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Short-ranged correlations and the ferromagnetic electron gas
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A discussion of the various properties of pair correlation functions of a magnetic electron gas is presented.
The cusp conditions obeyed by the many-electron wave functions for a pair of electrons with parallel and
antiparallel spins in close proximity are expressed as derivative conditions on the corresponding parallel- and
antiparallel-spin pair correlation functions. In particular, it is shown that in a fully ferromagnetic gas the
parallel spin correlations determine the correlation energy whereas in the paramagnetic case, this function is
of less importance in comparison to the antiparallel-spin correlation function. In the high-momentum limit, it
is found that the momentum distribution of electrons is dominated by antiparallel-spin correlations in the
partially magnetic case whereas in the fully ferromagnetic case, it is dominated by parallel-spin correlations
but is smaller by a factor of g ~2. A calculation of the parallel-spin correlation function for the ferromagnetic
gas in perturbation theory is presented. A model for the exchange correlation energy of the system which
takes into account the exact conditions given here is proposed. Corresponding results for the two-dimensional

electron gas are also stated.

I. INTRODUCTION

The nature of electron correlations in atoms and
molecules has been pursued vigorously by chem-
ists and, in solids, by physicists and these two
studies have essentially proceeded independently.
Only recently a meeting ground has been found in
the density-functional approach. In this approach
(more generally, the spin-density functional the-
ory), one leans heavily on the properties of an in-
teracting electron gas. This unified picture is
best described in terms of pair correlation func-
tions for parallel and antiparallel spins of the
electrons. These functions are proportional to the
probability that two electrons in the prescribed
spin orientations be separated by some distance 7.
McWeeny' pioneered studies of these functions with
electron correlations in molecules in view. Paral-
lel-spin electrons stay away from each other be-
cause of the Pauli exclusion principle even if they
are noninteracting. This has led to the concept of
the “Fermi hole.” On the other hand, antiparallel-
spin electrons can come close to each other with-
out violating the Pauli principle. They avoid each
other only because of the Coulomb interaction be-
tween them. This led to the idea of the “Coulomb
hole.” These concepts have been studied by chem-
ists for a long time,? and some important “cusp”
properties concerning these functions were noted
by them. In particular, it was recognized that the
cusp behavior at short distances is important and
it is for this reason that wave functions containing
this proper behavior scored impressive succes-
ses.?’? This “cusp” behavior of the wave functions
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was put on a firm mathematical footing for many-
electron wave functions by T. Kato.*

These developments went unnoticed in the study
of the pair correlation functions of the electron
gas. Most of all, only the paramagnetic electron
gas was studied vigorously and impressive numer-
ical work has been accomplished by Singwi and
coworkers, based on a certain self-consistent
scheme.® Geldart and co-workers,® and more re-
cently Yashuhara,” have tried to evaluate these
functions by summing a class of diagrams in a
many-body perturbation theory. Most of these
calculations violated the requirement that these
functions be positive definite beyond a certain val-
ue of the density of the electron gas, even though
the Vashishta-Singwi scheme is reasonable in the
density range appropriate to solids. Kimball?
independent of McWeeny and Kato, derived the cusp
condition for the antiparallel-spin correlation
function. The main reason for confining one’s at-
tention to this function is that the lion’s share of
the correlation energy in the paramagnetic elec-
tron gas is due to antiparallel-spin correlations.
In a recent paper, McWeeny? has developed a
scheme for calculating the correlation energy of
the paramagnetic electron gas based on the cusp
condition following a similar calculation for the
atoms by Colle and Salvetti.® The result is quite
striking in that it appears to interpolate nicely be-
tween the high- and low-density regions.

Recently Gunnarson ef al.}° have suggested a
method of incorporating the pair correlation func-
tions directly into a density-functional theory. It
is unfortunate that not even the energy density of
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the magnetic electron gas is accurately known.
The advantage of the approach taken by McWeeny,
Kato, and Kimball is that many conclusions about
short-range correlations can be applied to real
systems with only minor modifications. In the ful-
ly magnetized electron gas, in contrast to the
paramagnetic situation, the parallel-spin corre-
lations determine the correlation energy. Onlyone
theoretical attempt to study the correlations in a
magnetic electron gas by generalizing the para-
magnetic studies exists.!! There is also a calcu-
lation of the ground-state energy in the ring-dia-
gram approximation.'? The use of the pair corre-
lation function directly in a density-functional
theory for the inhomogeneous magnetic systems has
been suggested by Rajagopal and von Barth.!?

The purpose of the present paper is to develop
some exact statements concerning the pair corre-
lation functions of a magnetic electron gas. After
defining these functions, certain consequences
follow almost immediately. By considering the
nature of the many-electron wave functions in
some detail when two electrons are close to each
other, we develop the cusp conditions for these
functions for parallel- and antiparallel-spin pairs.
The antiparallel case was derived earlier by Kim-
ball.® The result for the parallel case is new.
These results are given in Sec. II. Recently,
there has been a great deal of interest in the two-
dimensional electron gas. The corresponding re-
sults for the various pair correlation functions in

" two dimensions are also given in Sec. II. Those
results for the paramagnetic gas are given in Ref.
14, In Sec. III, it is shown that several quantities
are related to the curvature of the ferromagnetic-
electron-gas correlation function at zero separa-
tion. In particular, the third derivative of this
function as the interparticle separation goes to
zero, the corresponding structure factor for the
parallel spins, and the momentum distribution
function for large wavelengths are all simply re-
lated to the curvature at zero separation. The

~ form of the parallel-spin correlation function for

small distances is estimated from a high-density
expansion in the same section. In Sec. IV, we
summarize the results. We also develop a “model”
for the pair correlation functions. McWeeny? has
noted that such a model for the correlation func-
tion can be used to obtain the correlation energy.

We suggest an alternative method for calculating

this energy. ’

II. PAIR-CORRELATION FUNCTIONS
FOR THE MAGNETIC ELECTRON GAS

The description of the systems of interacting
electrons is best given by means of the second-

quantized operators ¥, () and ¥] (), denoting the
destruction and creation of electrons at position

T with spin 0. These operators obey the usual
equal time anticommutation relations. We will
confine our discussion to zero temperature, for
convenience, Let?%, (’ )denote the number density of
electrons in the spin state ¢, at T given bynt,1 (T,)
=(2| ¥] F,)¥, () ®) where @0, ..., Fy0y) is
the normalized N-electron ground-state wave func-
tion of the system of total number of electrons N
(® for short). The pair correlation functions
&s,0,(T;, T,) for the electron gas are defined by

ﬂcl(;l)noz.(;z)gcloz(;l, Fa)
=(B| V] )] F)¥, E) F)E (1)

and g°1° (¥, 2) is the probability that if an electron
of spin G 1s at ,, there will be another one of

spin 0, at r In the electron gas, because of hom-
ogenexty of the system, na (' ) is independent of

T, and &, 02(1, r,) depends only on the distance be-
tween the two electrons | T, =T, . From this def-
inition and the fact that the operators obey anti-
commutation rules, we have the following proper-
ties (which do not depend on the homogeneity pro-
perty of our system):

B) &0, F,5)20, (2)
(B) 855, T)=0  (Pauli exclusion principle), (3a)
and

80,0,(f,,T,)> 0 for 0, #0,, ' (3b)
() o,0,F1,Tp) =800 (T - @)

The symmetry of the correlation function with re-
spect to the exchange of particles follows from
Eg (1) and the commutation relations for ¥'¥ and

(D) f d;z ”oz(fz)[galoz(i?u Fz) -1]=- 6°1°2 : )

This last property follows directly by integrating
both sides of Eq. (1) appropriately and using the
fact that the ground state of the system has a fixed
number of particles in the spin state 0. An equi-
valent expression with (f,,9,) and (F,, 0,) inter-
changed follows from the exchange symmetry of g.
All of the above properties are consequences of the
definition of £ [Eq. (1)]. They are valid for any
Fermi systems and are independent of the dimen-
sionality.

The following two conditions are special to the
case of Fermions interacting in a pairwise Cou-
lomb interaction and in three d1mens1ons (e.g.,
electrons). Let R =3(F, +r2) and I =1, —T,. Then
by definition, £ o, &, R) =2s 0 ('Ur ). Now we
have

)
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(E) £50(F=0,R)=0, ®)
9 -
o £ @R <0, (72)

(7b)
where X is the dimensionless strength of the elec-

tron-electron interaction and g, is the usual Bohr
radius,

(F) For 0,#0,,
®)

Zopo, &, B)| . =30 57=r 20,0 F,F)

0,0, l‘l—’o A 'a‘l_ﬂ' 0,0,\s Tl
These relations are exact consequences of solving
the many-electron Schriodinger equation for a fixed
configuration of all but a pair of electrons in the
system, when the pair comes close to each other,
Under these conditions, the ground-state wave
function can be determined quite accurately as was
done by Kato and by Kimball. Equations (6)-(8)
were known to Kato, but (7b) is new. Kimball ex-
pressed the cusp conditions [Eq. (8)] in terms of
pair correlation functions and, furthermore, re-
lated it to the large wave vector behavior of struc-
ture factor, as well as to that of the momentum
distribution function. Equations (6) and (7a) are
consequences of the fact that ® is antisymmetric
under the interchange of T, and T, and in fact, by
considerations such as that of Kato and Kimball,
for | 7| = 0, we need only to solve the Schrédinger
equation for a pair of electrons with angular mo-
mentum unity:

27, Ri00,...)2 Al FI[1+

where A is a constant.

On the other hand, for ¢, #0,, we need only con-
sider the state of zero angular momentum for the
pair:

@(F,R;0,,0,...)=B(1+(a)l T|), o,#0,, (10)

2

A/aa)l F11, @)

where B is some constant.
For the two-dimensional electron system,'* the
(E) and (F) are replaced by

E") B, R)||7)-0=0, (11a)
—rr{gfﬁ,’(' R), oo™ (11b)

32 i - a] 93 ()= =
o[ 7] 2 g(ozg‘(f'yR)llrﬂ_,o “ox 37 ° £5s(r,R) ITl~o
2

(11¢)

AND THE FERROMAGNETIC... 2341

() &% @ R)|17|-

(12)

a 9 -
-0 (2)
—2;t —al-ﬂ goloz(f,R) l?l»o
The superscript (2) in the above refers to two dim-
ensions and all the vectors are two-dimensional.
The corresponding statements on the wave func-
tions are

. . A s
q,(z)(;’R,.g,g;“,)gAmflr|<1 TR lr|> ,  (13)
aO

and

A
Q(Z)(. R;o0,, 2’---)EB(2)(1+E_|I">y 0,#0; .

0
(14)

These are all the results that can be stated in an
exact manner. In Sec. ITI, we shall deal with some
approximation schemes with the hope of obtaining
some information about the detailed nature of these

"pair correlation functions.

M. CUSP CONDITIONS AND SOME APPROXIMATE
CALCULATIONS OF g, o (F’l ,?2)
172

We first show a connection between the cusp
conditions (E) and (F) of Sec. II with the short-
wavelength behavior of the structure factor and
momentum-distribution functions. These functions
are related to physical scattering processes, as
is well known. We follow Ref. 8(b) in estimating
these results. For uniform systems, g(f,ﬁ)~g(1’),

. &
goloz(r)—'l:% f elq [ 0 c (q) 1] (27‘5)3 .

(15)

Here the wave vector ¢ is measured in units of k.
The relation between So10 @) (o, #0,) for large 4
and g(r) was given earlier®®’and it is

8K3 11m {q 0 0 (q) 1]} go Cq (0) (0-1¢0'2) N

(16)

g8(P)

Similar argument give us another relationship

%; liﬂ{qs[sw(q)-ﬂhgzo(m . @)

The momentum distribution function #4(K) for an
electron of spin 0, and momentumK, is given by
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279 2y "2y

nJK):%J- ek =" éx(F 0,7,,0,,...)20",0,7,,0,

N R.-"_“l
=y [e¥Ter 0,7, 0.

+si>*(r, g, 7’2’ -

where
dx, = _,_\j dr,

Correspondmgly the definition g(, o, in terms of the
wave function is

n°1n°2g"1°z (;1, ;2)
=N(N - l)f Q*(«rl, 015725 92 - v e )

x Q(""llal’yZ’ 029 e

N
) _I] dx, (19)

Combining Eqs. (18) and (19) and (9) and (10) we
obtain

16 n)
nO(K)K—"” hary7a 3V ( ao
for the saturated ferromagnet, and

K3(1 -2 2
oK)y - KEA=E) (8TF o

ay

v 1
2% (0) 25 (20)

o) 55 5 @1)

for the unsaturated ferromagnet, 0< <1,

Here ¢ is the relative magnetization. Equation
(21) shows that the dominating quantity in 7, (K)
for large K is the antiparallel-spin correlation
function if one has a partially magnetic state. In
view of the behavior of the parallel-spin co:rela-
tion function for small separations of electrons,
this behavior is not surprising.

The functions £, s can be calculated in terms
of the many-body pe"f‘turbation theory. Such at-
tempts, in the case of paramagnetic electron gas,
have not been very fruitful.® One may develop self-
consistent schemes of calculating these as was
done by Singwi and his co-workers.®> The precise

J

e, o,7,, 0,

2Ty 2

’
’ ")Q(Ir’q’rz’

LESo, =2 D

K1K2¢

where f ;(K) is the usual Fermi function for elec-
trons of spin 0, and wave vector K. The moment-
um summations are written so that Eq. (24) is ap-
plicable to three- and two-dimensional cases.

¥V (q) is the Fourier transform of the Coulomb po-

piet V@) - 85,0,V (q— K K,)
‘K, -°K,-R,+q-°K,-q

N
.) drdr’ H dx,

i=2

N
—o,.. ) dtaidt, [] ax, (18)

i=3

r

short-range behavior of these functions obtained
here are not easy to maintain in these theories
and we shall briefly indicate this aspect here.
One, therefore, may resort to proposing “model”
pair correlation functions which obey at least all
the exact statements (A)-(F) given above and com-
pute quantities of interest from that. We shall
briefly examine one such suggestion in Sec. IV.

In the Hartree-Fock (HF) approximation, it is
easy to note that golcz(f) can be explicitly given:

inKgs,” —=Kro,” cos Kro,7\2
-1 96 sin Foy [ 1
g°1°2(r) 1-9 0,0, ( K%OIys

(22)

Here 50102 is the usual Kronecker symbol and KF"l
is the Fermi momentum of spin 0, related to n°1
via '
nol =K;01/6 ﬂz :K%(l +01§)/6ﬂ2) . (23)
It is customary to define the total number by
n=ny+n;=K3[37% 23")

This approximation takes proper account of the
Pauli principle and hence the relations (A)-(D)
are obeyed as well as (6), (7a) of (E). However,
Eqs. (7b) and (8) are not obeyed because the ap-
proximation fails to take into account the Coulomb
repulsion between two electrons. More precisely,
from Eq. (22) we see that g, (,2(”') 1 for o, #0, for
all 7, showing that the * Coulomb hole” does not
exxst in the HF scheme,

The HF approximation may be thought of as the
lowest-order approximation in a perturbation
theory of the electron interactions. In first order
one obtains:

Fo (K)o, (K,) [1-f4 &, +D][1 ~fo, &, - *)]

(24)

-

tential and is 47€2/q% in three dimensions and
27me?/q in two dimensions. €g is the one-electron
energy K2/2m, The higher-order terms in the
perturbation series quickly become highly com-~
plicated (see Sec. IV however).
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We will now consider the fully magnetized elec-
tron gas because it brings out the main features
of the parallel-spin correlations in a clear fashion.
In this case, unlike in the paramagnetic case, the
system behaves more like a noninteracting sys-
tem. This is because of the efficiency of the Pauli
principle in minimizing the potential energy so
that additional correlations are small. First of
all, let us note that for 7 =0, g{)() is zero. Next,
we note that the lowest-order correction to g% is
relatively small. The two primes denote differen-
tiation two times with respect to ¥. From Eq. (22),
we have

gl =5K2y . (25)

From Eq. (24), we have, on scaling all momenta
by Kzt =2'3Kp

2*45011’5 1
F! g4 2178

a3 d3x_ d3y
X rk—"‘sz_-r—
fj,; f vy +x, - %,)

(1 -y ) (26)

where R is the region of integration specified by

g7 0) =z K

I%l<1, I%,/<1, |%X +y1>1, and |, -¥|>1.
@7)

The integral was done on a computer and we obtain

n 2 ( rs
= I{2 ————
g” (0) 5 F’ 1 2.9 . (28)
In Sec. IV, we shall summarize our results and
indicate in what ways we can perhaps gain some

insight into the correlation energy of the ferro-
magnetic electron system.

IV. SUMMARY AND CONCLUDING REMARKS

We have examined the consequences of the be-
havior of the many-electron wave function where
a pair of electrons are in proximity as a means
of obtaining information concerning the short-
range properties of the pair correlations in a mag-
netic electron gas. These considerations are gen-
eralizations of the corresponding results for the
paramagnetic case. We have also presented the
results for a two-dimensional electron gas. In
particular, in the paramagnetic case, the anti
parallel-spin correlations play a paramount part
since the parallel-spin correlations are of rela-
tively little consequence because of Pauli exclusion
principle. In the fully magnetized electron gas, on
the other hand, the correlations are among the
parallel spins, and this we have studied in some
detail. In the partially magnetized case, both of
these correlations play a part with antiparallel-
spin interactions contributing a lion’s share. This
is seen for example in the asymptotic dependence
of the momentum distribution function, 74(K ) of
Eq. (21). The limit of large-wave-vector form of
the structure factor for parallel spins is seen to
be smaller by a factor ¢~ 2 compared to the corre-
sponding behavior of the structure factor for the
antiparallel spins. We have calculated the pair
correlation function in lowest -order perturbation
theory of the interactions in Eq. (24). A calcula-
tion of the contributions of ring-diagrams can be
made'® and the answer is given here without deri-
vation:

1 f digei Tt @K

(ring) 7) = oHF
g“loz() g0102(7)+no1n02 (2")4 (271)4

where G,(k) is the one-electron Green’s function
for spin 0, ‘and V, (¢) is the Coulomb interaction
V@), among electrons screened by the random-
phase-approximation dynamical dielectric func-
tion €(g). The frequency integration ¢, now must
take account of the frequency dependence of V.
The explicit calculation of this quantity is numeri-
cally complicated. It should be noted that Eq. (29)
obeys the conditions that £,,(0)=0. In diagram-
matic language, we see that in order to obtain this
" proper behavior, we must consider not only ring
diagrams represented by the second term in Eq.
(29), but we should also add contributions from
one-exchange—many-ring diagrams, the third

(6:;;42 [Vs (q) - §0102Vs (K1 _Kz - q)]

X Gg (K, +9)G, (K, -4)Go,(K,) G (K,) , (29)

r

term in Eq. (29). This illustrates one of the diffi-
culties in applying the perturbation theory in a
straightforward way. Other vertex corrections,
such as those given in the paramagnetic case,®
can be worked out following the methods of Ref,
11, but we shall not present them here. Our point
here is only to show that extra care is required in
dealing with such a theory.

We would like to briefly outline here one of the
most important uses of the pair correlation func-
tions, namely, the calculation of the exchange-
correlation energy, denoted by E., of the many-
electron system which may be used in the spin-
density-functional formalism. The general ex-
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pression for E,, is'® (energy per particle)

Exc _ez d;
N 2 olzaz "°1”°2f T+
1
xJ’ [ gy, (r,N)-1],
o

(30)

where g5 5,(, A) is the pair correlation function
for an electron gas with electron interactions hav-
ing a strength, A, In this form, the contribution
to E,. from the calculation of the expectations val-
ue of the kinetic energy is properly taken into ac-
count. McWeeny? and Colle and Salvetti® assume
the wave function for the interacting system in the
form of a product of that of the noninteracting sys-
tem and a correlation factor, which takes into
proper account the cusp behavior, Egs. (13) and’
(14). They then assume that the contribution to
E,; from the kinetic energy term is approximately
zero. Thus, we directly employ a “model” for
goloz(f, A) which obeys all the constraints (A)-(F).
We have done this for both two- and three-dimen-
sional cases. We present here the main idea. We
find in three dimensions,

Zoor, ) =g (”){1 vt 1 a1 *”2%)]}

(31)

gn(r;h)=g§‘{:(r){1 Le-Prer [_1 +apy (V) (1 +%:)]} .

(32)

Bss' and Q44+ are constants to be chosen in order
to obey all the conditions (A)—(F). With Colle and
Salvetti,® we may interpret B, as a measure of
the size of correlation, B, that of Fermi hole of
spin ¢ and B, that of Coulomb hole. Assume the
Boot’s are independent of A. Equations (31) and
(32) were chosen in order to obey the cusp behav-
iors. The sum rules, Eq. (4), give us a connec-
tion between By and @y, for fixed 0, o', We
have, in this model three parameters as yet un-

determined . Thus we note,

1,(Bgo)
%00 (M) =T {5e) + 7/3051, (o) * 33)
v
ay, () =;fﬂ=‘§’——% , (34)
where

L) = [ d g5 P57, (@=01). (35)

All the integrals can be done analytically by ele-
mentary integration as well as the subsequent A
integrations. In the two-dimensional case, similar
expressions are obtained. In the paramagnetic

‘case, McWeeny? used a similar idea but without

the A-integration trick, where only the antiparallel-
spin contributions are assumed to be important in
the model in which case one has only one parameter
to determine. This is done by McWeeny? by fitting
B such that the correlation energy of the Helium
atom is obtained correctly. Such a fit was used by
Colle and Salvetti’® who made a model for calcula-
ting correlation energies of atoms with impressive
success. In McWeeny’s calculation,? this choice of
B gave him an expression for correlation energy of
the electron gas which fitted remarkably well the
high- and low-density limits as well as provided a
smooth interpolation between these limits. In the
partially magnetic case, we need three constants,
In the fully magnetized case, we again need only
one constant which may be fitted by considering the
correlation energy of the lithium atom. We hope
that such model building based on correlation func-
tions will yield important results in the future.
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