secular equation
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for 0 &k, &-,'Q may be obtained by replacing Q by
—Q in Eqs. (3.4)-(3.6). The variables u, v, and
~ are defined as before. In addition, if the di-
mensionless variable m is redefined as

m =(k, +-,'Q)/Q, k, &0

w =(k, —2Q)/Q, k, &0

(3.12a)

(3.12b)

FIG. 3. Lime-shaped Fermi surface (solid curve)
for a jellium model in which conduction electrons are
in a CDW ground state with G/Ez = 0.5. The dashed
curve is that of the free-electron Fermi sphere of
radius kz, with the same volume as the lime. Points
C and D, the conical points, are the regions of great-
est deviation from the sphere.

then the equation for the Fermi surface, Eq.
(3.10), applies for both regions of k,. The defini-
tion (S.12b) corresponds to displacing the right
half of the Fermi surface to the left (-k,) such that
the two conical points touch. Then m ranges from
——,

' to + —,'. This is equivalent to considering the
Fermi surface in a repeated-zone scheme.

The volume of the Fermi surface determines
the number of electrons in the system. The value
of Q is obtained by setting this volume equal to
the volume of the Fermi surface when G =0, or
the volume of the free-electron sphere ~3~0~. To
first order in e, this yields:

cost(k) = G/[G'+4(e-- Et;)']' ' (3.8) Q =2k~(1 + G/4EP), (3.13)

E t; = E~ =k~(—,'Q)'/2m ——,'G, (3.9)

which makes E~ the energy of the point of critical
contact, point G in Fig. 3. We now choose Q in
the z direction and introduce dimensionless varia-
bles, valid for ——,Q&k, &0:

u =k„/Q, v=k, /Q, w =(k, +~Q)/Q, (3.10)

so that in this coordinate system, the point C is
at (0, 0, 0). The equation of the Fermi surface in
this system is given by

K =(Q2 + v2)& 2= [(~2+&2)& 2 — ] (S.lla)
where

Far away from the gap, these solutions reduce
to those found by nondegenerate perturbation
theory. The CDW instability is optimized if the
Fermi energy E~ lies in the CD%' energy gap.
This is accomplished if one requires critical con-
tact between the Fermi surface and the two energy
gaps of magnitude G. This implies that Q =2k~,
or more precisely, that Q spans the Fermi sur-
face. For G=O, Q=2k~. The Fermi surface is
distorted into the shape of a lime or lemon, as
shown in Fig. S. Here Q is the distance between
the two conical points at C(k, =--,'Q) and D(k,
=+-,'Q).

We obtain the equation for the Fermi surface by
setting

where EI=k'kP/2m is the free-electron Fermi
energy, or the Fermi energy for G=O. However,
within this approximation, the volume within the
Fermi surface does not remain constant as the
value of G is increased to the largest value of G

of interest here. In fact, for G =0.5E~, the vol-
ume was about 8% larger than that with G =0, with
the consequence that the number of electrons had
increased by 8%. Since this is clearly unaccept-
able, we must include higher-order terms in Q.
For consistency, we also include higher-order
corrections to the energy and wave functions. In
addition, we will write all expressions in a form
valid for both k, &0 and 4, &0 by using the di-
mensionless variables defined in Eqs. (3.10)-
(3.12).

We include the mixing between the states on the
two halves of the Fermi surface, i.e., plane-wave
states ~k+Q) with (k —@. This is accomplished
through the use of nondegenerate perturbative
corrections of first order in the wave functions and
of second order in the energies. The new ex-
pression. for 8 k may then be written

E„-=
~

e' m' +—+-(ur'+a')' '-
2m

~
4 2(1—

(3.14)

u -=m G/O'Q'. (3.11b) The corresponding wave function xs

The above analysis applies only for the case
k, &.0, since for k, &0, the gap at point D(k, = —,'Q)
in Fig. 3 becomes important. The expressions

@z =(1+G'-) '&'(ZZ:e'~ ' +E-„e«t'+Q) ~ r

+C-„e'~~ o~' ') k &0 (3.15a)
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(1 + C2)-1/2(A &fir ~ r +E ef(h-Q} ~ r
h

+ C-„e'~~'~}' ' ) k, &0 (3.15b)

where At;=cosy], , Bg=- sing], , and

I.O

0.8

CX=-,'a/(I- lwl).

The equation of critical contact is given by

Ee =Ez=(@'Q'/2m)(4- a- 2a').

(3.15c)

(3.16)

0.6

0.4

0.2
Thus, the equation for the Fermi surface may be
written as

«=[(w'+a')" —a- '+la'~w~/(I-owl)]'"

(3.1V)

We obtain the appropriate value of Q by setting
the volume within the Fermi surface for a given
G equal to the volume of the free-electron sphere,

4~2rq' f z' dw = —0' =4', (3.18)
--0

where n is the number of electrons per unit vol-
ume. From Eq. (3.17) we evaluate this integral
and obtain the approximate expression for Q:

t
Q=2k 1+G —G ln 16 G)+'G

(3 1 )4 32 1+'G

where G = G/EP. For this value of Q, the difference
between the volume within the Fermi surface and
that within the free-electron sphere is less than
0.05'/0 for values of G up to 0.5.

In Fig. 4, using Eq. (3.19), we plot the variation
of Q from 2k~, Q/2k~ —1, as a function of G/Eg.
In addition, we plot a from Eq. (3.lib}. Another
consequence of the CDW with its lemon-shaped
Fermi surface is to decrease the Fermi energy
E~ below its free-electron value E~. This varia-
tion, 1 —EI,/EP, is also plotted in Fig. 4. Note
that Q deviates substantially from the linear ap-
proximation given by Eq. (3.13).

O.IO

0.08

006

02 04 06 0.8 1.0 t l.2
(k, /k F) (Q/2)

FIG. 5. Comparison of vg with k~ as a function of
for G/EJ; =0.5.

j. h
= vQ' v",k, dw,

0

where v, =(m/k Q) v, and k, =k,/Q, and where

fg is the equilibrium distribution function of the
electron gas. For Q given by Eq. (3.19), the
equality of Eq. (3.21) is accurate to within O. V@
for G values up to 0.5.

(3.21)

Another quantity important in following calcula-
tions is the velocity of electrons in the z direction
along Q. This is given by

BEg KQ w a w/Iwl
sk, m 2(w'+ a')'" 4(1 —

I w I}'

(3.20)

In Fig. 5, for G/Ep = 0.5, we compare the plot of
&, with that of k as a function of 0, for A, &0.
Note that at the conical point (k, =-,'Q or w =0)
the electron velocity nearly vanishes. This has
important consequences, as will be discussed in
Sec. IV.

An additional check on the validity of the pre-
ceding approximations, we calculate the volume
by another method, which involves the electron
velocity, to compare with that of the free-electron
sphere.

0

4nn=- —eke= — v~P, d k4, 1 sf'
3 " 4w' ' E],

0.04

002

0 O. l 0.2 Q5 0.4 0.5
G/EoF

FIG. 4. Plots of the deviations of Q; n, and Ez from
their free-electron values, or values at G= 0, vs G/

0Ep

IV. MODEL SCATTERING POTENTIALS

Since electrons cannot scatter from a perfect
lattice, a nonzero resistivity in a metal can arise
only if irregularities occur in the lattice. At high
temperatures phonons provide this disturbance
and a temperature-dependent resistivity results.
However, when the temperature approaches abso-
lute zero, the effects of phonons become unim-
portant, and the remaining temperature-indepen-



MARILYN F. BISHOP AND A. %. OUERHAUSKR 18

dent resistivity, the residual resistivity, arises
through the scattering of conduction electrons from
stationary imperfections. If the potential produced
by the presence of an impurity is sufficiently weak,
the cross section for scattering can be determined
within the Born approximation, requiring knowledge
only of the Fourier transform of the impurity po-
tential.

In this section we introduce the models for im-
purity-scattering potentials that will be used in
succeeding sections, along with their Fourier
transforms. In high-purity alkali metals impuri-
ties predominantly enter the crystal substitution-
ally. Thus, the potential from which electrons
scatter is that of the impurity minus that of the
missing lattice ion. For mathematical convenience,
we will assume a Gaussian form for potentials of
lattice and impurity ions, and for convenience in
the discussion, we will refer to the host metal as
potassium. A potassium ion in the lattice has a,

potential of the form

'Ue(r) = V,e " (4.1)

where I', =ar„with r, the Wigner-Seitz radius.
The corresponding Fourier transform is

~.(q) =&.(q)g ~ *"''(e '"'"'-1).
L~o

(4.7)

For small displacements, we may expand the ex-
ponential involving uL and write approximately

'U. (q) =U.(q) Z (-~q u~)e '"'".
L~o

(4.8)

We choose a form for uL appropriate to that of a
spherical center of dilatation in an infinite ela, stic
medium ""

ions adjust their positions in order to compensate
for the misfit of the impurity in the lattice. The
strain-field potential is given by the difference
between the new positions of the K ions and their
positions in the perfect lattice. For a substitut-
ional impurity at the origin, we sum over all lattice
points L except that of the impurity and write the
potential as

'U (r) = Q L(~,(r —L —ut, ) —,V,(r —L)l, (4.8)
Lap

where uL is the displacement vector of the ion at
site L. The Fourier tl'ansform is given by

'Ua (q )= d'r e ' "' 'U, (r )

u~ =ga3OL/I. ', (4.9)

= V ir'~'I"'exp(- —,'I'q') (4,2)

If the height ~& of the potential of the impurity
ion is different from the height V, of the potential
of the K ion that it replaces, but the width is the
same, then the scattering potential will be given
by

'U~(r) = V,e " ~ &, (4.3)

where V, = V, —V,. The Fourier transform'U, (q)
is the same form as Eq. (4.2). If, on the other
hand, the width I', of the impurity potential is
different from the width F, of the K ion potential,
but the height is the same, then the scattering po-
tential is

'U, (r) ='U,(r) -u.(r), (4 4)

where 'U, (r ) is obtained from 'U, (r ) by replacing
I; with l"&. The Fourier transform is given by

'U. (q) ='U.(q) - 'U.(q). (4.5)

The results of the combination of these two cases
that might occur will not be considered here, since
this would add unnecessa. ry complications without
providing a,dditional insight.

In addition to the scattering potential of the im-
purity ion itself, an additional potential can arise
due to a strain field created by the introduction
of an impurity into the lattice. " The surrounding

where ao is the lattice constant of a bcc lattice
and g is a dimensionless constant. We do not use
a separate form for the nearest neighbors as for
the case of interstitial impurities in Ref. 18 since
here the nearest neighbors are approximately as
distant from the impurity as the next-nearest
neighbors in that case. With Eq. (4.9), Eq. (4.8)
reduces to

'U. (q) = U.(q)~(q),

where

(4.10a)

S(q) = —i ga~og, , e '"'
Leo

(4.10b)

As we shall see in Sec. V, the calculation of the
residual resistivity with Eq. (4.10) requires nu-

merical calculation of a four-dimensional integral.
The contribution from each term in the sum of
Eq. (4.10b) contains many spikes, part of whose
contribution is cancelled by higher-order terms.
In addition, many sine functions must be computed
at each point in the integrand. The integrations
are thus difficult to perform and the rate of in-
crea, se in the cost of computing contributions from
each successive term far exceeds the slow rate of
convergence of the sum. For this reason, we make
a simplifying assumption, as was used in B,ef. 18,
that reduces necessary numerical integrations to
three dimensions, reduces the number of sine
functions in the integrand, and improves the con-
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vergence of the sum. We a,ssume that the N, sth-
nearest neighbors are smeared into a-spherical
shell of radius L„, the sth-nearest-neighbor dis-
tance. This is accomplished by .replacing the sum
over the neighbors within a shell by an integral
corresponding to an angular average and summing
over the shells. This yields

S(q}-=-iga~o '-, ql, cos8e " +' d0

xe " ' dQ

—811i sin(qr„)
a3o pro

where ro =N,' '~, is the radius of a, sphere equal to
N& atomic volumes, with

N, =1++AD„ (4.18}

counting the atoms included in the shells plus the
impurity. Combining Eqs. (4.11) and (4.12), we
ha,ve

Sf 3

S(c)=g gN. ( ') (coc(cl.,( — " ')
sin(qr, ) (4.14)

We have computed the necessary integrals for the
computation of the residual resistivity and have
summed shells out to 17th-nearest neighbors
(&q= 1V). Good convergence occurs after the in-
clusion of s& =14.

Since the total impurity potential arises from a
combination of a central-ion potential, u, (r }or
'0,(r), and the strain potential '0,(r }, we define

two additional potentials that include this. We
a,ssume that the central-ion potential contributes
a fraction 1 —x and the strain potential a fraction
& to the total potential. In order to simplify this
portion of the calculation (and reduce the cost of
the integrations), we approximate S(q) in Eq.
(4.14) with the continuum term s~ =0, choosing
ro so that the same resitivities are obtained as
with s& =14. The Fourier transform of the result-

=Co', g; coc(ct,) — .' ). (4.(l}
4 qL,

Since one can, in practice, sum over only a
finite number +& of shells, we compute the remain-
der to the sum by assuming that the atoms beyond
the fifth shell are spread into a. continuum,

O'L Io.( 2 flc ccoc
0

L3

where P is chosen for each I", such that the re-
sistivity in the absence of a CD%7 is the same for
x = 0 a,s for x = 1. The Fourier transform of the
corresponding potential involving u~(r) is

&"I(q) =rp(1- x)0 (q) +x'0.(q )

=g P(1- x)0~(q) -0.(q)

(4.16a)

XIP(l —x}+8zx ', (4.16b)
r sing'~,

where again P is chosen to make resistivities for
x=0 and x= 1 equal. In both cases [Eqs. (4.15}and

(4.16}], P positive corresponds to g positive (out-
wa, rd displacements of neighbors about the im-
purity) and p negative to g negative (inward dis-
placements).

We note that the Fourier transforms of the above
potentials are effective pseudopotentials for the
impurities. Values of I"-r, represent the widths
of typical pseudopotential calculations in K.'o

Values within this range cause '0(q }for each of
the models presented here to be sharply peaked
about q =0. This has important consequences in
the effects of a CDW on the residual resistivity,
which will be explained in Sec. V.

V. RESIDUAL-RESISTIVITY CALCULATION

When an electric field 8 is applied to a metal,
the electrons are accelerated in such a way that
their equilibrium distribution function f&

is
shifted at a constant rate in k space, with the dis-
trlbutlOn functlOn f$ aftel' a tlnle (cot ) glVell by

f(&) =f,(k- ~), (5.1a)

where

& = —e h (~t)/It .
For 8 in the p direction, we may write

0

f(&) =f,(&) —~, 's~(
' =f( -~, &(, s@",

(5.1b)

(5.2)

where &1;„=&Eg/&k„ is the velocity of electrons
in the state [4k) in the p, direction. The current
density in the metal is then

J = eP/m, (5.8a)

ing "interference" potential involving 0,(r) is
given by

0",'(q) =g(I'./I;) p(1 —x)0 (q)+x'U. (q)

(4.15a}

=g'U, (q )[p(1 —x) —8sx(sinqr, /qro)],

(4.15b)
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jp

(5.4)

~, .l!"-' 1QX8,7r"...i '~II")AV'i! t.
" ~eQj E"" V'~KG. ~"I"+8 '«AC

i-' (.;~~.F;es3.QX. (;Gordon. QQ. ~ 88 and the pX'inciI. "al ~es
ip the electrog gas described in Sec. DI. The
current 1s thus only along

in A.. perfect crysjaj~ this acceleration due i'.o '«n

PweCtr). ", , 'll!!',d 7vou) J '!.,'~~~8 pl";&Ce in("ii:.-.figitClv )e8ding
to aB lnfi. Bite curr' Q», density. HMvever, any rcaj.
metal cont .ins ixjlpurit~. es, so that e).ectrons suffer
collisions and the system xeaches a steady state.
.N: f~.vite temperatures„electrons also interact
xvith phonons„but here me consider on/y the limit
-"-' z'~n tt"-~n ~"g»&re Ev. tI)l'- "' any 'tate the rI&~-

~
«.~pu&1on ~".unct. fop 1&". r~3.8v$;H.ced by;-jQ AABAUPt ~

where a relaxation time '& replaces (&t, in Eq.
('-,:.1b). A rJetermin, ",tion of the n-.apnitude of 6

le,d."»" one to an expression for the r..si, tivi. .;y by
e.~p?oying I",q,. (5.4).

''Il. h.". , ctua'j. distribution function of an electron
f ~&. '" in the steady-state situation described &~'bove

i.".-", not exactly t1'at o.
' a rigidly shi. fte&i equilibrium

di."=;(.x ib.~'!:..'.o~ J'~s:—:Lctjog. but must be obt~. ined from
P.„~P)j,.'„;t~:IQÃt G~ t le eq'g«DX1GQ that eqU. -'=~tcs the rat&; of
~.;.'hangup of f-; due to .'.: wi!h that due to collisio":ls
j:he .';.. ~c,;,rimed BGJ~KTM;-.),n", & transport equation "

0-(f« -f«)lC"-
k

(5.5)

%'» t.h

-&f«, « =&@« IUt„(r) l4'«& (5.6b)

For „oracticeJ. purposes, however, it suffices to
assume the form (5.2) for f t& and 'to impose a.,lightly weaker condition than Eq. (5.5), that is,
that the rate of change of the total momentum of
the electxons balance in the steady state. Since
the rate of change of P i.s given by

dP d'0 . Bfg—-'PEERYj-
47r" (5.7)

the reqIuired condition is obtained by multiplying
both sides of Eq. (5.5) 'bymv «and integrating
over d~k/4ii' to yield

~E 8 @fag
fg

p Bf«
g&3 Pgp~

0d'0'
)2 Bf-, ~%

4m' "" «BE-
k

which may be solved trivially for ~„. The re-
sistivity i.s then obtained by substituting &„ into

(5 4)
The procedure outlined here is equivalent to

employing the variational principle to determine
the FPsistivlty ten%or

v j erf' ~~ „1 the go]den rule trans1t1on xate, de
~,-'-~ribi. llf-' the el~zsI: c scattering of e'ectrons from a
potential 'U„,(r ) of all the impurities in the crystal.

&'-' =(~ t? ) I~-„~I'6(E~-E~) (5.6a)

(5.9)

-'."«.&'P.. R:.x'l.~.j funct-(-, 3K given by '-.6'j:—~ j", I his vari@ lonal expression provides Rn Upper bound Gn the x'e-
."-.: ~'-'i&.'it@ s:l the&; the ~,ctual resistivity must b"-. les,"-. th~. ,"& Gr equal to that calculated using any given trial
fun:.:tion in Eq. (5,. 9).

'p, hen the conduction electrons are jn a C$3gr p'round state, Rs described in Sec. III, the residual re-.
=-. . .:" .ivi".:.y

.
.;.,
- enh;", .need n~ore alon~ Q than it is l eruendicnlar to Q resultinp in an anisotropy. The principal

f ,ctor contr. ibu". ing '-o this effect is I."f,; « I' the square of the matrix element in Eq. (5.6b) which appears
r th!-'. g&. ,lde.n.-rule transivion r,".. te in Eq. (5.6a). rhe total potential 'U„, (r ), due to all the Nz impurities

iri!he crystails the sum over aLl the single impurity potentials 'U(r) located at sites H;,

$r ~.

*Y'l f rb "" x' ~'f ~ P"""'p~ 7»

p (5.10)
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where Q(r) represents one of the model potentials described in Sec. IV. For k, &0, 0„'&0i the n&atrix ele-
ment becomes

xV(k-k'+Q)+(A&., C-, +a;;A&-,,)e'&"-" -"&' "g(k .k'. Q) &. (g -,-C-, ,)e&«-'&'--:c&. &'.

2Q) +( g 8- )r l (k."k +2Q& ' Rg+(k j~P gq)& (5.11)

If the impurities axe distributed at random, "the cross terms in I
'4'» I' ca»cei, and the result I

portion@, to X~, the number of impurities per unit volume. For I', &0, k,,' 0, ,

I~&, , &
I'=&I [(1+&&)(1+C»)]'[(A& Ak +@k&&, +Ci &&, )'&"(k -k')+(A~JIi: +c& Ar)' &'(k'-k'+)

+(A&, && +&& Ar, )'U'(k-k-4)+(&k&'i )''I&'(k-k'-20

Similarly, for k, &O, k,' &0,

I~&, &
I'=&s[(1+~&~)(1+c&)] [(AXAk +&&, cr(+C&&i&, }'6"(k—k')+(A& &&,'+&&, A&, )"''u-(1~ —k' —Q)

+(Akc
&

+ C
& Ai )'U'(k -k'+4) +(&&;~.')'o'-(i' —I'. —24)

(5.12o)

The expressions for 4, + 0, 4",& 0, a,nd for k, & 0,
&,'&0 may be obtained by replacing Q by —Q in
Eqs. (5.12a) and (5.12b), respectively.

Examination of Eqs. (5.12), aided by Fig. 6,
reveals the source of the resistivity ani. sotropy.
Let 6 be the scattering angle, or the angle be-
tween k and k'. The factor (&g„-&k,„}'on the
right-hand side of Eq. (5.8), which is proportional
to (1 —cose) for a spherical Fermi surface (no
CD%), weights 180 scattering heavily and small-
angle scattering lightly. As explained in Sec. IV,
the Fourier transform of the impurity scattering

FIG. 6. Diagram illustrating the umklapp scattering
geft portion of figure) vs the normal scattering icright
portion) when the conservation rule of Eq. (5.j.3) is
taken into account. The distortion of the conical-point
regions is exaggerated for emphasis.

potential i&(q ) is sharply p, aked about ij =-:0. ln
the absenc of a COW (A"= I

q =-k —k, the scattering crQSS section thus weig1M"-*

sm~&&.ll c& s the mostq which ln (hlB cd„.86 ls the same
as smali. angles O„as is 8llQ%l.» in th6 right. habe

of Flg. '6. NG prefe:encB exists ln any partk'-uter
dlrectlon, HQ the sca~ierlng Gk electrons~ R'Ad thus
the l eslstlvlty, ls lsotropic. I'Q the presence Qi a
COW& hoNev&r, the QtlxiQg of plane waves& wI[xlckk

ls respoflslM6 for tfi6 forxQ Gf the %'ave fuQctlons
r'], creates R

.6:;)ta/ly djfferent si/Uatjon In. thjH

case„slTlall-g Pourier components of the potentl8i
may scatter electx'Gns accord:tng tQ the cQnsexva-
tlGQ ru3. 6

l~' =k+q &-Q.

The "6"0('It: '8 ~hoxvn ln L~ lg. "3 QQ the left, vF'th3. ~],

Gle reduced-RGQ6 sc/leD36 for a 'Have-vector
transfer k, to I:. frGM th6 conical-point region on
one aide Gf the Fermi surface to the other conical-
point region Gn the Opposite sM6. Here 6:i.s nearly
$89", sG that this translrlon ls lavored by the
%'elgbtlng faca;Gr. Therefore the scaff erin&' aLQnp'

the direction of Q (.he z direction') is gre"-.tly en-
hanced. This may be viewed alternatively in the
repeated zone scheme as Hhoxvn ln 0 ]f7'. 4. Ihe
%'ave-vectox' transfeJ Q betxvBCQ k ~gnd k scatters
RQ 6j.ectrGn from a state Gn the Fermi surface ln
one zone to another state in the next, because in
the presence Gf R CD% this dist3nce is very shorti

in the conical-point region„. Smce only transltlons
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that are parallel to S contribute to the resistivity,
this umklapp scattering does not affect the re-
sistivity perpendicular to the CDW (perpendicular
to Q).

While the factor (2/g, —1/-„,)' in the calculation
of the component p„of the resistivity tensor en-
hances umklapp scattering, ~q, vanishes at the
conical point, or at k, =-, Q, as shown in Fig. 5.
This means that only umklapp tra, nsitions between
states near the conical points contribute, not
transitions between states at the points them-
selves.

The effect can be seen explicitly as a necessary
consequence of Eqs. (5.12). For k, &0, k,'&0 or
k, & 0, 0,'&0, the scattering occurs only within one
half of the Fermi surface and does not involve
umklapp scattering. However, for k, &0, 0,'&0
or k, &0, 4,'&0, the COW-umklapp effe.ct becomes
important. In Eq. (5.12b), the term involving
U2(k —k' —Q) is sharply peaked about k-k'=Q,
and weights the type of transition described by Eq.
(5.13). In addition, the coefficient (AgB1,.
+AgBq}2 in the region near k, -,'-Q is as large as
the coefficient of the first term and larger than the

d'k =(m/k')Q d8dgo d 8 2, (5.14}

where 8 is the polar angle. In addition, we define
g= 8- 8' and f = —,'(8+ 8'), so that d8d8'=dgdg'.
As an illustration, we consider the first model
potential of Sec. IV, given by Eq. (4.3). We define

coefficients of the others. For k, &0, k,'&0, the
corresponding term involves the same coefficient
with V2(k-k'+Q). Note that if V(r) were a delta
function, 'U(q) would be a constant and the CDW-
umklapp transitions would no longer be enhanced.
Clearly, the resistivity anisotropy depends on the
localization of p(q) about q =0. The more sharply
peaked Z(q) is, the greater will be the anisotropy.
This means that the more extended the potential
is in real space, the greater will be the aniso-.
tropy.

We now proceed with the calculation of the re-
sidual resistivity. In order to perform the inte-
grations indicated in Eq. (5.8), we invoke the zero-
temperature equality Sf1, /&& 1,

= —5(Eg —E~) and
transform integrations over d'& to integrations
over energy and the dimensionless cylindrical
coordina, tes of Sec. III,

Q (F k }2 1/2 1/2 22 22
T„=—',— d~ d Pi — up M-. 1;

'
-1/2 -j /2 0 0

(5.15a)

where (5.4), (5.8), (5.15), and (5.16), we have

( 3f, j
2 = (911 V2 1r 2 I~)

( Sl ~. (5.15b)

/Q 1/2
~=~

I g
—J(kp

(5.15c)
so that the resistivity ratio is given by

(5.1I)

Here, Ã, = 8', /n is the fractional number of im-
purities in the metal. If we define

Pzz ~ Tz (5.18)

5, = —eh„T„/II, (5.16a)

/},„=(m/ne22. „)5„,, (5.16b)

where &„, is the Kronecker ~. Combining Eqs.

Note that y does not depend on the overall strength
of the scattering potential or on the number of im-
purities present.

Equation (5.15}may be written explicitly for the
x and ~ directions, with the substitutions &g

=5k„/m and ~1„=(lIQ/m)&k, and an integration
over 111', as

Q '(I k)'
d1e du ' dg(8g, —81...)2)3i1-„, -„~2

-1 /2 -1 /2 0
(5.19a)
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)/2 ) /2 2w

I;= ( '~
'--z dr(I dIIr' dg[(«2+«"}—2«K'cosg](Mp -„~2,

(kr' &
l6+ )/2, /2 p

(5.19b)

where K is given by Eq. (S.l'I) of Sec. Ill. The factor )33-„. k ~2 does not depend on g' and the (( dependence
can be factored out of all the terms in Eqs. (5.12), so that we may define

~IVII' g~ =eXp(- 2I'2 Q [(«2+K'2) —2«K'COSp]) I~(/, '
Q )( (5.20)

Following integration over ((I, we have

Q~'(I' y,)' / /
d~'(~~. —~P..) i,(r,q KK') ~~(~;, n, ) ~2,

F) -1 /2 -1 /2
(5.21a)

Q (Z' )'2 )6 )/2 )/2
d~[(K +K )I (I Q KK) —KKI,(F'Q' ')]jM(I, I,,)(F -1 /2 -1 /2

(5.21b)

where I,(z) and I,(z) are modified Bessei functions
of the first kind of orders zero and one, respec-
tively. These two-dimensional integrals must be
carried out numerically for G & 0. However, for
the case G =0, T„=T„I' = 1, and the solution as-
sumes the simple form, where 7p=7 =7 =T,:

1 Nr Vi (I' y )2(Zy )2[(1 e (&2r-& )
6 AEp

7p

In order for 7p to be that of sample K-10 of Hol-
royd and Datars (Fig. 1), r -1.4)(10 "sec, with
N~ =10 ' from the reported purity, ~, must be
on the order of 2 eV. This is determined by as-
suming Eq. (5.22) with I; -r, . This value is con-
sistent with those of typical pseudopotential form
factors. "

In the evaluation of the resistivity with V2(q ),
one obtains three terms, each of which is of the
form of ~,(q), and the analysis proceeds as above.
For 9,(q) an additional complication arises. As-
suming the forms given in Eqs. (4.10) and (4.14),
the steps through Eqs. (5.19) are unchanged. How-
ever, Eq. (5.20) no longer applies, since the ad-
ditional factor of S(q) enters each of the terms in
Eqs. (5.12), and it is impossible to factor out the
dependence on (II or to perform the g integration
analytically. Therefore, for this case, three-
dimensional numerical integration is needed.

p
—2(FP~)"-'"~"]. (5.22)

If we let V, =(I', I'2z)2)r 2 'V, and constrain V, to
remain finiteas I', -0, then', (r)- (V,/kz)5(r) and
7p reduces to the form

3~3 Azp ' (5.23)

I I I

P~ (r)

EXPERIMENTa
O
v) 2-

CL

a=l.2

Delta- Function

0 0 I 0.2 03 0.4 0.5
G/E

FIG. 7. Theoretical predictions for the resistivity
anisotropy vs normalized CD%' gap 6/EF using the
central-ion potential 'U&{r) from Eq. {4.3) of the text,
for three values of a, where 1',=ar, . Also shown is
the anisotropy expected for a 6 -function potential. The
shaded rectangle represents the range of values deter-
mined by experiments.

VI. NUMERICAL RESULTS

Before displaying the results of numerical cal-
culations, we first appeal to experiments for an
estimate of the range of values of G/Z a)approp-

riate to K. The CD% model has been successful
in the explanations of the Mayer-El Naby optical
anomaly" and the splitting of the conduction-elec-
tron-spin-resonance (CESR) lines. " The intense
optical absorption with a threshold of 0.6 eV fixed
the value of G/Ero at about 0.29, assuming the
free-electron mass. This same value produced
a quantitative agreement with the CESR data. A
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maximum value for G/Eg can be obtained by as-
suming that Bio = g'kg /2m*, where m* =1.2m, the
measured cyclotron mass, "replaces m. This
yields G/E~=0. 36. Thus, in Fig. 7 we indicate
this range of values, along with the experimental
values for the resistivity anisotropy from the
torque anisotropy of Figs. 1 and 2, with a shaded
rectangle. For K, G/EP lies between 0.28 and
0.36 and the resistivity anisotropy lies between
4 and 5 at 4 K. For comparison, we also show
this shaded rectangle of experimental values in
Figs. 8, 9, and 11. Clearly, for other alkali
metals, a different set of values would be relevant.

We now show the theoretical predictions for the
resistivity as a function of G/Z~ if one uses the
various model scattering potentials described in
Sec. IV and one calculates the resistivity in the
manner described in Sec. V. The first case, shown
in Fig. 7, is that for which the first central-ion
potential 'V,(r) from Eq. (4.3), is used. We assume
that the width F, of the potential is comparable to
the Wigner-Seitg radius ~, . In order to show the
dependence of the results on this parameter, we let
F, =ar, and calculate the anisotropy with the values
a=0.8, 1.0, 1.2. Note that the larger' F, is, the
greater is the spread of the potential in real space,
but the more peaked is its Fourier transform in q
space. If we allow the potential to go to the limit
of a & function, its Fourier transform is a constant,
as discussed in Sec. V. In order to emphasize
the importance of a sharply peaked Fourier trans-
form for the enhancement of umklapp scattering,
and eventually for a large resistivity anisotropy,
we also plot in Fig. '7 the results of using a &™func-
tion potential. It is clear that the sharp peking
of the Fourier transform about q =0 enhances the
anisotropy and if no peaking occurs, the aniso-
tropy is very small. The small effect that does
occur for the &-function potential is a consequence
of the distorted shape of the Fermi surface. (See
Figs. 3 and 6.) The elongated shape also produces
a slight enhancement of the resistivity perpendicu-
lar to the CDW, since it decreases the distance
for momentum transfer along that direction. This
effect actually suppresses the anisotropy and has
been included in these calculations.

The results using the second central-ion potential
'V, (r) of Eq. (4.4), are shown in Fig. 8. The width
of the K ion is given by F, = ar, and the width of
the impurity ion by 1",=6~, . Since the potential
appears squared in the calculations, the roles of
these two could equally be reversed. Since this
potential is formed by subtracting two Qaussians
of the same heights but different widths, in real
space the potential vanishes at the origin, so that
U, (r) is more extended than either 'U,(r) or V,(r).
Consequently, $7,(q) is more localized about q =0

Exp T~~yh~&

(0.6,0.8}or (1.0,0.0)
0 O. I 0.2 03 04 0.5

G/Eo

FIG. 8. Resistivity anisotropy vs G/Ez using the cen-
tral-ion potential Q2(r) from Kq. (4.4), for four sets of
values (a, b), where F,=a~, and F&—-bx, . Note that the
lowest curve is identical to that for a = 1.0 in Fig. 7.

than either U,(q) or 'U, (q). Its shape is nearly
that of a Qaussian with a width F smaller than
F, or F&. Thus this potential produces larger
anisotropies than 'V,(r), as can be seen from Fig.
8. For instance, the lowest curve (a, b) =(0.6, 0.8),
is identical to the curve for &=1.0 in Fig. 7. The
difference between the widths of the Fourier trans-
forms 5,(q) and 'Ob(q) can be represented by the
quantity a —b. The anisotropy varies only slightly
as this quantity is varied, as long as the average
—',(a+b) remains constant. That is, the anisotropy
produced by scattering from 'U, (r) is principally
a function of —,'(a+ b)

In Figs. 7 and 8, we have used the value F,
=1.2~, as the largest acceptable value for the
width of the potential of a K ion in the lattice. This
value was obtained by assuming that the magnitude of
'V,(r) at a distance ~, from the origin must be less
than or equal to half its value at the origin. This
implies that a ~ 1/vln2 =1.2. A larger value would
result in peaks in the positive background potential
halfway between atoms. Values close to this rep-
resent a situation that most clearly resembles the
jellium model of a uniform positive background.
Of course, if one takes into account the actual bcc
lattice of K, this maximum value of a should be
slightly smaller.

We now turn to the results for the residua1. re-
sistivity anisotropy for scattering of the electrons
only from the strain field created by the presence
of the impurity, shown in Fig. 9. We have used the
potential 'V, (r) from Eq. (4.6), with the subsequent
approximations for 'V, (q) in Eqs. (4.7)-(4.14). As
discussed above, we use a =1.2 as the maximum
value of the width of the K-ion potential. In addi-
tion, we include the two other values a =0.8, 1.0,
as before. Since the strain field begins at the



18 RESIDUAL-RESISTIVITY ANISOTROPY IN POTASSIUM

I I I

Vs (r)'
ExPT~L& CL

O

a
V)
C:

I I

'
EXPT.

2

CL

0 Ql 0.2 03 04 0.5
G/ Eo

Textbook Model~

0 O. l QZ 03 0.4 0.5
G/E

FIG. 9. Resistivity anisotropy vs G/E& using the
strain-field potential'U~ (r) from Eqs. (4.6), (4.10), and

(4.14) of the text for three values of a.

nearest-neighbor distance from the impurity and
extends even farther, the Fourier transform'U, (j)
is more sharply peaked than 'U,(j) and thus pro-
duces a large anisotropy, considerably larger than
that for g,(j) in Fig. I.

Combining the scattering from the strain-field
potential with either of the central-ion potentials
can either increase or decrease the anisotropy,
depending on the relative strengths of the potentials,
which is determined by the parameter x i,n the ex-
pressions in Egs. (4.15) and (4.16). The effects
of combining the strain-field potential U, (r ) with
the central-ion potential U,(r ), resulting in
'U~'I(r) is illustrated in Fig. 10, for G/Eg =0.35
and a =1.0. When p&0, or for contraction of the
lattice about the impurity, the anisotropy reaches
a minimum when x =0.4 and a maximum when x
=0.65. The value of the resistivity (in arbitrary
units) for G =0 is also shown. For this case, it
is clear that the two potentials nearly cancel one
another at @=0.5. The minimum occurs when
'U~', ~(j) achieves a cancellation near q =0, making
the function more extended. Similarly, the maxi-
mum occurs when the cancellation occurs in the

FIG. 11. Maximum and minimum values for the re-
sistivity anisotropy vs G/E& using the potential'U flag (r),
determined from Fig. 10 and similar plots, for three
values of a. Also shown is the prediction from the
standard "textbook model, " for which the electron den-
sity is uniform throughout the metal (no CD%).

tails of the potentials, resulting in a more sharply
peaked function about j=0. The results for p&0
are also shown. For this case, since 'U, (q) and

V,(j) add, no cancellation occurs, and the aniso-
tropy varies nearly linearly with x.

Results for the maximum and minimum in Fig.
10 and similar plots is shown as a function of
G/Eg for three values of a in Fig. 11. The maxi-
mum anisotropies are larger than the curves iq
Figs. '7 and 9, and the highest curve, for a =1.2,
predicts anisotropies nearly as large as have been
seen experimentally.

Finally, in Fig. 12, we show the dependence on
x of the resistivity anisotropy that arises with the
potential %~„',~(r), whose Fourier transform is
given by Eq. (4.16). As in Fig. 10, @=0 represents
the contribution only from the central-ion po-
tential, in this case g,(r), and &=1 from u, (r).
Here, G/Eg =0.35 and the width of the K-ion po-

)
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pV, (r)

02 Q4 06
X

I ( I
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20~

IO

QB I.O
'VS(I )

FIG. 10. Plot of the resistivity anisotropy and the
resistivity in arbitragy units for '0 fnt (r) as a function-
of x, the "concentration" of the potential '0 &(r), for
G/E~=0. 35 and a =1.0. Results for both signs of P are
shown, allowing for the cases of contraction and ex-
pansion of the lattice.

(, )

6/E„= Q35

0 02 04 . 06 08 I.O

pV (r) " V (r)

FIG. 12. Resistivity anisotropy using the potential
'U2(r) as a function of x, with G/Ez=0. 35. Here a is
associated with the width of a K-ion potential and b with
the width of the impurity potential. With a =1.0 fixed,
we choose values of b 20% larger and smaller than a.
We include the possibilities of contraction or expansion
of each case by including both signs of P.
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tential is fixed by a =1.0. We consider the two
cases in which h =0.8 or 1.2, that is, the width
of the impurity ion potential is 20% larger or
smaller than that of the K-ion potential. The case
for 6 =0.8 shown here has a very similar depen-
dence on x as the example illustrated in Fig. 10.
In addition, the shapes of the curves for the re-.
sistivity at G=O (not shown) for P&0 and P&0 are
approximately the same, with minima at x =-0.5.
However, here for p& 0 the ratio of the resistivity
for x = 0 or x = 1 with respect to that for x= 0.5
is 35 to 1 a's opposed to 8 to 1 for the analogous
case in Fig. 10. For b =1.2, the resistivity curve
as a function of x is nearly identical to that for
5 =0.8 except that the curves for P&0 and P&0 are
interchanged. The anisotropy curve, with G/Fg
= 0.35, shown by the dashed curve, acquires a
different shape. The large cancellation occurs
for P&G and the function reaches a minimum and
not a maximum. The P &0 curve achieves a slight
maximum. These shapes occur when the aniso-
tropies due to U, (r) and 'U, (r) are almost the
same. We will not show the variations of the
maxima and minima as a function of G/Eg, as in

Fig. 11. The shapes of such curves are the same
as in Fig.. 11. For all the coxnbinations of pa-
rameters considered in Fig. 8, the maxima are
somewhat smaller than those in Fig. 11 for the
same values of a.

Preliminary results to those reported in this
section appeared in Bef. 5. The curves displayed
there correspond to those in Figs. 7, 9, and 11 of
this paper with a =1.0. The central-ion potential
'O, (r) was not considered. The earlier curves
showed slightly larger anisotropies due to various
mathematical approximations in that work.

VII. CONCLUSIONS

We have seen that the results of induced-torque
experiments on sample K-10 of Holroyd and Datars
prove that K neither has a, simply connected Fermi
surface nor is of cubic symmetry. In addition,
the data of Figs. 1 and 2 forces one to conclude
that the residual resistivity in K is anisotropic by
as large as a factor of 5 to 1. We have shown that
the hypothesis of a. CDW structure provides a
quantitative explanation of this ratio. Although
we do not attempt to explain the high-field torque
anomalies here, the CDW clearly contains the
features of a preferred axis and a multiply con-
nected Fermi surface.

In this paper, we have not included any of the
effects of phasons, ""or phase modulations of the
CDW, that might exist in K. It has recently been
shown that electrons in the conical-point regions

of the Fermi surface shown in Fig. 3 scatter
strongly from phasons. " This would produce an
additional enhancement of the umklapp scattering
discussed here and would therefore increase the
residual resistivity anisotropy that one would
predict in ihe presence of a CDW. Although a
CDW is expected to lead to weak diffraction satel-
lites, phasons could reduce their intensity in K
by several orders of magnitude. " As has been
suggested in the past, an attempt should be made
to search for these satellites at 10 ' of the (110)
intensity level.

Variation in the results of torque data from sam-
ple to sample, which has led to much of the con-
troversy discussed here, implies that a Q-domain
structure exists in most samples. The anisotropy
in the resistivity tensor discussed in this paper
would permit the residual resistivity to vary up to
a factor of 4, depending on the distribution of
orientations of Q in the domains. It is commonly
found that in high-purity samples of K, the re-
sistivity can vary by as much as a factor of 2 from
run to run on the same sample, depending on how
the sample is handled. As was first suggested
in Bef. 5, the sample K-10 of Holroyd and Datars
may be the first single Q-domain sample ever
studied. Perhaps this could be attributed to the
fact that the sample was grown carefully in the
smooth spherical kel-F mold and was kept pro-
tected by the mold throughout the course of the
experiments. Clearly, induced-torque experi-
ments could be used to characterize samples, so
that at least one could determine whether a given
sample were single Q.

One of the main difficulties with the CDW model
is the apparent contradiction with de Haas-van
Alphen experiments. These experiments imply
that the Fermi surface is spherical to one part in
10'. However, it is not clear whether this can be
attributed to a multi-Q-domain structure. On the
other hand, results of recent de Haas-van Alphen
experiments' show some of the effects expected
on the basis of a CDW model. We emphasize the
importance of performing de Haas-van Alphen
experiments on a sample that exhibits the huge
induced-torque anisotropies of Fig. 1 in order to
resolve this dilemma.

ACKNOWLEDGMENTS

This research was supported in part by the
National Science Foundation and the NSF Materials
Besearch Laboratory program. The authors would
like to thank F. W. Holroyd and W. B. Datars for
many useful discussions and for permission to
publish their data.



18 RESIDUAL-RESISTIVITY AN ISOTROPY IN POTASSIUM

J. A. Schaefer and J. A. Marcus, Phys. Rev. Lett. 27,
935 (1971).
J. S. Lass, J. Phys. C 3, 1926 (1970).
J. S. Lass, Phys. Rev. B 13, 2247 (1976).

4F. W. Holroyd and W. R. Datars, Can. J. Phys. 53,
2517 (1975); and private communication.

A preliminary exposition of this theory appeared in
Maril~ F. Bisho~ and A. W. Overhauser, Phys. Rev.
Lett. 39, 632 (1977).

L. D. Landau and E. M. Lifshitz, Electrodynamics of
Continous media, translated by J. B. Sykes and J. S.
Bell {Pergamon, New York, 1960), p. 209.

~P. B. Visscher and L. M. Falicov, Phys. Bev. B 2,
1518 (1970).

A. W. Overhauser, Phys. Rev. Lett. 27, 938 (1971).
D. Shoenberg and P. J. Stiles, Proc. B. Soc. A 281,
62 (1964); M. J. G. Lee and L. M. Falicov, ibid. 304,
319 (1968).
J. Monin and G. A. Boutry, Phys. Bev. B 9, 1309
(1974).
I. M. Lifshitz, M. Y. Azbel, and M. I. Kaganov, Zh.
Eksp. Teor. Fiz. 31, 63 (1956) ISov. Phys. -JETP 4,
41 (1957)],

2B. K. Jones, Phys. Bev. 179, 637 (1969}.
3However, because the kel-F mold was transparent,
both Holroyd and Datars observed that it was com-
pletely filled. They also remarked that sample K-10
had a diameter of 1.11 cm (not 1.71), and that the or-
dinate scale of {their) Fig. 5(a) was incorrect. Mag-
net rotation rate for this spectrum was 22 /min (not
35 /min).

4For a review, see A. W. Overhauser, Phys. Rev. B 3,
3173 (1971); or Adv. Phys. QV, 343 (1978).

5A. W. Overhauser, Phys. Bev. Lett. 4, 462 (1960);
Phys. Rev. 128, 1437 (1962).

6P. A. Smith and C. S. Smith, J. Phys. Chem. Solids

26, 279 (1965).
~A. W. Overhauser, Phys. Bev. B 3, 3173 (1971);
9, 2441 (1974).

8A. W. Overhauser and R. L. Gorman, Phys. Rev. 102,
676 (1956}.

~DJ. D. Eshelby, J. Appl. Phys. 25, 255 (1954); A. E. H.

Love, Mathematical Theory of Elasticity, 4th ed.
(Dover, New York, 1944), p. 187.

2 T. M. Rice and L. J. Sham, Phys. Bev. B 1, 4546
(1970).
See, for instance, J. M. Ziman, Principles of the The-
ory of Solids, 2nd ed. (Cambridge U. P. , London,
1972), Cahp. 7.
J. M. Ziman, Electrons and Phonons (Oxford U.P.,
London, 1960), Sec. 7.3.

3Reference 20, Secs. 7.7 and 7.9.
24See, A. H. Wilson, The Theory of ~etal s, 2nd ed.

(Cambridge U. P. , London, 1953), Chap. 9.
~A. W. Overhauser, Phys. Rev. B 14, 3371 (1976);
and Phys. Rev. 156, 844 (1967).
A. W. Overhauser, Phys. Bev. 168, 763 (1968).

27C. C. Grimes and A. F. Kip, Phys. Bev. 132, 1991
(1963).
A %. Overhauser, Hyperfine Interactions 4, 786
(1978).

M. L. Boriack and A. W. Overhauser, Phys. Bev. B
17, 4549 (1978).
Z. Altounian, C. Verge, and W. B. Datars, J. Phys.
F 8, 75 (1978).


