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We analyze exactly in the limit n —+ oo, the n-component continuous-spin model with a cubic field term

Ai N~g~'. Full "four-field" tricritical behavior is exhibited for dimensionalities d & 3. However,
orthodox tricritical scaling is shown to be impossible for 3 & d &4: to obtain the correct nonclassical
spherical-model exponents on the X line (H = H, = 0, T & T,) it is essential to allow for a dangerous
irrelevant scaling variable p af: 1/Ro, where Ro is the range of the pair interactions. The appropriate
crossover exponent is Q~ = 3 —d so that p is marginal for d = 3: orthodox scaling is then possible but the
scaling functions are nonuniversal. On the disordered symmetry plane (H = H3 = 0) only the corrections to
scaling survive and describe crossover to Gaussian tricritical behavior. For T & T, bicritical crossover from
spherical to classical critical behavior occurs when H3 varies but scaling is fully obeyed. Some inferences for
systems with finite n are drawn.

I. INTRODUCTION

The scaling hypothesis for the vicinity of a tri-
critical point was first discussed by Riedel and
has since been developed further and extended into
a general theory of behavior near a multicritical
point. ' In a system exhibiting symmetric tricriti-
cal behavior, such as a metamagnet' or fluid-heli-
um three-four mixtures, a tricritical point may be
identified as the point where a critical locus T, (g)
in the thermodynamic symmetryplane(T, g) termi-
nates and changes into a locus of first-order tran-
sitions (which, in reality, ' is frequently a line of
triple points, i.e., of three-phase coexistence).
Of course, the critical behavior of, say, the spe-
cific heat and ordering susceptibility is described
by exponents at the tricritical point which differ
from those on the critical line: the tricritical
scaling hypothesis describes how the crossover
from one sort of behavior to the other occurs.
However, whereas an ordinary critical point is
characterized by a single-ordering field, say h,
which in a metamagnet is a staggered magnetic
field, a full description of a tricritical point re-
quires the identification of a further, independent,
odd field, which we may call the cubic field h, .
The need for the four thermodynamic field vari-
ables g, T, It., and h„ to describe tricritical be-
havior may be seen most directly from a Landau
or classical phenomenological theory. ' If m de-
notes the order parameter, the coefficients of the
terms m', m4, and m and m' in the free-energy
expression must all vanish at tricriticality. (The
coefficient of m may be arranged to vanish identi-
caH.y, while that of m must remain positive for
stability. ) The effects of h, on a tricritical phase
diagram in the space (T,g, h) maybe seen from Fig.
2 below. Although normally concealed in magnetic

systems, because it is coupled to h, the cubic field
plays an essential role in the description of tri-
criticality as observed in multicomponent fluid
systems. 2 However, it has been hardly investi-
gated theoretically. One of the aims of the work
reported here was to help repair this omission.

The scaling hypothesis for ordinary critical
points has been well verified by numerous theoret-
ical studies, including, in recent years, by explicit
renormalization-group calculations. , Much experi-
mental work on equations of state also demon-
strates that scaling works well and confirms, for
systems within the appropriate classes, the pre-
dicted universality of exponents and scaling func-
tions. The same is far from true for tricritical
points where, because of the relevance of four
thermodynamic fields and the existence of various
critical manifolds including lines of critical end-
points, many more complex and subtle features
arise. However, it is known that the classical
phenomenological theory verifies all the detailed
predictions of tricritical scaling theory. 2' More
recently, renormalization-group &-expansion tech-
niques have been applied by Nelson and Rudnick4
to calculate the tricritical equation of state in the
disordered region of the plane of symmetry (T,g),
for a system with n-component, continuous vec-
torial spins, s, (interacting, as usual, through a
Landau- Ginzburg-Wilson-type Hamiltonian). At
first sight, the results of this analysis are in good
agreement with the general scaling theory. How-
ever, we will show that this impression is errone-
oust

Indeed, some difficulties in a naive application
of scaling have been noted previously in connection
with certain exactly soluble models exhibiting tri-
critical behavior. The models are fairly special,
but quite subtle analyses, sometimes entailing the
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where the spins s,. and the two fields

H = (H, H, . . . , H), H, = (H3, H„.. . , H,), (1.2)

are classical n-component vectors. The first sum
runs over all pairs (i,j) of sites, while

recognition of particular nonlinear scaling fields,
have been needed to cast the results in. the antici-
pated scaling forms. "

The main goal of the present paper is to study
tricritical behavior and test scaling in a general
but exactly soluble limit that has already proved
very fruitful in studying ordinary critical behavior.
This is the infinite-component or n- ~ limit which
is known to be essentially equivalent to the spheri-
cal model. " This limit has the advantage that the
critical behavior still depends nontrivially on the
dimensionality d and is nonclassical for d &4.
Likewise the dependence of the critical exponents
on the range and decay law of the interactions can
be studied exactly in the spherical model.

Explicitly, on a regular d-dimensional lattice
with sites i = 1, . . . ,N we consider the Hamiltonian

results, however, are somewhat disturbing ': in
the range 3 &d & 4, scaling does not hold in a direct
form. A complete description of asymptotic tri-
criticality, including the nonclassical exponents on
the critical line demands the recognition of a dan-
gerous irrelevant variable' p, which can be asso-
ciated with the (nonzero) inverse range of the pair
interactions. Even in d = 3 dimensions, where
scaling is obeyed, we find that the scaling function
is nonuniversal, depending explicitly on P.

The paper is set out as follows: in Sec. II the
n- limit is performed for a more general Ham-
iltonian with nonlinear odd couplings. In Sec. III,
the phase diagram for the particular model em-
bodied in (1.1) is discussed. Tricritical scaling is
taken up in Sec. IV, where the need for the dan-
gerous irrelevant variable is established. Section
V summarizes the results and draws various con-
clusions. Some proof s and computational details
are relegated to the Appendix.

II. GENERAL n-COMPONENT MODEL

In this section, we show how to compute the free
energy in the thermodynamic limit of an n-compo-
nent Hamiltonian more general than (1.1) and, we

believe, more general than that covered by pre-
viously established theory. Specifically, in terms
of n-component spins s, = (s~) with p, =1, 2, . . . , n,
located on the sites i = 1, 2, . . . ,N of a regular d-
dimensional lattice with periodic boundary condi-
tions, consider

J(~-J)(-J(R,—R,.) ~ 0, Z(0) =0,
represents a ferromagnetic pair coupling with
Fourier transform

(1.3)

+1's,R', (l s, l'/n)],

J(k) = Q e'" R j(R)
me

To obtain tricritical behavior we take U and V
fixed with

(1.3a)

U&0 and V&0, (1.4)

and regard the quadratic coupling D as a variable
field. (This assignment of "variables" is largely
dictated by simplicity and convenience: as will be
evident below, one could choose D fixed and regard
U as a variable, for example. ) The factors 1/n
and I/n' are inserted so as to yield sensible be-
havior in the limit n- .

As we show, this model is exactly soluble in the
limit n- ~ for arbitrary H and H, (by an extension
of the techniques used by Emery' and Sarbach and
Schneider'"). Furthermore, it exhibits a tricrit-
ical point for all dimensions d ~ 3 (including non-
integral d). It is, therefore, an excellent candi-
date to test the tricritical scaling hypothesis. The

where

(2.1)

n n

ls, l2= g (s", )' and 1's, = g s", ,
y -1 g -1-

while the pair interactions are given, as in (1.1),
by

(2.2)

z„(r;z; w) =j„. : [-IC» „({s,])/k»r], (2.4)

x„,„=-.' g~„ls, -s, l, (2.3)
(i, j)

where the J&& again satisfy the ferromagnetic con-
ditions (1.3). The weight functions W, (x') and

W, (x') must have integrable Boltzmann factors and

be sufficiently well behaved for large x to ensure
the existence of the free energy in the thermody-
namic limit.

The partition fu~':; i.ion associated with (2.1) is



STKPHANE SARBACH AND MICHAEL E. FISHER

and the corresponding free-energy density (i.e.,
free energy per spin component) is

E„„(T;J;W) = -(ksT/Nn)ln ZN „(T;J; W) . (2.5)

%e are interested in the thermodynamic limit
N- ~, and the infinite-component or spherical-
model limit n- ~.

To calculate the free energy explicitly in these
two limits, taken in any order, we will follow Kac
and Thompson' and use standard results on the
ordinary spherical model ~' to obtain a lower
bound on E„„(T;J; W); then, following Emery, 'b

we employ the thermodynamic variational principle
(or Bogoliubov inequality) ' to obtain a comple-
mentary upper bound. The detailed proofs are
given in Appendix A. The result may be written

E (T;J; W) = lim E„„(T;J; W)
N, n

= min{2ksT P~(L; J)+ W2'($ )

For future reference, we also quote the result

m=(s)= lim (n ' g s")
N, n» g=1

= -W2($ )/$($02 T;J, W), (2.11)

for the magnetization (per spin component) in
which $0(T;J, W) is the minimizing value of $. In
addition, we have

m2 = (s ) = lim (n ~
~
s

~
) = g(T; J', W) . (2.12)

III. THERMODYNAMICS AND THE PHASE DIAGRAM

It is instructive to consider the free energy (2.6)
of the general model (2.1) in the case in which the
terms F„and I„do not contribute as, for example,
when T - 0. The constraint equation (2.7) together
with (2.11) and (2.12) then reduces to

(2 6)

where g=g($, T;J;W) is the solution of the con-
straint equation

m, =—(s') = p = (s)' =- m'.

On using this, the free energy becomes

F(T; W) =min[w, (m )+mw2(m )],

(s.l)

(3.2)

$2=k~TI~(g; J)+[W2($2)] /f, (2 7)

while the underlying free-energy and correlation
functions are given explicitly by

IF (2;J) =f —In[[2+J(I)) J(k)](2Fk T], — (2 8)

F, (2;J)=,2' -- f ' "[2+J(8) -,J(k)]', (2.9)

where J(k) is defined in (1.3) and a is the lattice
spacing, and the integrals run over the appropriate
Brillouin zone (which may be well approximated
for many purposes by the sphere ~k &v/a).

A few remarks are in order: for suitable W, (x')
the model reduces to the usual fixed length spin
model originally shown' to be equivalent to the
Berlin-Kac spherical model. "'~ If W, (x') is sim-
ply a constant, the result has been demonstrated
before both in the n-component formulation' as
well as in the spherical-model picture. " If one
is satisfied to take the n- ~ limit before the ther-
modynamic limit, Ã- , Emery's integral repre-
sentation" is very convenient for computing the
free energy.

It is not hard to see from (2.6) and (2.7) that a
necessary and sufficient condition for the existence
of the limiting free energ~T i..

which is evidently of the form of a classical, phe-
nomenological free energy. One may thus antici-
pate that inclusion of the "fluctuation terms, " 5„
and I„, will yield a phase diagram qualitatively
similar to that predicted by the corresponding
phenomenological theory. Indeed, this observation
guides the choice of the weight functions a,s

Wi(x ) = 2Dx 2+ —,
' Ux4+ i Vx

with U& 0 and V& 0, and

W2(xm) = H Hp~, --
(s.s)

(3.4)

which reduces the general Hamiltonian (2.1) to that
presented in the Introduction. Note also that the
criteria (2.10) are satisfied.

The integrals defining 6~(f;J)and I~('f; J) can be
studied for arbitrary J,&, or J(k), but three cases
of particular interest are the following.
Nearest -nei gkbor interactions

J&0, for i,j adjacent sites,J].——

~ ~ ~

0, otherwise,
(3.5)

which are characteristic of all short or finite-
range interactions.
I.ong-range interactions

J,~
=J,(a/

~ R,~ ~) ~"2 with J„a&0. (3.6)

Kac Potentials
im x'/W, (x') = »m xW, ';"-'.:/W, (x') =O. (2.1O)
» 00 P» on J))=Jo(a/RO) "y (( R)~ ~

/Ro), (3.7)
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in which R, represents the range of the interac-
tions, while the shape function q(x) is bounded for
all r ~ 0 and integrable on (0, ~). Notice that for
fixed Ro, say, Ro=a, all potentials can be written
in the Kac form.

It will be relevant to note that the thermodynam-
ics can be discussed exactly"s" for all n in the
van der Waals or infinite-range limit, Ro- .
However, all critical and tricritical behavior is
then entirely classical.

Since W,($') and W, (g') are analytic, the mini-
mization in (2.6) may be performed with the aid of
differentiation. This leads to

F(T,D, H, H„J)= aksTP~(f; J)+gD)2+~ U)4

+-,' «'- .'«'- .'(H-+H, &2-)2/~,

(s.8)

where P and P are now given by the solution of the
two coupled nonlinear equations

FIG. 1. Phase diagram of the model Hamiltonian (1.1)
in the space T-D-H for II3=0, showing the tricritical
point, the parabolic X line Lo (and its continuation, dot-
ted), and the wing critical lines, L+ and L .

f =D+ U( + V(~ —2H3(H+Hsf )/f,
g =ksTI~(f; J)+(H+H~g ) /P.

(s.9)

(3.10)
The densities conjugate to the three fields H =—H„

H2 Q+ and HS are def ined by

The relation (3.9) is a necessary condition for the
attainment of a minimum: positivity of the second
$' derivative, namely,

U+2V$ -2H3/f

-[1—2H, (H+H P)/$2](8$/8)2) &0, (3.11)

is a sufficient condition. Solutions of (3.9) and
(3.10) which satisfy {3.11) will be called stable
solutions. However, if there are more than one
pair of stable solutions, that pair, (g, L), giving
the lowest free energy is to be chosen. Coexis-
tence of different phases will thus be described by
distinct solutions yielding the same free energy.

Note that, by using (2.11) and (2.12), which yield

L=(H+H, m, )/m, f2=m„ (3.12)

the free energy may be expressed entirely in
terms of the two densities m -={s)and m, =—(s ).
One finds

F = .'k, T [P„(g;J) gI-, (t;;J)]+.'Dm, +.' Um, --
(3.13)+ —Vmm -Hm -Hsmm2S

6 S 29

with t;(H, H, ) given by (3.12), while m and m2 and,
in fact, the equation of state, are determined by
the solution of the two equations

K=m{D+Umm+Vm22) H(2m 2+m), -
m2=ksTI~(f; J)+m

(s.14)

(s.15)

The stabibty condition (3.11) can be similarly re-
expressed. Note the resemblance to the classical
results which are, indeed, recaptured if the F„and
I„ terms are dropped.

m, (T,H„H2, H~) = — F(T,H~, H2, H,), (3.16)
8

for I=1,2, 3. By differentiating (3.13) and taking
(3.14) and (3.15) into account, we find, simply,

m~ =- (s) = m, m, = {s2)= &2, m, =—(s') = mm, .
(3.17)

The nature of the phase diagram resulting from
the free energy (3.8) has already been studied' in
some detail for the case H, =—0. The results are
shown in Fig. 1. In the disordered region of the
(T, D) plane one has, by (3.12), f = 1/X (H =Hs = 0)
where

(3.18)

is the ordering susceptibility. A critical or X line
Lo thus occurs when g =0 which yields the condi-
tions

$2=ksT, I~(0;J) = ksT, P~, D+U—$, + V)4=0.

(s.19)

The first equation yields a nonzero critical tem-
perature when d&2 for nearest neighbor coupling
or for d&cr for long-range interactions. The sec-
ond equation has two solutions when D ~ ,'U'/V but-
only the larger one satisfies the stability condition.
The critical line is thus parabolic and given ex-
plicitly by

ksT, (D}=[~U~+ (U —4VDP~ ]/2VI~, (3.20)

as shown in Fig. 1 (where the other branch of the
parabola is shown as a dotted curve) On the X.line
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the susceptibility associated with m, varies as

g=, ' -(2Vg.'+U)-',
2

(3.21)

and is finite until the tricritical point is reached.
Combining the condition 1// =0 with (3.20) locates
the tricritical point at the vertex of the parabola,
and the endpoint of the critical line, namely,

&sT~=$~2/I,' Dc= U/& 5&=~2,~=~2IUI/l .

(3.22)

For H40 (but H~=O), Eqs. (3.14) and (3.15) may
yield two pairs of stable solutions. Equating the
corresponding free energies determines two sym-
metrically placed surfaces of coexistence-the
"wings, " S', and 8'. The wings are bounded by two
lines of critical points, I, and L, and meet along
a triple line in the (T, D) plane which intersects the
D axis at T=0, D, =~D, (see Fig. 1). For d&3, for
finite-range interactions (or d& 2o for long-range
interactions) the wing critical lines meet the X line
at the tricritical point (3.22) as indicated in Fig. 1.
This also occurs for d = 3 (or d = 2o) provided

I Ul
is sufficiently small [explicitly IUI&2V '/P(J),
where p(J) is defined in terms of I~(C;J) belowj. '
Otherwise the wing critical lines meet one another
smoothly in a disordered region of the (T,D) plane
above T„and the tricritical point disappears,
being replaced by a critical X endpoint on the wing
surface. '

Now the vanishing of f on the A. line Lo in the

(T,D) plane implies that the singular point of the
functions P~(f) and I„(f) is attained. As in the ordi-
nary spherical model, therefore, the X line is
characterized by dimensionally dependent expo-
nents given by'5

1s

o. =0, p=2, y=l, &=p5=12. (3.25)

Although at first surprising, a difference in criti-
cal exponents for nonzero H, or H„should be an-
ticipated for the following reason. " The charac-
teristic spherical-model values (3.23)—(3.25), de-
scribe an isotropic or rotationally symmetric n-
component spin model in the limit n- ~. On the
other hand, the presence of a field H or H3 selects
a particular axis and so breaks the rotational sym-
metry, and hence changes the exponents. For
finite n one expects the new exponents to be Ising-
like (corresponding to n„,=1) as indeed found ex-
plicitly in renormalization-group calculations. "
Evidently, the crossover for the limit n =~ is to
classical behavior: the physical mechanism re-
sponsible for this merits further study.

Turning now to the case H, 4 0, one observes that
symmetry with respect to H is lost. In particular
the line of critical points above T, no longer lies
in the H=O plane. Rather, as illustrated in Fig. 2, -

if, say, H, is negative the critical line lies in the
half space H&0 and continues smoothly and, in-
deed, analytically into the former wing critical
line L, while I, terminates on the associated co-
existence surface at a critical endpoint. This crit-
ical endpoint is also the new terminus of the triple
line. Of course, for H3&0, the roles of L, and L,
and positive and negative H are reversed. In fact,
the topology of the phase diagram is identical to
that predicted by classical theory. "

Furthermore, one finds, in confirmation of the
reasoning presented above, that the exponents are

0 ~ ~ ~

o' =1 r, p =-. , &=p5 -=a+r, (3.23)

where the susceptibility exponent for finite-range
forces is

2/(d —2), for 2&d~ 4,
y=

1, ford~4,
(3.24)

while for long-range forces one has

a /(d —o), for o&d~ 2o
y=

for d& 2';
(3.25}

finally for'infinite range forces (Ro- ~) y = 1 holds
always. Here and below the fluxion dot denotes ex-
ponents on the H=H, =O or X line L,.

On the other hand, at a zoning critical Point, f
=H/m (Hs = 0} exceeds X

' and so does not vanish
Consequently the wing critical points cannot ex-
hibit the spherical-model dimensionality depen-
dence; in fact they are completely classical, that

FIG. 2. Schematic phase diagram corresponding to
Fig. 1 when H3 is negative, showing a critical endpoint.
The line Lo present when H3= 0, is shown dotted for
the sake of comparison.
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classical on all critical lines for H, & 0. (Mathe-
matically this is again because f remains positive
when y.

' vanishes for H, 40.) It follows that as one
varies H, at fixed D&a, one will observe bicritical
behavior '" as H, passes through zero. The criti-
cal line Lo at H3=H=O appears, from this perspec-
tive, as a line of bicritical points: it is for this
reason that we retain the term "X line" for L, in
contradistinction to the other critical lines. This
feature of bicriticality does not, of course, show
up in the classical phenomenological theory. Nor
is it to be expected in the tricritical region of a
real multicomponent fluid system since, in that
case, all critical exponents are expected to be
Ising-like (n,« = 1).

We turn now to a study of the asymptotic equation
of state in the tricritical region.

s = 4 —(2/0')d, (4.1)

with a~ 2 for short-range forces. ' In fact, all
dimensional-dependent exponents which enter can
be written in terms of the X-line susceptibility ex-
ponent

y=(1-2e) ' with 1~ e&0. (4.2)

Note that on the borderline of tricriticality one has
a=1 and /=2.

IV. SCALING IN THE TRICRITICAL REGION

We may restrict attention to the cases 3~d&4
for short-range coupling, and 3 & 2d/a&4 for long-
range interactions, in which a tricritical point is
present but nonclassical exponents occur on the X

line. It is convenient to put

Iim I„(0;J') = 1/I(0) = 1/Zoq&, , (4.5)
g +OO

where P, = Jy(lr l)dr. Via (3.22) this sets the tri-
critical temperature T„ in terms of which we de-
fine the reduced temperature variable

f = (T —T,)/T, . (4.8)

We may notice from (3.19) that the X line L, is then
specified by,

(4.7)g =m, ,(T) =m, , (1+(), D, (T) =D, (1 t') .
On introducing (4.3) into the (m„f, m) relation

(3.15), one finds, for g, t-0,
ma=-m2 —m2, -m2, t —m2,pf (4.8)

In terms of m, and the auxiliary field variables,

@O=H+m2 )H3, h3=H3,

the (H, m, mm, H, ) relation (3.14) becomes

h, /m =D -D, + Vmmo —h, (2m+m, /m) .

(4.9)

(4.iO)

I =H+m, , (1+i)H, =H+m, ,(T)H„

g=D-D, (i-P)=D D,(T), -
(4.i2)

(4.13)

which will play the role of appropriate scaling var-
iables. (Note that g and h vary quite analytically
with T.) The coefficient is given by

If one now substitutes for mo and uses 0 = (h,
+h,m, )/m, which follows from (3.12), one can re-
write this in the form

u/m+m, ,pV'"(lUli+2Vmm cI,/m)

=g-(2+d».m+ IUlim'+Vm', (4»)
where we have introduced the nonlinear fields

1, for y&2 orc=
1-D,p~, for j =2 or a = I,

Asymptotic equation of state
(4.14)

where the discontinuous behavior on the tricritical
borderline arises from the term Vmo in (4.10)
which, in turn, . leads to a 4 " term which is lin-
ear, and hence cannot be neglected, when y=2.
(Note that if D, pm&1 then c is negative and tricriti-
cal behavior is destroyed; this corresponds to the
criterion

l
Ul&2V'~2/p mentioned in Sec. III.)

Finally, we may rewrite (4.8) as
where the positive coefficient p, which will play an
important role in what follows, may be written for
Kac potentials as

p=f, ,(a/z, )'z ~&, (4.4)
m —= m —m, , (1+1)=—m, -m, ,(T)

m -m, ,P&
2 ~li (4.i5)

To study the free energy and the equation of state
near tricriticality on the basis of (3.13), (3.14),
and (3.15), we need the singular, small g behav sr
of the basic correlation function integral I~ (t;; J), '

defined in (2.9); this may be written rather gen-
erally"

I (0'~)=1 ( &0)(1 Lp' "+-''') (4.3)

where b~ „ is a pure number depending on the
shape function y(r). Recall, however, as men-
tioned after (3.7), that for fixed R, (=a, say), both
the nearest-neighbor coupling (3.5) and the long-
range interactions (3.6) may be written in Kac
form. In the long-range limit, B,- , the param-
eter P approaches zero but one has the finite result

with f = (8+h,m)/m. Note that we may think of the
variable m =(s') —(s'), as the density conjugate to
the secondary, nonordering field g.

The free energy (3.13) may readily be written in
terms of the new variables. Et is convenient to
subtract off an analytic background term
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E6(T) = —,Dm, , + ,' U—m, , + -' Vm2, + ,m—, ,gt 2—Vm2, t + 2haTF6 (0;J), (4.16)

and to set -U= V=1 or, equivalently, to rescale the variables by setting

t~ t/2m2 Vi/2

(g, h, h, m, m) ~ (Vi/6g, V'/6h V'/2h, V i/ m V '/2m) . (4.17)

The remaining part of the free energy may then be
written asymptotically as

b F(t,g, h, h, ) = 2 gm + 6 t m' + —m' —hm —h2mm

+ —'(1+y) 'p [(h+h m)/m]"" "'

of the form

X(t,g)= it "oX,(g/iti'o), (4.25)

in which y6=(t 6=2/e. Furthermore, the scaling
function X6(x,) is the solution of the equation

(4.18) cX '+PX"'~~ = x (4.26)

together with

0=(h+h, m)/m, and m=m pf' "- (4.21)

The equations now have a universal form apart
from the coefficient P (and c when e =1). Note,
furthermore, that if P =0, as in the'long-range
limit, one has m =—m' and the equations reduce to
those of the classical phenomenological theory. "'

where, in reseal. ed terms

pIUI, ~ 6 IUI
P 2V(2+6)/6 2 6 ~ l0 g gi/O' V(2+6)/6 & ( ~ 1 )

0 0

while m and m are to be found by solving

chlm+pd "(t+2m' —ch, /m)

~g —(2+&)h2m+ tm2+ m' (4,20)
I

(4.2&)

We remark that the borderline of tricriticality al-
ways corresponds to E =1.

Note that (4.25) can be rewritten in the alterna-
tive, but quite equivalent, form

X(t,g) =g "'(X.(t/g'6 &), (4.28)

where y, , = 1 and (t 6, = 1/P, . The subscript t cor-
responds to Griffiths' notation'. the various tri-
critical exponents are related through scaling by

where the + and —refer to t & 0 or t - 0, respec-
tively. The exponents y, and P, are, in fact, just
two of the set of Gaussian txicxitical exponents, ""

(4.22)Ii/m 1/g 1/ (Sm/Bh )2

as h-0, where X is the differential susceptibility.
The relation (4.20) then yields

cx '+ptx "'=g-
On dividing through by t~0 and choosing

(4.22)

y, =y((t, -1)= y/(y - 1)= 2/~, (4.24)

one sees directly that (4.23) has a scaling solution

Plane of symmetry: disordered region

We are now in a, position to discuss the scaling
properties of the asymptotic free energy and equa-
tion of state. Consider first the plane of symmetry
defined by H=H, =O or, equivalently, h=h, =0. In

the disordered region [D &D,(T) and its continua-
tion below T,], with h, = 0 one has m- 0 and, from
(4.21),

(4.29)

where the subscript zero has been dropped since
these relations are general.

Now the exponents y, and P, as given by (4.27)
agree with those found by Amit and De Dominicis"
in their renormalization-group treatment of the
large-n limit of a model equivalent to (1.1) with
H, =0. More recently Rudnick and Nelson" devel-
oped a method of constructing the equation of state
of the n-component model, again with H3=0, to
leading order in e (for short-range forces) Their.
results for the exponents and for the scaling func-
tion X,(x) agree precisely with ours in the limit
n - . Some care is needed, however, in trans-
lating their variables t = bx, u, and X, to ours if
the correct dependence of p on the range 80 and on
other parameters is to be verified: neglecting
purely numerical factors, the appropriate substitu-
tions are found (see, e.g., ref. 20) to be
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f ~gV'i'/Z+' u~f iUisa»/V jggR»

X ~X/I'"'& &'
(4.so)

Note, in particular, the correspondence (t, u}
~ (g, f) and the various powers of 8,.

Having found g through (4.22), (4.25), and (4.26),
one may return to (4.18) to obtain the free energy
for e &1 as

»(f,Z) = apifi' "Xo""[(I+6'X'-x, +-.'pX ""]

Ordered region on the plane of symmetry

Let us retain the condition h, =0 but allow h-0+
in the ordered region; then the magnetization m
will be nonzero and hence (4.21) implies 0 = 0.
Then (4.20) yields

m4+ tm'+ g = 0, (4.32)

as an equation for the spontaneous magnetization.
On dividing by t' one sees that this has a scaling
solution

m(f, g) = it i'z(g/iti'), (4.ss)

where the scaling function Z(x) is the largest solu-
tion of

(4.31)

where X,(x,}, with x, =g/too, is determined by
(4.26) while the specific heat exponent o!, takes the
Gaussian value given in (4.27). (The + sign again
refers to T ~ T, or T ~ T, .) On the borderline of
tricriticality at z =1 (or d=zv}, one finds an extra
term, namely, 3P'X,', in the bracketed factor.
We see that the free energy»(t, g) has a scaling
form with Gaussian exponents in accord with the
conclusions of Nelson and Rudnick. ~" %'e will now
show, however, that this comf orting conclusion no

longer stands when we examine the ordered region.

~&= z Iii' Z'(x)[x+-.'Z'(x)+ lZ»(x)], (4.37)

with x=g/it»
i

and Z(x) given by (4.34) while c!
takes the classical value -1 as stated in (4.35).
Furthermore, it is evident that the parameter P
does not enter these results at all so that all the
results are, in fact, completely classical in the
ordered region&

Full scaling formulation

We have just demonstrated that although the free
energy, magnetization, and susceptibility scale on

the symmetry plane h =h, = 0, they do so separately
and inconsistently in the ordered and disordered
regions. This inconsistency becomes particularly
evident if one attempts to scale (4.18) to (4.21) for
nonzero h (even with h, = 0). If one tries to utilize
the Gaussian exponent $, =2/e one finds it impossi-
ble to scale for general h except on the tricritical
borderline when E =1. Conversely, one can scale
asymptotically with the classical exponents (4.35)
but one discovers that the pf'~~ factors must be
neglected asymptotically. The results are then
wholly classical and, in particular, the critical
exponents on the ~ line are not given correctly by
the tricritical scaling functions.

The way out of this dilemma, in accord with re-
normalization-group concepts, is to recognize that
the parameter g should be identified as a danger
ous irrelevant variable" with its own character-
istic scaling exponent P .

To this end, let us introduce the basic tricritical
scaling variables, x, y, y„and z, by writing

g=xifi', h=viii; a, =y, ffi", p=ziii ~

(4.38)

and the auxiliary scaling functions Z and Q via

Z +Z +x=0. (4.34)
m = if izz(x, y, y„z), m= if ized(x, y, y„z}. (4.39)

However, the exponents P and Q now belong to the
set of classical tricritical exponents ' '2

n=-l, p=-.', y=2, ~=p5=-.', y=2, (4.35)

which, excePt on the tricritical borderline & =1,
are quite distinct for the Gaussian exponents (4.27).
Note that one may rewrite (4.33) in the equivalent
form

m(f, g) =g ~z(f/g '), (4.36)

with P, = —, and Q, = z, in concordance with the rela-
tions (4.29).

Since g —= 0 in the ordered region one has m =m'
by (4.21), and hence the free energy is given by the
scaling form

Q~= -I+ a = —(2/o}d+ 3. (4.41)

Evidently tP~ is negative for e & 1 so that, as antici-
pated, P is technically irrelevant"' with z =
=P/ it i

»~ vanishing as t-0. However, on the tri-
critical borderline one has /~= 0 so that P =—z be-
comes marginal; the coefficient 0 may then be
written

On substituting in (4.18) to (4.21) and requiring
that the t dependence drop out, the exponents are
forced to adopt the classical values (4.35) with, in
addition,

P=2 —o! —P= 1, (4.4o)

and, for the dangerous irrelevant variable,
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c=l j'=I-z' (~=1). (4.42)

The scaling functions q and Z are determined by

q Z2 zz-1/ 0'
(y +y q}1/ i (4.43)

and, after a substitution, by"

L(y+y3q) +z(y+y, q)' "Z' '(1+ 2Z )

= Z(x 2y, Z+ Z'+ Z'), (4.44)

where, as before, the plus sign is to be chosen for
T ~ T, and the minus for T- T, . Finally the scal-
ing form for the free energy is

tF/~tj2- = 2xq+ ,'-q2+&-q3 yZ y~q
+ l(1+I) 'z[(y+y.q)/Zl"'""'.

Note the universal forms for the scaling functions
when g&1

When the cubic field h3 vanishes. , these expres-
sions simplify since q may be eliminated. In par-
ticular, the equation of state is then given by

cy hazy' "Z' '(1+2Z') =Z(x+Z'+Z'). (4.46)

The standard argument20 for an irrelevant varia-
bl, such as z, is that, as regards the asymptotic
behavior, it may be set equal to zero. One sees
from these results, however, that z is "dangerous"
in the sense that setting z = 0 eliminates all terms
involving the nonclassical exponent y and hence
precludes correct exponents on the X line. In the
following, we explore the role of this variable in
more detail.

the scaling part of the free energy has vanished
and only a "correction-to-scaling" term remains.
Of course, this expression for 4E should reduce
to the Gaussian scaling form (4.31) found previous-
ly. To check this make the substitution

I'= ~t ~~0-~/X„ (4.50)

F(x,z) = (x/z)" for x 0. (4.51)

with y, = 2/& and y = 2 (as before). One then finds
that (4.48), which determines Y'(x, z), reduces pre-
cisely to (4.26), which determines X,(x,;p) with

x, =g/ jt
~

~0 and P, = 2/t. Of course, the explicit
values of the exponents y, Q, y„Q„y and Q, play
a crucial part in this reduction. Lastly, on sub-
stituting (4.50) in (4.49) and likewise putting x
=x, ~t

~

o and z =p/ ~t
~

one exactly recaptures
the Gaussian form (4.31). Of course, when z =1,
so that z =—p is only a marginal variable, one must
retain the O(z') term in (4.49) to obtain the full
answer. However, in that case the Gaussian and
classical tricritical exponents agree precisely in

any casef
It is also interesting to verify more explicitly

that the full scaling formulation, taking account
of z, gives the expected nonclassical behavior on
the & line. To this end, recall from (4.13) that

g ==0 on the ~ line, while t& 0. Hence, the approach
to the ~ line is characterized, by g,x-0. Since
I/j &I, the relation (4.48) may be solved as

Dangerous irrelevant variable in the disordered region

It is instructive to use the full scaling formula-
tion to study the symmetry plane (I/, , =O, h-0) again
in the disordered region. In order to allow y, y, -0
in (4.43) and (4.44) we must put

Z(x, y,y„z)=y/F(x, z) with 1'=1/t )t, (4.47)

Then by (4.43) we have q = -z1"/" and hence (4.44)
yields

cF +zF'~"=x,

From (4.47), one hence finds that the susceptibility
varies as

y. = C(1')/g" with C(T) = (j t)" (4.52)

Precisely the same result, exhibiting the expect-
ed spherical-mode1. singularity, is of couse, found
from (4.25) and (4.26). Note that the amplitude is
(asymptotically} proportional to P. The leading
singularities of the specific heat and of the non-
ordering susceptibility, j = Bm,/Bg, on the & line
are likewise proportional to p.

Qn the critical isotherm, t = 0, one finds, by
solving (4.48) for large x, that

which determines F(x,z). Finally, the free ener-
gy is given by

y ~ (I/g)[c+ jt(g/c)'/'+ ~ ~ J. (4.53)

&&(t,/."',f )

=-.'Itl' zF'/~[(1+i) '1'-x~ ,'zr'/~+O(z')]-

However, in the long range limit, R,-~ (or p
—= 0),

the classical form g =c/g holds for all t and so
descl lbes a mean-field divergence-on the ~ line
(i'~ 1).

(4.49)

Evidently, the total free energy is now propor-.
tj.onal to the irrelevant variable z ~p: essentially

Leading corrections to scaling

As soon as one leaves the plane of symmetry
H =H, =0 (or h =8, =0) the variable z is no longer
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dangerous (provided e(1): its role is only to de-
termine the leading corrections to scaling. Indeed
by supposing z small we may then solve (4.43) for
Q to first order and substitute in (4.44). After
some rearrangement, the scaled equation of state
to first order in z, may be written

y/Z = x —3y,z + Z'+ Z' —z [2Z' y 1 —(y, /Z )]

x [(y/z) +y,z]'/'. (4.54)

h=m (1 —2pm ~/ /&'+ ~ ~ ~ ) (4.55)

where &=5, in accord with (4.35). The correction
exponent ~Q~ ~/P = 2(1 —E) has just the value which
is to be expected on the basis of scaling. "

Likewise one may study the tricritical isotherm
as h, =H, varies with h = 0; but note by (4.12) this
means H=m, ,H, . Setting y =0 in (4.54) and solv-
ing for y, with Z-yields

h, = —,
' m~3 t&(1 e p ml+ I//»+ ~ ~ ~ ) (4.56)

where g/P = 3 and e, = 5/3" "'"&. Again the correc-
tion to scaling term has the expected power law.

Finally we may indicate the behavior of, say,
the nonordering susceptibility, on the tricritical
isotherm in small fields, h and h, in the disorder-
ed region: as g-0 with t =0 one obtains

(Note that c =1 since we are now restricted to
4(l.)

Perhaps the first point to be made is that when
the symmetry plane is approached in the ordered
region (i.e., y, y, -O with Z') 0), the term involv-
ing z drops out completely. Thus, as found before,
whatever the value of P the ordered behavior on
the symmetry plane is fully classical. Note, how-
ever, that this does not imply that the three-phase
coexistence figure" in the density space
I, is not completely without corrections: the
reason is that to attain the critical endpoints,
which lie on this figure, one must go to nonzero
H and H, (see Figs. 1 and 2). We hope to investi-
gate this in detail in the future.

It is not hard to analyze (4.54) explicitly on vari-
ous loci. Of interest U the tricritical isotherm
(t=g=0) with/&, =0. By considering Z-~ we find"

in h and h, one finds

A(h, h ) =h2/g'/', B(h, k, ) =Bo —B,hh, /g', (4.58)

where B,= —,'(1 —~~) and B,= —,'e(1+ —,'a). Now when
h-0 the leading amplitude A vanishes and one is
left only with

}f =BP/g~t+~~//+& =BP/g o, t (4.59)

However, one discovers that cp g zc which is
recognized as precisely the correct Gaussian ex-
ponentt' This illustrates how the "accidental"
vanishing of the leading, classical scaling terms
when 0,0,-0,leaves higher-order terms which
scale with the Gaussian exponents originally found
for the symmetry plane.

Bicritical crossover on the X 1ine

g+ jtg'~" =g —2k,m+ tm +m, (4.60)

where, on the left, 2m' has been neglected rela-'
tive to t, while eliminating m yields

my =I +I,m'- egg'». (4.61)

In the region of interest, t is positive and fixed,
while g and h, become small. Differentiating the
equations with respect to m (at fixed t,g, and h, )
yields

[I+pf(1,'q)g /']= —2h, +2tm+4m',
em

(4.62)

It was mentioned at the end of Sec. III, that the
critical behavior on the wings is always classical
but that, since the exponents are nonclassical on
the ~ line, a crossover in critical behavior must
occur above the tricritical point when h, deviates
from zero. In fact at fixed T& T, the phase dia-
gram projected onto the (g, h, }plane wiII have a bi-
c~tical aspect. """It is of interest to elucidate
this behavior which is, of course, contained in the
equation of state as given by (4.20) and (4.21) or,
equally, in fully scaled form by (4.44) with (4.43}.
We will work with the former equations which may
be rewritten

g ~ ™g u( (g+Bpgle&&l/&+ ~ ~ ~ )
Bg

(4.57)
and, with inverse susceptibility g

' = Bh/sm,

g= }f '+2h, m —[m+Ph, (l —2e)|; '/') ——, (4.63}

From the first of these, we see that S f/Sm van-
ishes on the locus

m =m, = (h, /t)[1+0(h', )] . (4.64)

where a, =2 —(2 —a)//= 2 is the classical nonor-
dering exponent, while

~ P~ j/P = ~(1 —E)is the ap-.
propriate correction exponent. The amplitudes
A and B may be evaluated explicitly and them-
selves take scaling forms: correct to second order
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Furthermore (4.63) then yields a simple explicit
relation between g ' and g. Lastly, by differen-
tiating (4.63) again, one finds that 8'h/sm' =—s)t '/
em also vanishes on the locus which may thus be
identified as the cmtical isomomental.

Since g
' vanishes at the critical point, one thus

obtains the critical-point values to lead&ng orders
in h„namely,

=2h2/t h =h~/t2+ 2~lvjh3 6/t~lr (4.65)

and, for the critical locus in the (g, h, ) plane,

g, (h, ) =3h,'/t+2' "pt' 'h' " (4.66)

e ~

Here P=y is the "shift exponent'" "for the vari-
able h', which, by symmetry, is really the most
appropriate variable to consider. '"'"' Since I/g
= l ——,'e &1, the critical line projected into the

(g, h,') plane displays a characteristic bicritical
cusp.

On the critical isomomental (4.64), we may use
(4.63) to substitute for f in (4.60); this yields an
asymptotic equation for the susceptibility p,
namely,

y '+jt[)t '+2(h', /t)]"&=g =g-g', , (4.67)

where g', =3h', /t is the critical line in the mean-
field limit, p=0. This equation describes the
crossover from the & line to the wings and to the
mean-field limit p 0. If we are not interested
in the latter, we may, asymptotically, drop the
first term and solve explicitly to obtain

(it)"
X(g, h, ) ==, , -„ti,-,h2 (t »). (4.68)

g =Cga(z), with z =h', /ge, (4.69)
0

where C = gt)". The nonlinear field g =g is de-
fined in (4.67) while the bicritical crossover ex-
ponent is given by

P=g=r=1/(I zz), — (4.70)

as expected for spherical models. "'" The scal-
ing function itself is simply

X(z) = [1—(z/z)] ' with E= 2g "t' '. -(4.71)

On the ~ line h, =0 this clearly yields the expected
spherical-model behavior with susceptibility ex-
ponent f; conversely on the wings when h, WO the
denominator vanishes for positive g and one ob-
tains classical behavior, i.e., y.

- (g-g, )
This result is readily cast in scaling form: one

has

Knowing the behavior of g and hence g on the crit-
ical locus it is straightforward to find the free en-
ergy on the locus and hence study the crossover in
the specific heat.

V. CONCLUSIONS

e have exhibited and solved exactly a nontrivial
model displaying a full tricritical phase diagram
including critical endpoints induced by a cubic
field H„and exhibiting for 3 ~ d &4, nonclassical
critical exponents on the ~ line. The wing critical
exponents, arising when H WII, w0, are classical;
thus, a bicritical crossover occurs when H, devi-
ates from zero above the tricritical. point. Further-
more, we have demonstrated that for dimension-
alities 3 &d &4, it is impossible to scale the full
asymptotic free energy in the tricritical region in
an orthodox w:,y which reproduces correctly the
nonclassical critical exponents on the & line. To
achieve a full description of the asymptotic sin-
gularities it is essential to recognize a dangerous
irrelevant variable p and to scale this variable
with its own special critical exponent p =-(I-z).
It is found that P is proportional to 1/R, where R,
is the range of the interactions. Only in the van
der Waals limit R, -~ does orthodox scaling apply
and then ali behavior is quite classical.

Two comments -should be made about the analy-
sis leading to these conclusions. First, it is worth
emphasizing that the explicit temperature depen-
dence of the "spin weighting terms" in the model
[as implied by the definitions (2.1) and (2.4)] has
no influence on the scaling properties. Only non-
universal features, such as the global shape and
disposition of the phase diagram, are affected by
the way T is introduced. Second, the choice of the
linear or nonlinear combinations (4.12), (4.13),
and (4.15)for the definitions of h, g, and m is not es-
sential for the scaling analysis: the free-energy
scales in a qualitatively similar way in terms of h, = &
+m, g„danthe simple deviations g, =D-D„
mo =m, —m, , " Introduction of h, g, and m mere-
ly allows one to cast the results in a form which
is closer to the simple phenomenological Landau
theory. 2~3

In view of these observations it is appropriate to
compare our results with those of renormalization-
group calculations based on Landau-Ginzburg-Wil-
son Hamiltonians. We have, in fact, shown that
in the limit n -~, which is what our work describes
(see Appendix A), the various expressions obtained
by Amit and De Dominicis" and by Nelson and Rud-
nick for exponents, scaling functions, etc. in the
disordered region H =II, =0, are reproduced pre-
cisely. However, the scaling properties which
appear in Nelson and Rudnick's E. =4 —d expansions
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as describing crossover from ordinary (n-com-
ponent) critical behavior on the critical line, to
Gaussian tricritical behavior, must be regarded
purely as manifestations of the correction-to-
scaling terms when one views the fuQ tricritical
region (with H, H, e0)." Furthermore, there
seems no reason to doubt that this state of affairs
persists for all n. In other words, the breakdown
of orthodox tricritical scaling for d&3, which we
have demonstrated explicitly for n = ~, wfgl also
be seen in appropriate calculations for n &+.. In-
deed the basic conclusion" that the tricritical ex-
ponents are classical for d &3 with, in particular

= 2, is in direct conflict with the Gaussian ex-
ponents, including (t)=2/E, , found in the symmetry
plane pE ~H, =0) by Nelson and Rudnick for ail yg;

this necessarily implies some sort of breakdown
of orthodox scaling. The dangerous irrelevant
variable p()(: 1/R~owhich we have identified, should
thus play a similar crucial role for all n.

Of course, for finite n the exponents on the ~
line will be those of an ordinary n-vector critical
point. Similarly, classical exponents should no
longer be found at the wing critical points. Rather,
as explained in Sec. III, these exponents should be-
come Ising-like (n,« =1) since the fields 5 and 5,
break the O(n) symmetry and single out a unique
axis. Therefore, bicritical crossover induced by
H, should be observed on the lambda line above
T, for all n&j..

The exponent Q~ of the dangerous irrelevant vari-
able vanishes identically in three dimensions. In-
deed, as shown, it is then possible to obtain a full
scaling description using only the standard classi-
cal tricritical exponents. However, the variable p
is marginal at d =3 and, as one sees by putting
s -=p in Eqs. (4.48)-(4.45}, the scaling functions
are no longer universal. This nonuniversal depen-
dence on p shows up in the phase diagram and in
various other ways which we hope to explore in
more detail. For finite n, the situation in d = 3
dimensions must be more complicated because of
the presence of logarithmic factors, ln jg ~, ln j(t ~,
etc. , raised to fractional powers. "'" (Note that
renormalization-group calculations for d =3 indi-
cate that the logarithmic factors disappear in the
limit n ~ yielding results in accord with our
analysis. ") However, it seems likely that the lo-
garithmic corrections enter in an essentially non-
universal way and correspond, in fact, simply to
the effects of the same marginal variable p which
reflects the finite range of the interactions. A
full analysis of asymptotic tricritical behavior,
which allows for the logarithmic corrections, is
clearly an important task. One might hope, how-
ever, that the nonuniversal effects already arising
in the n-~ limit will be a reasonable, perhaps

even roughly quantitative guide to the true
behavior.
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APPENDIX LIMITING FREE ENERGY

Lower bound

To obtain a lower bound to the free energy de-
fined through (2.5), (2.4), and (2.1) we rewrite the
Nn-fold spin-component integrals defining the
partition function by separating the radial agd
angular parts, that is we write

d "s= d "p"'."
f=1

(Al)

where do, denotes the surface element of an n-di-
mensional sphere of radius p&. Now make the
change of variables

g = p, /n'~', x, = s,/g, , (A2)

for all i On se.tting @san'=1 for brevity, the re-
sult may be written

—m g [W,((,) —(1-n')ln(, ]),

(A3)

where 4~ „ is seen. to be the free energy of a sys-
tem with n-component spins, x„of fixed length

I x,
~

= n with "fluctuating" pair interactions Z,.&t, g&

and an inhomogeneous, but otherwise ordinary
magnetic field, H; = )&W, (t',.). Now by adding and
subtracting terms ——,'wP, in the exponent, factor-
izing, and using Jo" e ~ 'dt=1, we obtain
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N

Z» „~n" 'exp n-min N4» „(($,])+g [W,(P) —(1 —n ')in), -»erg/n]
g ~ ~p

1
(A4)

But since the J,z are positive and spatially uniform
the minimum can be shown to occur when all the

$» are equal. " On taking logarithms, dividing by
Nn, and letting N and n approach infinity in any

way we thus obtain

N

(A10)

E(J, W) = lim E» „(2,W)
Ns n» (o

) min[et($)+ W($ ) —in $] (A5)

3C'(Es,.].) = g nW(l s, I»/n, 1 s,./n),

where for convenience we have introduced

(A11)

where

C(()= lim C» „((&,.=-g].), (A6)

C($)= —'F (L 8) 1+)n—,'fP ———'[W (P)]'/g (A7)

where F„($;J)was defined in (2.8) while g is the
solution of 'the self-consistency, or saddle point,
or constraint equation

is the limiting free energy of a standard spherical
model" with pair interactions PJ,~ and a magnetic
field )W, (P). By well-known results'~'" we have

W(x', y) = W, (x2) 2f x-»+ y[W2(x2) —)1] . (A12)

The thermodynamic variational principle""'"
then yields

E„„-E'„„+( W( i s, i'/& 1 . s,/n))„ (A13)

where Eo „and ( )0 denote the free energy and
expectation calculated with X, while translational
invariance has been used in writing the second
term. Evidently I'PN „ is the free energy of a
Gaussian model in a uniform magnetic field, so
one has simply

(A8)
lim Eo» „=,'F„(f:—J) ,'rP/f .——

Nsn»~
(A14)

withe(f;J) defined in (2.9). On substituting these
results in (A5) and restoring the factors k»T, we
obtain a lower bound for E(T;J, W) of precisely the
required form (2.6).

Upper bound

An upper bound may be found, following Em-
ery, . '"'by a variational method. To this end write

To evaluate the Gaussian expectation in (A13)
when n- », consider the second term in (A12)
which contributes

(n '1 ~ s W, (is i'/n)),

=(n'1 s f dtw(t) s(t- sI'/n)), (tt(5)
»OO

36,.((s ])=&'(8 ))+&'(rs ])

where, with positive g and real g,

(A9) where we have put W, (x') ri= W, and-dropped the
irrelevant subscript i. Introducing a Gaussian
representation for the 5 function yields

tim(n '1 s W (Is I'/n)) = lim (1/s)'1 f dt W(t) lim (n'1 ss
~ nO(» Nsn» ~

(A16)

where the interchange of the &- limit is justi-
fiable. Now by (A10) the spin components s" are
independent random variables. Thus on expanding
the exponential expectati. ons, (s"(s")'.. . (s")») may
be factorized. On resumming the leading terms,

one finds

(z-1 1 ~ se x(t Isl /n) )--(sg(n &(t-(s )0 [1+Q(pg ()]

(A 17)
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where the basic Gaussian expectations are

&s&o = m = -g/g,

&s2& = P=f„(r Z)+q'/g2.

(A18)

(A19)

minimize, the bound. Since q and m are mono-
tonically related, varying p is equivalent to
varying m regarding g and 4 as functions of P and
m. Taking into account (A18) and (A19) then
yields the relation

»m &s'1 sW2(~s ~'/~)&0=&s&OW, (&s'&o). (A20)

The same argument applied to the first pair of
terms in (Al) yields, by (A18),

E~ „~EO„„+W (~p) f2-p+m[W2(p) -g]. (A21)

Now to this point g and q are arbitrary parame-
ters: they may thus be varied to optimize, i.e.,

On substituting (A 1V) in (A16), one finally obtains
q= W, (P),

so that the last term in (A21) cancels from the
bound. Likewise q can be eliminated from (A19)
in favor of W, (P) which yields (2.V) and enables
all reference to m and g to be dropped. However,
the relation (A18) yields the useful relation (2.11)
for the magnetization, m. Finally, one is left
with a minimization on g which, on using (A14),
has the same form as the lower bound (A5) and the
desired result (2.6).

E. K. Riedel, Phys. Rev. Lett. 28, 675 (1972).
2(a) R. B. Griffiths, Phys. Rev. Lett. 24, 715 (1970); (b)

Phys. Bev. B 7, 545 (1973); (c) J. Chem. Phys. 60, 1&5
(1974); (d) A. Hankey, H. E. Stanley and T. S. Chang,
Phys. Rev. Lett. 29, 278 (1972).

3(a} M. E. Fisher, AIP Conf. Proc. 24, 273 (1975); (b)
M. E. Fisher and D. Jasnow, Theory of Correlations-
in the Critical Region {to be published), Appendix A.

4{a}D. R. Nelson and J. Budnick, Phys. Bev. Lett. 35,
178 (1975); (b) J. Rudnick and D. B. Nelson, Phys. Bev.
8 13, 2208 (1976).

~D. J. Bergman and O. Entin-Wohlman, Phys. Bev. 8 10,
305 (1974).

~V. Dohm and P. J. Kortman, Phys. Bev. 8 9, 4775
(1974).

YH. E. Stanley, Phys. Bev. 176, 718 (1968).
V. J. Emery, (a) Phys. Rev. 8 11, 239 (1975); (b) ibid.
11, 3397 (1975).

S. Sarbach and T. Schneider, Phys. Bev. B 16, 347
(1977).

~OS. Sarbach and T. Schneider, Phys. Bev. B 13, 464
(1976).
A short preliminary report of our conclusions is pre-
sented in S. Sarbach and M. E. Fisher, IJ. Appl. Phys.
49, 1350 (1978)]. A few slips in that report should be
noted. In Eqs. (17) and (21), the factor (1+2g ) should
read {+1+2Z ) and the term -yQ should read -2yg.
IThe factor b,which is included here in (4.44) and (4.46),
is informative but not essential to leading order in p.]
In. Eq. (20) a factor 2 should multiply the right-hand
side. Note that Eqs. (22) and (4.43) here look different
because of a change in the definitions of Q and y: corn-
pare (12) and (20) with (4.12), (4.15), and (4.38). Mak-
ing the changes Q~ 2 (Q-2), y3m 2y3, y my+y3 in {22)
leads back to (4.43). Finally, the coefficient+p in Eq.
(19) should read -2p rsee (4.55) here].
M. E. Fisher, in Renormalization Group in Critical
Phenomena and Quantum .Field Theory, edited by J.
Gunton and M. S. Green (Temple University, Philadel-
phia, 1974); see also (a) D. B. Nelson, Phys. Rev. 8 13,
2222 (1976); (b) E. Domany and M. E. Fisher, Phys.
Bev. 8 15, 3510 (1977).
M. Kac and C. J. ThoIYlpson~ Phys. Nolv. 5~ 163 @971).

'4T. H. Berlin and M. Kac, Phys. Bev. 86, 821 (1952).
G. S. Joyce, in Phase 7'ransitions and Critica/ Phenom-
ena, edited by C. Domb and M. S. Green (Academic,
London, 1972), Vol. 2, p. 375.

~6See, e.g. , H. Falk, Am. J. Phys. 38, 858 (1970).
VJ. L. Lebowitz and O. Penrose, J.Math. Phys. 7, 98
(1966).

~8C. J. Thompson and H, Silver, Commun. Math. Phys.
33, 53 (1973).

~ (a) M. E. Fisher and D. B. Nelson, Phys. Hev. Lett.
32, 1350 (1974); (b) J. M. Kosterlitz, D. R. Nelson, and
M. E. Fisher, Phys. Rev. 13, 412 (1976).

2OSee, e.g. , M. E. Fisher, Rev. Mod. Phys. 46, 597{1974).
2'D. J. Amit and C. T. DeDominicis, Phys. Lett. A 45,

193 (1973)
(a) E. K. Riedel and F. J. Wegner, Phys. Bev. Lett. 29,
349 (1972); {b) F. J. Wegner and F.. K. Riedel, Phys.
Bev. 8 7, 248 (1973).

SD. R. Nelson and M. E. Fisher, Phys. Bev. B 11, 1030
(1975).
M. Blume, V. J. Emery, and B. B. Griffiths, Phys.
Rev. A 4, 1071 (1971).

25(a) B. B. Griffiths and B. Widom, Phys. Hev. A 8, 2173
(1973); {b) J. C. Lang, Jr. and B. Widom, Physica A81,
190 (1975).
P. Pfeuty, D. Jasnow, and. M. E. Fisher, Phys. Rev.
8 10, 2088 (1974).

27E. K. Riedel and F. J. Wegner, Z. Phys. 225, 195(1969).
Because of the integral values of the classical tricriti-
cal exponents, particularly /=2, it is possible to re-
absorb the nonlinear terms dropped in going to the var-
iables ho, g(), and mo, back into the equations for the
scaling functions, which are thus slightly modified.
However, the correspondence with Landau theory and
with the renormalization-group calculations (Bef. 4) in-
dicates that this is not an appropriate or really useful
maneuver. In particular, it leads to additional scaling
terms in the disordered region above T& which, for
certain loci, dominate the Gaussian correction-to-scal-
ing terms.

2 M. J. Stephen, E. Abrahams, and J. P. Straley, Phys.
Bev. 8 12, 256 (1975).


