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The liquid-gas critical point in 3.3 dimensions*
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Liquid-gas phase transitions are usually assumed to belong to the same universality class as Ising magnets.

However, in the liquid-gas case, the free-energy expansion contains odd powers of the order parameter. We
show in this work that, even though the odd terms are irrelevant near four dimensions, they become relevant

at dimensionality d, =(10—Sq)/3-3. 33. A new, stable, fixed point may appear. We approximately
calculate, to order c' = d, —d, the difference between the critical exponents for this new fixed point and
the Ising critical exponents. This difference turns out to be numerically small. We conclude that, even

though in three dimensions the liquid-gas and Ising-magnet phase transition do not belong to the same

universality class, the effect on the critical exponents is probably too small to be observed.

I. INTRODUCTION

In the taxonomy of critical-point problems which
has been so actively developed in the last decade, '
liquid-gas transitions are generally placed in the
same universality class with those in uniaxial
(ising-like) magnets, since both have scalar order
parameters (n =1). In general, experiments have
seemed to support this identification: indeed, the
similarity between fluid and magnetic critical
points was important in suggesting the idea of the
universality of critical phenomena in the first
place. However, the spins in a magnet possess
an exact up-down symmetry (in the absence of an
external field) which has no counterpart in the
fluid. In the latter. case, the order parameter, the
deviation p- p, from critical density, has an ap-
proximate symmetry near the critical point which
follows from the analyticity of the Van der Waals
coexistence curve at the critical point. However,
there is no exact symmetry between liquid and gas
phases.

Is this difference in symmetry relevant to criti-
cal phenomena in the two kinds of systems, or is
the approximate symmetry of the fluid sufficient
to place it in the same universality class with the
magnet9 This is the first question we try to answer
in this paper. Hubbard and Schofield' have already
raised this question and answered it for systems
near four dimensions, where one can apply Wilson's
e expansion. ' They find that the difference between
fluids and magnets is irrelevant (in Wilson's sense)
and that all critical properties should be the same
for thetwosystems. Wefind, however, thatbelow
a, critical dimensionality d, = &(10 —5q) =3.3, the
& expansion can break down; a term of odd sym-
metry becomes relevant, and a new fixed point
may become stable, altering the critical exponents
of the fluid. These corrections can be calculated
as power series in &' = d, —d; in this paper we
calculate the changes in y and q to order &'.

In the next section we review the formulation of
the liquid-gas transition in terms of a Landau-
Ginzburg model Hamiltonian and note why it is the
presence in this Hamiltonian of a term of fifth
order in the order parameter that makes this case
potentially different from its magnetic counterpart.
In Sec. III we outline the application of the renor-
malization group to this problem and show that the
fifth-order term becomes relevant below the spe-
cial dimensionality d, mentioned above. We will
see that below d„a new stable fixed point, with
new critical exponents, may occur. Section IV
contains an approximate calculation of this fixed
point and the corresponding changes in critical
exponents. The calculation requires knowing the
four-point vertices of the symmetric (magnetic)
theory; these are obtained from the ordinary
e (=4 —d) expansion. In the final section we com-
ment on the results.

II. MEAN-FIELD THEORY AND THE LANDAU-GINZBURG

DESCRIPTION

Landau-Ginzburg theory provides a description
of fluctuations around a particular mean-field
theory. Accordingly, we recall a few features of
the Van der Waals (mean-field) theory of a liquid-
gas system, which is analogous to the Weiss
mean-field theory for a magnet. Very close to the
critical point, where one can make power-series
expansions, the two theories are manifestly equiv-
alent (except for scale factors) since the leading
terms in both expansions have the same form.
However, at a finite deviation from criticality,
the Van der Waals problem does not admit an in-
variance under the change p —p, —(p —p,); the
symmetry is confined to the first two terms in the
Taylor series. One might call the approximate
symmetry a dynamically generated one; it exists
only because we are near the critical point.

Thus the Landau-Ginzburg effective Hamiltonian
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of the fluid problem will differ from that of the
magnet in that it need not contain only terms even
in the order parameter; odd powers are permitted
as mell. So let us examine an effective Hamiltonian
of the form 3 1 V

If [+]= d' x[-.'r+'(x) + —,'(V4')'

+ —,
'
v,e'(x) + —,

'
v,e'(x)]. (2.2)

We have added the usual Landau (Vf }' term, but
omitted nonlinear gradient terms like 4 (V%)' or
4"(VC } . In the next section we apply the renorma-
lization group to this model. The question we will
seek to answer is whether the v, term, or any
other new term that it generates under the renor-
malization group, is relevant in three dimensions.

III. RENORMALIZATION GROUP FOR THE FI.UIB

We can renormalize this problem in the standard
way 2 First the functional integral is carried out
over the large-q components of 4, Ae ' &q ~A,
where A is the cutoff in the theory. This changes
the values of the coefficients r, v4, and v„and,
indeed, gives them some momentum dependence.
The momenta and fields are then rescaled so that
the cutoff is again A and the (VC )' term looks like
it did in the original problem. Finally (and this
step is necessary only for the asymmetric prob-
lem} we shift 4 at each point by a constant chosen
so that the cubic term

H = 1
3= 3~~ Q vs(Qx qa —

Vx
—V2},,@,@-,,-„

~&~2

(3.1)

vanishes at q, =q, =0. Note that we can only do

II(4 ) =M +-,'y4'+ 3v,C '+ —,'v, %4+ 5v,+'+. . . , (2.1)

ignoring all gradient coupling, etc. , as in Landau
mean-fieM theory. The linear term M must be
set to zero to have a critical point. (This occurs
in the magnet as well. } We want the critical point
to happen when r passes through zero, so that B
changes from a single-well to a doubLe-well struc-
ture. But if v, 0, this will not happen; H will
have an inflection point at 0 =0 when y =0. This
describes a first-order transition, not a. cri.tical
point. In physical language, we are not at the
right density. %'e must define a new 4, shifted
from the old one by a value chosen so that whenII
is expanded in terms of the new 4, the coefficient
of the cubic term vanishes.

Thus the first odd-symmetric term that remains
is the quintic. Since we want the integral of e ~

to be finite, we also need a positive v, (or some
higher even-power term), but this will not enter
into the calculation of any critical properties. Our
initial effective Hamiltonian is then

FIG. 1. Contributions to Bv2/8/. A slashed line means
its momentum lies in the sheQ e ~&A &1.

this in the uniform limit; a q-dependent v, will
remain the renormalized II and cannot be made to
vanish. The first such surviving terms are inter-
actions of the form 4(~}'. The differential re-
normalization-group equations obtained thereby
contain distinct terms from each of the three steps
in the renormalization procedure. Those which
arise from the integration of the shells 's admit a
diagrammatic representation. For example, these
contributions to the change. in the quadratic co-
efficient v, (k) are shown in Fig. 1 and have the
form (A =1, / infinitesimal)

1 ~~ 12 terms in v4

Bl int 4 (2&) . v (1)

1 W~ 36 terms in v, v,
18 (2v)~ v, '(1)

(3.2)

1 [v„+,(0, k„.. . , k„)+v„+,(k„0,k„... , k„)

+.. ..+v„„(k„k„...k„,0)]. (3.3)

The constant a is chosen so that the total 8va(0, 0, 0)/
Bl vanishes. For this discussion, the terms which
come from rescaling are the most important. They
have the simple linear form" '

av„(k„.. . , k„)
8 l rescaling

pg 1 —
~2

—~n- 1 d- k ~ V'k] v k~ k

(3.4)

and from them we can ascertain the relevance or
irrelevance of a given interaction v„. If v(k„, . . . , k„)
is finite at all k, =0, it is relevant if the coefficient
n(l —,'q) ( 2n ——1)d-is-positive, irrelevant if it is
negative, and marginal if it vanishes.

Thus as we lower the dimensionality from some
high value, one more interaction after another be-
comes relevant. If we ignore g for the moment,
we find the cubic term to be relevant below d= 6,
the quartic one becomes relevant below d=4, the
quintic at d = '» and the sixth- order one at d = 3.

The shift 0 (x) -4(x)+ al or 4"(x)-4"(x)+naÃ" '(x)
leads to a change

av„(k„.. . , k, )
3hat
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If, as in the present problem, the v, term has
been eliminated at zero wave vector, the presence
of the k V~ term in (3.4} renders the remaining

kg

v, term irrelevant above 4=2, assuming that the
lowest-order terms are quadratic in k, . A finite
positive q lowers the critical dimensionality
slightly for each interaction, so in the physically
interesting three-dimensional case, just one new
interaction (v, ) not present in the magnetic prob-
lem near d=4 is relevant.

The foregoing suggests that we try to solve the
renormalization-group equations near d, = &(10—5q),
where v, becomes relevant, to lowest nontrivial
order in &' =d, —d, by analogy with the now-stan-
dard procedure near d =4 in the symmetric prob-
lem. If we find a new stable fixed point with v,*
proportional to some power of e', we mould then
be able to extract the changes in critical exponents
from their values in the symmetric theory as
power-series expansions in c' by perturbing the
group equations around this new fixed point.

While this program remains possible in principle,
we have chosen to do our calculation usingWilson's
diagrammatic perturbation-theory matching meth-
od' instead. The reasons for abandoning the re-
normalization group as the means of doing the
calculation are:

(1) In order to do any calculation, we have to
guess the form of the new fixed point, and it is
not obvious how to do this correctly. The simplest
assumptions we have tried (e.g. , v, and v, finite
at k, =0, v, quadratic in k, and therefore irrele-
vant) do not lead to sensible results. Indeed, we
are not allowed to assume that the fixed-point
interactions v„*(k&, . . . , k„) are analytic in the k, .4
We found in fact a form of the fixed point which
seemed to make sense and v, ~(k, )' ' '"'.
This made it exactly equally as relevant as v„
which had a constant term O(ko). It also turned
out to be necessary to have the quartic term v4

a singular function of its argument.
(2} The group equations become very messy,

partly because of the necessity of keeping the v,
interactions at finite k. In addition, one needs to
look at the equations for higher-order vertices
(e.g. , v, ) in order to stabilize the growth of v,
from the rescaling term (3,4) when e'&0. (These
also have singular k dependence. ) It then becomes
very difficult to follow the path of the system in
parameter space and find the new fixed point.

We therefore turn in the next section to the
matching method instead. The renormalization
group has, however, allowed us to ascertain the
critical dimensionality d, below which a v, term
is relevant. The next question to be answered is
whether the new relevant interaction leads to modi-
fied critical behavior.

IV. NEVI FIXED POINT AND CRITICAL EXPONENTS

vg(&t) vg vol + vgi (& i) (4 1)

where v,*' is the Ising value. We will show in this
section that

v* ~6, vg (E' )~E ~ (4.2)

We review now the matching procedure. We
want to choose special values of the interaction
parameters v, (called vo) so that the perturbation
series for k G(k) (G is the propagator) exponentia-
tes to match the critical behavior k". In the sym-
metric problem, the value of v,"is found by
matching perturbation theory to the scaling form
of the four-point vertex function in the long-wave-
length limit. The value of vo will be determined
in an analogous fashion in this work by examining
the five-point vertex function, which, as A-O, is
given by '

~ g3d/0 -5 +5/@
5

where $ is the correlation length. We have

(4.3)

Hence

G, (k) = 1/(~+6'). (4 4)

~~36 /4 5'/4
5

We assume

g =g~+'g 6

(4.5)

(4.6)

The expansion of Eq. (4.5) in powers of e' is to be
matched with the perturbation expansion for I"„
and thus the value of v', is to be deduced.

Two parenthetical comments: (1) The reader
will recall"' that the special values of the cou-
pbngs vo are not exactly equal to the fixed-point
values v*, . However, to the order in e' to which

, we work, they are the same, so we will not make
the distinction explicitly hereafter. (2) In the
symmetric problem it was necessary to fix only
the interaction v4 by this procedure. In the asym-
metric problem, we will find it necessary to choose

The method that we follow in this section is a
straightforward extension of the matching method
of Wilson. ' We will assume that immediately be-
low d, =~3 the fixed point (and its exponents) differs
little from the Ising fixed point. That is, we will
assume that the fixed-point value of the four-point
interaction v4 for d&d, is the same as the Ising
value (i.e. , as given by the e expansion) plus a
correction. which vanishes at d =d„and that the
interactions of odd order have fixed-point values
proportional to some power of e'. Our objective
is to find the corrections of order e' to the critical
exponents.

We write, accordingly,
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properly the whole set of interactions v„1& i & 5

(i =2 is a trivial case), Thus the technical details
are more involved, although the idea remains:
to fix the parameters in II so that perturbation
theory matches scaling theory.

We have to develop, therefore, the perturbation
expansions for I", and for the self-energy Z de-
fined by

(a) (b) (c)

G-'(k) =r+k'+Z(k)- Z(0). (4.7)
CO Q

G(k, r=0)=1/k ", k "=1—))ink+. . . . (4.8)

These diagrams are those in Figs. 2(a) and 2(b).
Let us first calculate diagram 2(a):

Z, (,)(k) =24(v, )' d'x e '"'"G'(x 0) (4.9)

As shown in Appendix A,

G(x 0) =a/x'-' X =r(-'d-1)/4~"' (4.10)

where I' is the gamma function.
We can find Z(k) —Z(0) by expanding the expo-

nential in (4.9). The first term does not depend
on k and the term we want is that proportional to
k . The angular integral is then equal to Q~/2d

Even with the limitation, imposed at the begin, -
ning, of keeping to order e' only, the evaluation of
the diagrams appearing in the perturbation ex-
pansion is extremely cumbersome. That forces
us to restrict ourselves to the following two classes
of diagrams.

(1) Diagrams containing odd interactions only.
To compute the exponents to order a', this will
mean two vertices in the self-energy diagrams,
three in the F, diagrams. The diagrams in this
class will be calculated exactly.

(2) Diagrams containing the above numbers of
odd vertices plus one four-point vertex which is
evaluated to zeroth order in e'. These diagrams
will be calculated approximately.

Diagrams containing v4 will not be needed except
to cancel divergent terms to produce the proper
logarithmic singularities.

Two further points are worth noticing: First,
since we include at the most one interaction, we
may consistently use the expression for v~ only
to order e, and, since go-e', we take d, =~3.
Second, this approximation is the simplest possi-
ble; one cannot simplify further by considering
class-1 diagrams only, since that would amount
to working with a Hamiltonian with no even terms,
which could have a first-order phase transition
only.

We proceed now to the calculation of the dia-
grams in class 1. First, we compute those that
appear in the calculation of g, that is, contribute
to Z(k) —Z(0). The contribution ought to be pro-
portional to k ink, because

()) (j) (k)

FIG. 2. Self-energy diagrams. (a), (b), (f), and (i):
diagrams of order v&. (c): diagrams of order ~& and
v 5v &. (d): effective vertex v &. (e): equivalent to (b)+ (c).
(g): result after removing worst divergence in (f). (h):
compensating four-point vertex. (j): result after re-
moving worst divergence in (i). (k): diagram with com-
pensating field v

&
that cancels (j).

Z, (,)(k, 0) ~k 'h. (4.12)

We can cancel this disagreeable divergence, how-
ever, by choosing a k-dependent three-point in-
teraction v, (k„k„—k„-k,) of a magnitude such
that v, (0, 0, 0) just cancels the loop term in Fig.
2(d). This defines an effective three-point inter-
action v, (k,). We then no longer need consider dia-
grams with single loops attached to v, vertices.
Furthermore, we can take the k dependence of v3
to be anything we like; we choose

(4.13)

in agreement with the condition v, (0) =0 and con-
sistent with Eq. (3.3) for v, :

d, -k v, +

Thus diagrams 2(b) and 2(c) sum up to 2(e),

Z2(, ) (k, 0) —Z2(, ) (0, 0) ~ k', (4.14)

and hence do not contribute to g. There are no
other k-dependent self-energy diagrams of class
1.

We next compute the contribution of the class-1
diagrams to Z(k = 0, r)-Z (0, 0). These contributions
are needed to find the exponent y, since one has

(Q~ is the area of a unit sphere in d dimensions),
and we obtain

Z2(, ) (k, 0) —Z,(,) (0, 0) = 24(vos)'A. '(Q~/2d)kalnk .

(4.11)

We next turn our attention to diagram 2(b). The
loops are a cutoff- dependent constant and the cen-
tral part diverges as k '~:
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r- Z(0, r)+Z(0, 0) &xrJ~ . (4.15)

First, the contribution from P,~,&
is found by

using the expression (see Appendix A)

G(, r) =(2~'X/ ~')( ~r~Z~, (&~x). (4.1

That is,

G(x, r) = (A/ x+')[1- c(rx)'+ + ,'rx'+. . .—j, (4.16b)

where c is some constant. From this expression
we obtain a term in r lnr:

Z, &,)(0,r) —Z,&,)(0, 0) = —24(@05) A Q~-,'rlnr.
(4.17)

Diagram 2(b) makes a divergent contribution to
Z of the form

Z,(,)(0, r)(xcr ~'+c'r'~, (4.18)

since the bubble diverges as r ~' and the loops
have the form c, + c,r". But just as we did for
the corresponding contribution to Z(k, 0) [Eq.
(4.12)], we can cancel this divergent term with a
three-point interaction, since the k -0, r -0
limit of v, just cancels the constant part of the
loop. The remaining r' ~ part of the loop gives an
r ' dependence to v„so that the sum of all dia-
grams with the divergent bubble [2(b), 2(c)] is
Fig. 2(e), which is simply proportional to r. Thus
it makes no contribution to y.

The next diagram of 0(v, ) which contributes to
Z is Fig. 2(f). Since it has a single loop on the
upper v, vertex, me know that its most divergent
piece mill be canceled by a diagram with a three-
point vertex there, without a loop. The resulting
contribution, Fig. 2(g), makes a contribution to
Z(0, r) —Z(0, 0) whose leading term is [by using
the expression (4.16)j proportional to r'~. The
total r'~' contribution [from 2(g) and 2(a)] may be
canceled, however, by properly choosing v4, rep-
resented in Fig. 2(h) by a black square. At r-0,
v4 is constant.

The final g', diagram which contributes to Z(r)
is Fig. 2(i), which goes like 1/r from the single
propagator line. We eIiminate the bottom loop and
one of the top ones by adding the corresponding
v, diagrams; this gives Fig. 2(j), whose leading
divergent term is proportional to r". Finally,
we eliminate this term by introducing an "external
field" v, ~r'+. Then Fig. 2(k) can be made to can-
cel Fig. 2(j) st this order, and the next most di-
vergent term in Fig. 2(j) is of order r, which does
not contribute to y.

One can easily check that the new interactions
we have introduced do not lead to any more terms
proportional to rlnr or r* (x&1). Thus the total
contribution from class-1 diagrams to Z(0, r)
-Z(0, 0) is given by Eq. (4.17).

We next consider the contribution of class-1 dia-
grams to I', . Within the limitations explained
after Eq. (4.7), the expression (4.5) may be re-
written as

I', ~ 1+ (-,' -f q ') e 'lnr +. . . . (4.19)

I",(.) =-864(((,')'J
(2 ),

— II'(((G(k),

where the polarization Q is defined in

fl(n)=,C(P+n)G(P).
(f p

(4.20)

(4.21)

In Appendix A we show that, at r =0,

fl(l, o) =a/a~", a =aV22"~'~

One then finds

, 2V W'~'~
r'( )

=- 864(v')' —,lnr.
8 r(-. )

(4.22)

(4.23)

The calculation of the contribution of the lnr
term from diagram 3(b) is easy, since it is pro-
portional to the derivative. with respect to r of the
self-energy diagram 2(a). One obtains also from
it a divergent term proportional to r ".This
term and diagram 3(c) are canceled by diagram
3(d). This cancellation is clearly the same as that
involved in the self-energy diagrams 2(a), 2(g),
and 2(h). The lnr term from 3(b) is thus given by

9 g4+5/3
(4.24)

This completes the calculation of the diagrams in
class 1. We proceed now with those in class 2.

(a)

(c) (d)

FIG. 3. Class-1 diagrams for I &. (a) and {b) are log-
arithmically divergent; (d) compensates the r di-
vergence in (c).

The first contribution to I', in the perturbation
expansion is v, . For the term of order &', we need
now to compute the v,3 diagrams which behave as
lnr. The only diagrams to be considered are those
in Figs. 3(a,) and 3(b). Diagram 3(c) will be can-
celed (see below), so that its r '+ divergence
mill not appear.

Diagram 3(a) is easily evaluated, since it is
equal .to



ORIOL T. VALLS AND J. A. HERTZ 18

I, b', I

FIG. 4. Relevant class-2 self-energy diagrams.

(c)

As indicated above, it is not possible to compute
them exactly. The approximation used is in the
expression for the four-point vertex 1'4 for which
we have, from the e expansion (see Appendix B),

F4(k)) = ~kf +k,'~k,'+,
where

Qo =Q 1l'

(4.25)

{4.26)

and k„k„and k~ are the momentum transfers in
the three channels I"4 has. In order to be able t;o

do the angular integrals involved, we will in many
cases approximate I'4 by changing the k dependence
from one channel to another.

The diagrams that turn out to give net contribu-
tions to the relevant parts of Z and F, (i.e., the
k'ink and &1nr terms in Z and the 1nr term in I', )
are listed in Figs. 4 and 5, respectively. Their
approximate calculation is described in Appendix
C and their values and combinatorial factors are
listed in Table I. Other diagrams whose diver-
gences are canceled by compensating interactions

(o) (p)

(s)

FIG. 5. Relevant class-2 I'& diagrams.

[like 2(b) and 3(c) in class 1] are omitted, as the
cancellations proceed in a way, that is a straight-
forward generalization of that of class 1. If we
define the quantities P, P', and Q as follows:

TABLE I. Values of diagrams.

Approximation
method

Value
(logar ithmic part)

Combinatorial
coefficient

2(a)
3(a)
3(b)
4(a)
4(b)
5(a)
5(b)
5(c)
5(d)
5(e)
&(f)
5(g)
50)
5(i)
5())
5(k)
50)
5(m)
5(n)
5(o)
5(p)
5(q)
5(r)
5(s)

exact
exact
exact
approximation 1
approximation 1
approximation 1
exact
approximation 1
approximation 1
approximation 2

approximation 2

approximation 1
approximation 1
approximation 1
approximation 1
approximation 3
approximation 1
approximation 1
approximation 1
approximation 1
approximation 2
exact
approximation 1
approximation 1

P(r=o) or P'(q=O)
Q (definition)

-Q' (definition)
upBP or upBP'
upBP or goB'P'

uoBQ
0.128gpQ
upBq
uoBq
0.0394goQ
0.0394gpQ
goBQ
upBQ
upBQ
upBQ
0.081uoq

-uoBQ
—upBQ
-uoBQ
-uoB
-0.0394g()Q'

O. 128uoq
-uoBQ'
-uoBQ

24 =M
864=N
384
18M
12M
6N
6N
12N
12N
12N
12N
24N
12N
12N
6N
48N
8N
4N
8Ã
8N/3
8N
4N
4N/3
4N
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Z2(, ) (k, 0) —Z2(, ) (0, 0) = 24P(v,')'k' ink,

Z2(, ) (0, r) —Z2(, ) (0, 0) = 24P'(v', )'r lnr,

I",(,) /v,'= —864@ (v', }'Inr,

(4.27)

(4.28)

(4.29)

we obtain for the sum of the contributions from
class-1 and class-2 diagrams

I'5/v,' = 1+98.54 x 864@(vo5}'Inr,

Z(k, 0) —Z(0, 0) = —13.22 x 24P (v', }'O'Inl),

Z(0, r) —Z(0, 0) =+ 13.22 x 24P'(v', )'r lnr .

(4.30)

(4.32)

The correction to the Ising exponents of order e'
can now be found from the formulas (4.7), (4.8),
and (4.15).

First, from Eqs. (4.30) and (4.19) we obtain
3

og
98.54 x 864 (4.33)

Using (4.31), (4.7), and (4.33), we obtain by us-
ing

(4.34)

which is easily obtained from Eqs. (4.11), (4.23),
and (4.24),

q'=3.7x10 4.

At e'=, this would give a correction to the Ising
exponent

(4.35)

gq =1.2x10~. (4.36)

5y =y —y =- 3.7x10 3&'.
Ising

At e'= —, (three dimensions),

Qy =- 1.2x10-'.

(4.38)

(4.39)

The other exponents can be obtained from scaling
relations.

V. FINAL REMARKS

These changes in critical exponents are very
small indeed, about an order of magnitude smaller
than current experimental imprecision. Thus they
are not in conflict with the most recent relevant
experiments, which found no measurable difference
between fluid exponents and Ising-model calcula-
tions. ' The reason the changes turn out so small
in this calculation is essentially a matter of com-
binatorial factors. For example, the expressions
for y' or q' involve the self-energy diagrams of
Figs. 2(a) and 4 in the numerator and the vertex
diagrams 3(a), 3(b); and 5 in the denominator, and

The correction 6y to the exponent y is obtained
using (4.32), (4.7), and (4.15). We use the result

(4.37)

and then we find that

the combinatorial coefficients for the latter are
much larger than those of the former [e.g. , 2(a)
has a factor of 24 and 3(a) a factor of 864j. Thus
the ratios P/Q and P'/Q. are very small numbers
and, hence, so are .'~e changes in exponents. (A

similar effect occurs in the ordinary & expansion;
this helped make it work as well as it does when
e =1.) Because of these dominant combinatorial
effects, we do not think that the smallness of y'
and q is very sensitive to the approximations me
have made in evaluating the class-2 diagrams. In-
deed, for the one class-2 diagram that can be
evaluated exactly, the error introduced by our
approximate procedures is a, factor of order 2.
This would not be enough to effect the observa-
bility of the exponent corrections even if it oc-
curred in every diagram.

The major approximation made in this work has
been our taking v4 to order &, which has allowed
us to consider a. limited number of diagrams only.
Since e & &, in principle our approxi. mation is quite
questionable. However, it is well known that per-
turbation expansion in & gives surprisingly sabs-
factory results for & =1 (the usual case) or even
e =2 with only one or two terms. It is our assump-
tion that this holds also for the asymmetric case.
Put another way, we have established to order e
the existence of a different fixed point with v5~

=O(e ) below dimensionality d, in the liquid-gas
system Thus. we can say (to order c) that fluid
critical points do belong i.n a new universality
class, distinct from Ising magnets.

We have not addressed directly the question of
the stability of the new fixed point within our per-
turbation calculation. However, our calculation
could have been phrased in tern~s of a renormal-
ization-group recursion relation of the form

vntl = f 5 3d 4[v(n) +gv(n)3(I —yves}int]

where t) is the rescaiing factor (A -A/5), and C
and AC are products of solid angle and combina-
torial factors associated with the diagrams of
Figs. 3 and 5, respectively. We find a fixed point,
since Av4 &I. Its stability is manifest from the
linearized recursion relation; the situation is
completely analogous to that in the Wilson-Fisher
problem.

Upon examining Eqs. (4.23) and (4.24) we observe
that if we did not keep the class-2 contributions
to I'„ th4 net contribution to the coefficient of le
in (4.19) would be negative, and (vo5} would be
negative. This would mean an imaginary v„which
is unphysical. Such a fixed point can not be reached
via any sequence of renormalization-group trans-
formations beginning from a real effective Hamil-
tonian. %'e think this result, which was obtained
without any use of the quartic anharmonicity v4,
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reflects the fact that a theory without a g~ is not
stable because of the oddness of the v„. The
class-2 terms in I', have the opposite net sign
froni those of class 1 (because they have an extra
interaction vertex} and are large enough (at e = 3,
at least) to more than compensate for the class-1
ones and change the sign of (vo)' in Eq. (4.33),
making the new fixed point rea, l.

Finally, it is tempting to speculate that while in
three dimensions, the effects we have discussed
a,re very small, they might be measura. ble in two.
Our calculations are not relevant to such a system
because many more interactions are relevant in
two dimensions. [Terms up through v, 3 are rele-
vant in the two-dimensional Ising model, for
example, as can be inferred from Eq. (3.4).] The
e' expansion is meaningful only between d = d, and
d=3(1 ——3'g), where v, becomes relevant. A two-
dimensional calculation would have to take a totally
different approach. Experimental investigation is
also called for.

APPENDIX A

We calculate G(x, 0), G(x, r), and D(q). First
G(x, 0):

1
G(x, 0) =

( ), d'I e'" "

1 yQ Pd-3 Sing-2 g +gA+cosgyg0
(»)' o

where S is a Lommel function. By judicious use
of the asymptotic forms for 4 and 3 at y -0 and

y ~ one finds (Ref. 8, No. 8.576, and Ref. 9, Sec.
V.5.5)

& =2' -'I"(-,'d- 1)[1—S'(Ax)], (A5)

where F(y) -0 as y- ~. This formula holds for
4&d &2.

Using

0„=2v'~/I'(-, 'd),

we then have

G(x, 0) = 8/x"-')[I —Z(Ax)],

A = (I/4v'+)I'(-, 'd —1),
(AV)

(A8)

as quoted in the text.
G(x, r), on the other hand, can be found only in

the limit A~. The integral over y [cf. (A3)] is
then given by

()2 gp-x 3' ~

which can be seen to be equal to (Ref. 8, No.
6.566-2)

I (r}= (x/r )'-'X„~,(xWr) (2 &d &5). (AIO)

K is a. hyperbolic Bessel function. From Eq. (Alo),
Eq. (4.16) in the text is easily obtained at d =~3.

%e finally give a brief account of the calculation
of II(k, 0) using the techniques in this appendix.
A complete discussion of II(k, r) is to be found in
Ref. 10.

where A is some cutoff. The angular integral can
be found in Ref. 8 (No. 3.387-2):

in/ 2 g gf Axcos 0 gg

))(k) fG*(x)e"' d'x=.

Put G(x) =A/x" '. Then

3(k)=A'A, 2'@ 'I'(
2

)Wwk'

(A 11)

where J is a Bessel function, I' the gamma func-
tion. Then

G(x)=
(2 ),n, ,ww a'*-'r(

z )

'3((4M ~g)tl 1(y) '

Using now the expression (Ref. 9, Sec. 7.14.1)

"y "&.(y)dy

= (g + ~ —l)yZ„:(y)S„,„,(y) —yZ. -, (y)S)(.(y}Io,
x dyy

—
g~~, (y) .

The integral over y is given by (Ref. 9, Sec.
V.14.1)

cfog J
0

(A3)
(A13)

and, again, using the asymptotic properties of
the Bessel and Lommel functions, we find that the
integral over y in Eq. (A12) is —,

' at d= ~~a, and we
obtain Eq. (4.22).

= (2P —2)y&~(y)Sp-3p-i(y} —yJ, -x(y}Sp x.p(y) Io,

(A4)

APPENDIX 8: I q FROM THE e EXPANSION

Here we calculate the four-point vertex I', which
occurs in the class-2 diagrams by the ordinary z
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We exponentiate (Bl) in the following fashion:

I', (k, k3k, ) = uo[(1+ 3e ink, )(1+3e lnk3)

x (I + 3e Ink3) +0 (e3)]

0 1 2 3

APPENDIX C: CLASS-2 DIAGRAMS

In this section we describe the approximate cal-
culation of the diagrams for Z and r, which con-
tains a r, vertex. Because r4 depends on the mo-
menta in all three channels, we cannot evaluate
these diagrams exactly in one ease. Accordingly,
we approximate 14 by changing its k» dependence
in a way that makes the diagram simply related
to one of the class-1 diagrams that can be com-
puted exactly, but which preserves the correct
degree of homogeneity in r4. That is, we make
replacements like

I' (k,k k, ) =uP,'i3 k,'i' k', i3 u,k, '.
In a certain sense, this is till correct to O(c),
since

(cl)

expansion. The first terms in perturbation-theory
for r4 involve iterations in each of the three chan-
nels. In four dimensions, then (at r =0),

1;(k,k,k, ) = u, (
)+,' )nk, + ,')nk,3QO 3Qp

+,")nk, + 0 (u '))
where the k, are the momenta in the three chan-
nels. The value of Qp is dictated" by the matching
of the corresponding expansion for r, at all k, =0
and-r finite to the form dictated by scaling:

If we use the full expression (4.25) for I', this in-
tegral is very difficult at d =—", , and we do not
know how to do it. If we use approximation 1 and
let I'=uP' (e =-', ), however, it factors simply in-
to separate integrals over k a)nd k', giving QpO'

(P)P'. But we know (4.22), II(P) =B/P', so this part
of Fig. 4(a) is just Bu,li(p). Consequently, diagram
4(a) is just a factor Bu, times diagragn 2(a).

Approximation 1 works in exactly the sainte way
on diagrams 4(b), 5(a), 5(c), 5(d), 5(g)-5(o), 5(r),
and 5(s). We have indicated by small arrows on
the figures the channel into which we have moved
all the k dependence of r4. That is, when the
arrow appears between two lines of momenta p, (in)
and p, (out), we approximate I", by u, lp, -p31'.
Notice that our approximation is a lower bound on
the exact value of the diagrams [cf. Eq. (C2)]. Al-
most the same procedure works on diagrams 5(e),
5(f), and 5(p). Here, however, the channel. to which
we transfer all the k dependence is one with k» =o,
so we do the calculation at finite r, using r

Qpr
' '. The adjacent inte ma 1 part of the diagram

involved then looks like ——3'BII(((),r)/Br for some
internal momentum p. Using Ma's expansion for
II, ' we find that this derivative is proportional to
r ' ', which cancels the r' ' in r, leaving just a
constant times the class-1 diagram. We call this
approximation 2. Again, this procedure gives a
lower bound on the true value of the diagram,
since we take r-0.

Figure 5(k) is the only troublesome one. The
relevant part of it involves

G(k)G(k+ q)G(k' —k) I'(k, k —k', k')G(k')G(k'+ q) .
"i, a

(C4)
[The rest of it is just II(q), and the product of (C4)
and Il(q) is integrated over q.] We were not able
to reduce it to a simple form by approximations
1 or 2. However, approximation 3,

k '/' kke/3k~/3 ke/3 ke 2 2' k k1 1

1+—&in
k

+0 e
k

1
(c2)

r=Q lk' —k)'k ' 'k'
0 (c5)

reduces (C4) to the product of two independent in-
tegrals of the form

We call the replacement (Cl) approximation 1. In
enables us to evaluate most of the diagrams in
Fig. 4 and 5.

To see how it works, start with Fig. 4(a). It
can be thought of as generated from Fig. 2(a) by
tying any two of the internal 6 lines together with
the four-point vertex. The part of the diagram in-
volving these lines is

G(k)G(k +p) I',(f,k k', k+ k' + q)G(k')G(k—'+ q) .

(c3)

J d"k 1
(2&)' k'i'(K+ q)' (ce)

which with the change of variable p =kg becomes

1 0/
q4/3 (2v)laj 3

dP P-'/'sin'/'e de
(t) +g)3

Thus the entire diagram is proportional to an in-
tegral over q of II(q) times q 3i3, i.e. , q 10i3,

which is logarithmically divergent just like the
class-1 diagram 3(a). So the present diagram
is just a constant times diagram 3(a), with the
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4' ' -ooss0 (2 )10/3 3II 0 (C8)

times diagram 3(a).
Finally, diagrams 5(b) and 5(q) can be evaluated

exactly; they are just bubbles with zero external

constant determined by the value of the integral
in (C'I}. It can be evaluated with the help of form-
ulas 3.252-12 and 3.631-3 of Ref. 8 as m2//v 3, so
(combinatorial factors aside) diagram 5(k} is a
factor

momenta and a I', at one end, attached (at the other
end) to the class-1 diagrams 3(a) and 3(b). The
extra part is just

„ I (0, k, —k)G'(k)J d'k

0 uf' dk k2'
10/3 0

(2 )10/3 (3, ~k2)2.

"/' x —' I'(—")I'(—') = 0.128u . (C9)
(23/)10/3 2 3 3 ' 0 '
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