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A simple expression of the Eliashberg function a'F(co) for an amorphous s-p superconductor is obtained.
One finds that a'F(ei) = (1/ei)X, [L(@ + N(@]8(ei —ei, ), where g includes the phonon branch index;

N(@/ei~ is the N process which conserves "lattice" momentum; L(@/ei, replaces the U process in the
crystalline phase and it selects "lattice" momentum through the structure factor of the amorphous phase.
Both L(@ and N(@ are evaluated using the Heine-Animalu pseudopotential form factor and experimental
structure factor. A qualitative deconvolution of 'the phonon spectrum F(co) from a F(co) for four alloys is
attempted. The main findings are: (i) Due to the nonconservation of "lattice" momentum in the conventional
sense, a F(m) depends linearly on co in the low-co region, similar to Bergmann's results on disordered
superconductors. The calculated first derivatives of a~F(co) are in good agreement with tunneling data on
amorphous superconductors. (ii) The deconvoluted F(co) are in better agreement with theoretical results
obtained using the Morse potential than the Lennard-Jones potential. (iii) The Hopfieid-McMiilan parameter

q tends to decrease in the amorphous phase. Results (ii) and (iii) are discussed in terms of structural short-
range order in the amorphous state. For the purpose of comparison, a similar calculation is made for
crystalline Pb; it is found that there is no unambiguous enhanced a'F(co) in the low-co region.

I. INTRODUCTION

So far there have been more experimental results
than theoretical treatment in the field of amorphous
superconductors. ~ Within the Eliashberg theory
of strong-coupling superconductors, "the para-
meters which determine the superconducting
transition temperature T, are the electron-phonon
spectral function (or the Eliashberg function)
rx'E(oi) and the Coulomb pseudopotential p, ". One
ean determine both quantities, from tunneling ex-
periments on amorphous superconductors assum-
ing that the Eliasbherg theory can be applied to a
disordered matrix. To be able to extract micro-
scopic information on the electron-phonon inter-
action from experimental results, one almost has
to perform a first-principles calculation on cer-
tain relevant parameters such as band structur'e,
pseudopotential, phonon dispersion, ete. Such
ean be done for the crystalline state where the
electronic and vibrational eigenstates are known.
Meanwhile, similar attempts'~ have also been
made on amorphous superconductors where both
eigenstates are least known. The common result
of these latter investigations is that there is an
enhanced electron-phonon interaction at low ener-
gy which leads to the strong-coupling behavior
in these materials. The enhancement is due to
either the presence of additional low-energy pho-
nons or an enhanced electron-phonon coupling.
Thus information on the phonon spectrum E(oi)
would allow a comparison with experimental re-
sults on n'E(oi). In crystalline materials. there

is a rather close similarity between the two spec-
tra 'So .far only theoretical results on E(oi) of
model amorphous structure are available. ' By
considering the effect of topological disorder
alone, von Heimendahl and Thorpe' concluded that
the vibrational density of states in amorphous
metals should be similar to those of fcc and hep
metals. More recent calculations"' on tight-
binding "I,ennard- Jones glass" in which both top-
ological and quantitative (those related to bonding
forces) disorder are treated show essentially fea-
tureless density of states.

While there are no n'E(&d) data on amorphous
d-band superconductors, those on s-p metals are
available. Up to this point, inelastic-neutron-
scattering data on both s-p and d-band amorphous
metals do not exist in the literature. Tunneling
results on amorphous s-p metals' reveal spectra
consisting of distinct longitudinal features despite
an overall smearing of the phonon modes. How-
ever, there is no a priori reason to assume a close
similarity between E(oi) and rx'E(oi) in amorphous
metals. On the other hand, studies of elastic prop-
erties of glassy metals indicate a significant de-
crease in the shear modulus with respect to the
crystalline state while the bulk modulus is essen-
tially unchanged. Bolz and Pobell' observed al-
most the same value of Jc [E(&d)/&ojdu in both
crystalline and amorphous Sn. These facts sug-
gest that the "characteristic" energy of the phonon
spectrum might be insensitive to disorder. In
this paper, we attempt to deconvolute E(oi) from
rx'E(oi) data on amorphous s-p superconductors.
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Gur results reveal a distinct density of states of
longitudinal modes in s-p amorphous metals.

We derive a simple expression of n'E(~) for
amorphous s-p superconductors using the pseudo-
potential theory. The expression depends on the
phonon frequency &u„ the structure faCtor A(K),
and the pseudopotential form factor V~. Decon-
volution of E(&u) from n'E(&u) is attempted by using
quadratic phonon dispersion curves and also taking
into account uncertainties in q. Comparison of
n'E(~) with experiments is made for the low-~
region. The effects of absence of long-range order
on the Hopfield-McMil1. an atomic parameter g and
transition temperature T, are discussed. A com-
ment is made on the relationship between amor-
phous and strong-coupling behavior in amorphous
s-P superconductors; Finally, for comparison
purposes, similar calculations are done for crys-
talline Pb. T'he plan of this paper is as follows:
in Sec. IIA an expression of n'E(w) is derived.
Section IIB presents the properties of the integral
I.(q) which is a multiplier in the o.'E(~) expres-
sion. Section IIC compares our results with ex-
periments in the low-co region. Section III dis-
cusses the relationship between amorphousness,
phonon spectrum E(e), and other parameters in
the superconductivity theory. Section IV presents
a calculation on crystalline Pb. Sec. V is the
summary and conclusion. The Appendix treats
electron- ion interaction in second-order pertur-
bation.

e

II. n 2F ( m ) IN AMORPHOUS s-p METALS

In this section, we derive an expression of
~'E(~) in close resemblance to the phonon spec-
trum E(v) =Z, 5(w —e,) through a multiplier [I (q)
+N(q)]/&u, in the summation, where q includes the
phonon-branch index. It has always been equally
difficult to associate a wave vector q with a phonon
energy co and a wave vector k with an electronic
eigenstate ~E) in an amorphous metal, since at
first sight these wave numbers are not well de-
fined. Despite these drawbacks, it is not impos-
sible to tackle the problem of electron-phonon
interaction in an amorphous metal by considering
the following points. First, it is unlikely that the
uncertainty in q in the absence of periodicity can
be much larger than some characteristic wave
vector, say the Debye wave vector qD, since the
sum over phase space give the total oumber of
phonon modes 3A' (N is the number of atoms in the
solid). Second, low-temperature specific-heat
experiments on amorphous metals' indicate that
the main contribution to the lattice specific heat
obeys the T' law. The Debye temperatures de-'
termined from these measurements are lower in

the amorphous phases than in their crystalline
counterparts. Thus, at least the denstiy of states
(also the q-e relation) of the low-lying acoustical
modes obeys the Debye law, with appreciable soft-
ening in the transverse modes. In fact, theoreti-
cal results" of longitudinal v(q) for amorphous
solids reflect features observed in the crystalline
solid. Therefore, it might not be unreasonable to
define an "equivalent" dispersion relation for each
phonon branch. This approximation enters only
when we attempt to deconvolute the phonon spec-
trum E(v) from the Eliashberg function n'F(&u)
Uncertainty in E(z) due to uncertainty in q will be
represented by error bars in .the figures. It will
be shown that the general features of E(~) are in-
deed maintained in the presence of uncertainty
ln q.

The exact electron eigenfunctions in an amor-
phous solid must have very complicated forms.
In s-P metals where the pseudopotential theory
is well established, one rather takes a perturba-
tive approach using plane waves. It has been
shown that"" such approach accounts for rather
well the transport (e.g. , Hall effect and resistiv-
ity) and optical properties of amorphous and liquid
s-P metals. These materials are similar from a
s ructural point of view. Similar to previous cal-
culations, "we will treat the electron-phonon in-
teraction in amorphous metals using pseudopo-
tentials. The agreement of our calculation with
experimental values on n'E(~) in the low-&u region
will be demonstrated. However, one must be cau-
tious in interpreting the tunneling results (p, +,
n'E(~)] using the aforementioned approach. Be-
sides the normal Coulomb interaction between
electrons, the nonphonon parameter p, * should
also inclUde Coulomb scattering of electrons in
the static inhomogeneous matrix. The latter de-
termines properties such as resistivity and band
s true ture.

A. The model

The well-known Eliashberg function n'E(&u) is de-
tined as"'"

o.'E(~) = + g '„„,6(~ —(u, )5(,e,)6(e,, )/Q 6(z,), (I)
»'q

where Ã(0) is the single-spin density of states,
g», , is the electron-phonon coupling matrix ele-
ment, and the 5 functions restrict the electronic
states to the Fermi surface. g», , is given in the
rigid-ion approximation" by (see Appendix for the
perturbative treatment of e-p interaction),
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where 8, denotes the atomic position at site l, g,
is the phonon polarization vec tor, and Vk, „ is the
Fourier transform of the atomic pseudopotential
(the potential which is properly screened) also
called the pseudopotential form factor. In a crys-
talline solid, the lattice sum vanishes unless k' —k
+q=0 or 0, the reciprocal-lattice vector. The
former is called the N (normal) process and the
latter the U (umklapp) process. The U process
depends on periodicity. Thus except for the N

process, the selection rules for the U process in
an amorphous solid are replaced by a structure
factor A(K) defined as

A, (K) =—g exp[i K (R, —R, , )]—N6
El'

The relationship between k, k', and q then comes
from A(K} through K = k' —k+ q. A(K) is the de-
tected x-ray intensity normalized by the scatter-
ing factor. The detected intensity has been cor-
rected for absorption, polarization, multiple scat-
tering, and background. In a well ordered crys-
talline solid, A(K) contains sharp peaks at the
reciprocal lattice vectors 0 which give the partial
selection rules for electron phonon interaction.
In highly disordered and amorphous solids, a
typical A(K) contains a maximum at K„where
K,d=7 —8 (d corresponds to the distance between
nearest neighbors) and oscillations at higher K
which are characteristic of the loss in structural
long-range order. " Ths structure factor is con-
nected to the correlation function p(r) by a simple
relation

A(K) = 1+ 4w~'[p(~) —p, ] dr,
p Kx (4)

g(L(q)+N(q))
~ (6a)

r(q) (~~ Q&(lk' k+ j~)~t(=ir k)~*',
kk'

xV . Il(E )ll(E, )(Q lt(E ), (6b)

where p, is the meaix density of the solid. In terms
of these quantities, the square of the electron-
phonon coupling matrix element g', k, , is then given
by

g '„,, ,= [A ( I

k' —k+ q
I
)2MNco,

x I», (k'-k) I'I'l'+Nl», ql'&', ].
(5)

Putting (5) in (1) gives a general expression of
&'E(~),

~(~)=(2 )2 l~. 0l'&l&(~~)&(~...)/2'(~, )

For the L(q) term, the constraints on k and k'
come from the structure factor A(lk' —k+ q I) and
their restrictions to the Fermi surface (e,«»~).
The N(q) term only couples to longitudinal phonons.
One can see at once that at low u& (corresponding
to low lql), L(q) does not vanish because of the
form of A(K). The broadening of A(K) in K space
due to structural disorder results in the noncon-
servption of lattice momentum in the scattering
process so that the allowed phase space for k to
scatter into k' is expanded. Thus, there are ad-
ditional electron-phonon scattering processes
which contribute to a nonvanishing L(q) for low-

energy transfer. This conclusion is in agreement
with Bergmann~ who had studied the Eliashberg
function in disordered superconductors by using
a structural model in which the displacements of
the atoms from their positions in a corresponding
crystal are described by a Gaussian distribution.
Using a momentum conserving and non-Umklapp
electron-phonon interac tion Hamiltonian, Keck
and Schmid" studied the electron-phonon inter-
action in a metal containing dilute nonmagnetic
impurities. By linearizing the correction terms
in the electron self-energy, they obtained explicit
expressions for phonon emission and absorption
processes. They found a linear part [i.e., n'E(& ~)

-~] shifted by an energy of -1 meV when their
results were extrapolated to the very short mean-
free-path case in an amorphous metal.

One should also compare expression (6) to a,

result obtained by Allen. '~ Allen derived n'E(&)
in the form c/'E((u) = [2/nN(0)(o]Z, y, 6((u —(u, ),
where y, is the intrinsic phonon linewidth. Thus,
the quantity I.(q)+ N(q) can be related to y, by
L(q)+ N(q) = [2/wN(0)]y, . Theoretically, one should
then be able to calculate the linewidth of phonons
in an amorphous solid. In Sec. IIB, we shall ex-
ploit the properties of L(q} to give:further insight
into the problem of electron-phonon interaction
in an amorphous superconductors.

B. Properties of L {q)

By using a spherical phonon model so that L(q)
=L(q) and taking», as purely longitudinal or trans-
verse, (6b) is reduced to

2k~ 1

~(~~=„" . 'dvj ~*/(.)~(la+el)e'~;,
p -1

(7}

for each branch, with Q=k' —k. The function f(x)
=-,x' and —,'(1 —x') for the longitudinal and trans-
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verse modes, respectively, where x=q Q/~q. Q~.
L(q) can be evaluated knowing the experimental
structure factor A(K) and the pseudopotential form
factor Vo. N(q) is evaluated by setting G= 0 in

(13) of Sec. IV. One should notice that L(0) ~ p,
the electrical resistivity of the metal in the Ziman
theory for liquid metals. " In fact, by rearrang-
ing the quantities in L(0) and p, one obtains

I.(0) = [2e2E~k~N(0)/9mmMNV]p . (8)

One should note that L, (0) =L, (0) =L(0). Another
limiting value of I.(q) is noted when q- ~. The
structure fa.ctor tends to unity at large ~Q+ q ~

and so L(~) ~ JO2 ~ Q'V~+ dQ which is recognized as
the integral determining the Hopfield-McMillan
parameter g„„, in the crystalline state. " From
(7)

L(~) = Eq„t~(/6MN,

with L,(~)= L,(~) = L(~). For the intermediate
values of L(q) one has to know A(K) and Vo. For
the discussion on E(e) in the next section, we have
chosen to evaluate L(q) for four amorphous alloys
whose phonon density of states in the elemental
crystals are well studied. These systems are
In, OSb„, Sn„Cu„, Pb,OCu„, and Tl(+Te). It should
be reminded that the discussion so far involves only
elemental amorphous metals. However, it is not
difficult to generalize the present model to binary
alloys, especially when the B elements play only
a minor role on the superconductive properties.
play only a minor role on the superconductive
properties. For example, Drierach et a/. "have
extended the Ziman theory for liquid metals to
binary systems.

For the present study, we have used the Anima-
Lu-Henie" model pseudopotential form factors of
the four elements In, Sn, Pb, and Tl. On the
other hand, structure factors for these systems
are not known. We have chosen the structure
factors of the corresponding liquid metals. To
minimize the discrepancies between the amorphous
and liquid structures, we have adopted the proce-
dure of extrapolating the literature A(K) at tem-
perature T in the liquid state to T = 0 by including

a temperature damping factor as outlined by
Andonov" for the Pd-Si alloys. For the latter
system, small discrepancies between the A(K)
in the amorphous state extrapolated to high tern-
perature and that in the liquid state still exist.
But such minor diserepanc ies should not af fee t

. our results. One can also undertake a "model"
approach of simulating A(K) for these binary sys-
tems by using the Percus- Yevick hard-sphere
model. " Knowing the hard-sphere diameters and
the packing fraction from the "dense-random-
packing" model, "one then obtains the partial
structure factors needed to calculate the electron-
phonon coupling strength in a binary alloy. For
the electron density which determines the Fermi
energy, Fermi wave vector and density of states,
we have used the average density of the system.
Similar averaging is used for the atomic mass M.

In Table I, the quantities 2k~, p calculated from
A. (K) corrected from the liquid state and the
Animalu-Heine pseudopotential, and the experi-
mental values of p are listed. It can be seen that
the values of p determined from the Ziman theory
are in reasonable agreement with the experimental
values. We have also determined L(q) for both
the I and f modes given in (7) up to q=3 A '. The
curves for two alloys Pb„Cu„and Tl(+Te) are
shown in Fig. 1(a). Those for In„Sb„and Sn»Cu»
look similar and are not included. The values
of L,.(q) are normalized to L(0). In Fig. 1(b) are
plotted the functions L, (q) defined by I.(q) = —,'[L, (q)
+2L,(q)] for all four alloys. The N(q) curve for
Pb„Cu„ is also included. The purpose of plotting
L(q) will be clear in our later discussions. The
positions of q~ (so called "equivalent" Debye wave
vector determined from total number of modes
consideration) are marked on the curves. It can
be seen L, (q) is a monotonic increasing function
of q. This point will be discussed in relation to
short-range ordering in the amorphous state. The
asymptotic values L(~)/L(0) are also listed in
Table I to illustrate the variation of L(q) over a
large range of q. These results of L(q) and N(q)
will be utilized to study the phonon spectrum E(v)
in Sec. III.

TABLE I. Values of 20&, p„&„., p,„,, and L ()/I (0) for four amorphous alloys. We have
used the structure factors corrected from the liquid state of In, , Sn, Tl by H Hendus,
Z. Naturforsch. A2, 505 (1947), and of Pb by P.C. Sharrah and G.P. Smith, J. Chem. Phys.
21, 228 (1953). The resistivity data are taken from Ref. 1.

Alloys 2k@ (A ~) p ~
QQ cm) pexpt ~~ cm

In80Sb2p

SngpC ug.p

PbgpCugp
Tl (+Te)

3.17
3.20
3.06
2.92

46

68
64

33
47
78

73 (liquid)

2.27
2.12
2.36
2.89
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FIG. l. (a) Normalized L;(q) vs q for amorphous Pb&p

Cufp and Tl(+Te) alloys. (b) Normalized L(q) (solid
curves vs q for four amorphous alloys. The positions
of the "equivalent" Debye wave vector are marked on the
curves. Similar plot of N(q) (dashed curve) for PbppCugp

is also included. I

over q space at low-x so that e = vq, where g is
the speed of sound one obtains

I

a'E((u) =le'E~k~h'(0)p/3m'(v')mM]u) =A(u . (10)

E(0) is in states per eV per atom spin, (v') js giv-
en by I/(gr') = (-,') x (1/p', + 2/v, ), where f and f de-
note the longitudinal branch and transverse branch,
respectively. In an isotropic model (v3) is also
related to the Debye temperature e~ by O~ ~D(v')/
~, where D is the density of the solid. The pro-
portionality constant is determined by knowing
OD and (v') in amorphous Pb(+Bi) alloys" since
(v') = v', and there is a 15/o reduction in transverse
velocity of the amorphous phase. '~ For alloys
where information on 0~ is lacking, we use the
relation eD ~ (cu)= j,"n'Fd(u/ JD" (o.'F/(u)d(u de-
termined from tunneling experiments. " In Table
II the theoretical and experimental are listed val-
ues of A, the first derivative of a"E(v) at low &

for seven amorphous alloys and elements. The
experimental values of A. are taken from Refs.
25-29. The "Remark" column indicates whether
(v') is determined from eo or (u&) and gives the
source of information. Values of p are taken from
experiments. F~, k~, and A(0) are determined
from the free-electron model. It can be seen that
the present results explain rather well the experi-
mental observations. In fact, we shall use the
experimental slope A to generate values of (v')
for the phonon dispersion curves in Sec. III. The
latter requires a higher degree of accuracy.

III. RELATIONSHIP BETWEEN ABSENCE OF STRUCTURAL
LONG-RANGE ORDER, PHONON SPECTRUM F(u),

ATOMIC PARAMETER q, AND TRANSITION
TEMPERATURE T,

C. Comparison with experiment

In this Section, we shall check our expression
of n'E(e) at least for the low-&u region by going
through some numerology. It should be remarked
that the region of linearity of o.'F(~) is rather
small. This depends on the region of constancy
of L(q)/L(0) at low q. Referring to Fig. 1, one
notes that this region is -0.1—0.2 A ' which cor-
responds to ~1 meV on the energy axis. While
if one starts to "crystallize" the amorphous phase
fictitiously by introducing perturbation to the
structure factor A(K), the region of linearity is
reduced or even removed. If an experiment is
done by using the A(If') of a "microcrystal" taken
from Ref. 16 in the integral I.,(q), then it is found
that L,(q)/L(0) starts at some power law of q at
q=0 which removes the linear region. However,
a'F(~) is still enhanced with respect to the crys-
talline values in the low-co region.

Putting (8) in (6) and performing the integral

In this section, we attempt to deconvolute the
phonon spectrum E(~) using relation (6)

Alloys A. „~, {eV" ) A «It (eV" ~)

PbepCugp

Pbg)Bi)
SngpCllgp

Bl
Tl (+Te)

8Pb2p
Ga

320
250
200

1300
115
120
190

300
400
150

-1000
170
175

-180

(~& (a)
OD= 70 K (b)

( ~) (a)
~ (c)
Q~D (d)
OH~ (e)

Reference 27.
S. Ewert, Z. Phys. 267, 283 (1974).

'Reference 23, the 0& is determined for BiopSb&p,
~Heference 29.
A. Comberg and S. Ewert, Z. Phys. B 25, 173 (1976).

f Reference 25.

TABLE D. Comparison of experimental and theoret-
ical values of first derivative of +~I'(u) at low (~}.
References on o"D and (cu) are also included.
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and the I.(q) and N(q) curves. First, we demon-
strate that it is possible to obtain qualitative in-
formation on E(&u) without employing any ~-q re-
lation. The argument is rather simple but it of-
fers a preliminary insight into the feature of the
phonon modes. For all values of q, the l modes
are governed by IL, (q)+ N(q)]/L(0) & 3 and the f
modes by L, (q)/L(0) & L(~)/L(0) from Fig. 1.
From (6a) we obtain the inequalities L(0)E(u&)/cu
& n'E((u) -3L(0)E(z)/&u for the f modes and

L(0)E(~)/~ & ~'E(&u) = L(~)E(&u)/&u for the f modes,
since Z, 6(~ —ui, )/&u, =E(~)/~: The results can be
rewritten, for the l modes,

(un'E((u)/3L(0) &E((u) & u)(x'E((u)/L(0), (1la)

and for the t modes,

(un'E((u)/L(~) - E((u) & (uo. 'E(&u)/L(0) . (11b}

The right-hand side comes from the q =0 region
while the left-hand side comes from the high q
region. For a typical n'E(&u) spectrum of an
amorphous superconductor, the ratio of the longi-
tudinal mode co, to the transverse mode (d, is &3.
In any attempt to wash out the features in the l
modes, one would pick the q=0 result for the
t phonons and the high q result for the l phonons
in (11). However, one finds that the f peak is
still as pronounced as that manifested in the
'oE(w) spectrum from the fact that &u, /&u, ~3. It

is clear that q t 0 for all (d, in the t branch which
reduces the t peak even more. Hence the l modes
are almost as distinct as the t modes in the phonon
spectrum. The strong enhancement of n'E(&o) at
the t mode can be understood as corning from the
1/w dependence of the electron-phonon coupling
strength at low co. Recent theoretical calcula-
tions"' of E(~) in model amorphous metals give
a single broad band without distinct mode features.
It might be that in the first-principles calculations
of a model tight-binding amorphous metal the
proper short-range order has not been taken into
account so that discrepancies exist between ex-
periments and theories. Alternatively, the vi-
brational spectrum of a d-band metal may be dif-
ferent from that of a simple metal. Weaire et al.
have investigated the elastic properties of amor-
phous metals using the approximation of pairwise
central interatomic potentials fitted from experi-
mental data on crystalline materials. By including
internal displacements of the atoms in the amor-
phous structure, that is the structure is allowed
to relax to minimize the potential energy, they
found a considerable decrease in the shear
modulus (=33/o) with respect to the correspond-
ing crystalline case. However both the bulk
modulus and the density decrease only slightly

.I .0
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FIG. 2. (e ) vs cu for amorphous PbgpCugp. The 1/u
line is included for comparison. Shaded region repre-
sents uncertainty in (n2) due to uncertainty in q.

(=2%-3%). These results are in broad agree-
ment with experimental measurements on Nl-P
and Pd-Si alloys. On the other hand, using the
dense random packing of hard-spheres model
produced appreciable softening of both moduli.

In a simplest approach, we have used the quad-
ratic ~, dispersion curve to deconvolute E(&u) from
n'E(e) Fo.r crystalline s-P metals, Allen" has
used quadratic phonon dispersion curves to eval-
uate the electron-phonon mass enhancement
&=- 2 1,

'"
(o.'E/~)d~. The dispersion curves can be

generated if one knows (v„v,) and (~„&u,). For
quadratic dispersion, v, /v, = e,/~, . The latter
pairs are taken from the peaks in the o."E(~}spec-
trum. By also knowing (v'} from the initial slope
A. in Sec. QC, one can determine v, and v, separ-
ately. For a given co in each branch, we find the
value of q such that ~,=(d and locate the corres-
ponding value of L;(q) and N(q) in Fig. 1 so that
N(q) =N(&u) and I,;(q) = L;(w) Then, f.or each
branch we determine u2(~) from Eq. (6). The
values of n'; are expressed in units of L(0) so that
they have the unit I.(0) per meV. To determine
the phonon spectrum, one needs to know (o.')
=n'E(u))/E((u). The quantity (n') is given by (n')
= u'tlEt(4)/E(&)l+ &/IE](&)/E(&)1 with E;(~)/E(~)
= v', /(v';+ v&) in the Debye approximation. The
values of (n'} for Pb»Cu» thus determined are
shown in Fig. 2. The shaded region is obtained by
including an uncertainty hq =+—,'q for each q. For
~ & u&, one can use the high q values of L(q) (qv
&q &2qv). One observes the dominance of the 1/e
term in the low-~ region. A similar procedure
is also carried out for the other three alloys. The
phonon spectra E(~) = e'E(&u)/(o. ') so determined
are shown in Fig. 3 together with those obtained
for the crystalline phases taken from Ref. 5. The
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c~rves are not normalized but they are plotted in
such a. way that the area, under amorphous E(~)
equals that of crystalline phase. The o.'E(~)
curves are taken from Befs. 27-29. The shaded
regions are obtained by including an uncertainty
A(n') deduced from hq(=- s —,'q). This uncertainty
results from the indeterminancy in q for a given
(d in an amorphous solid. However, we believe
that such inclusion is not required for the low-
lying phonon modes. It should be pointed out that
high q (-qD) is more favorable for intermediate-
to-high energy phonons as will be discussed later.

The consequence of which is that smaller uncer-
tainty bI. (q) is expected for ~~ ~, (see Fig. 1).

Several features are noted in Fig. 3. Both peaks
in the crystalline phases are broadened appreciably
in the amorphous phase. However, the smearing
occurs almost equally in the low- 2nd high-(d re-
gions with the longitudinal modes persisting in the
amorphous phase. Comparing the phonon moments
such as fo &uE(e)du& and fo [tE(&u)/e]de in the two

phases, one does not observe a significant change
due to phase transformation. This conclusion is
in better agreement with theoretical results"
obtained using the Morse potential than the I en-
nard- Jones potential. The latter indicates a sig-
nificant shifting of the characteristic modes to
lower energy. In fact, Bolz and Pobell', P observed
almost the same value of fo" [E(e)/e]de in both
crystalline and amorphous Sn. On the other hand,
one expects quite a significant change of these two
moinents obtained from o.'E(~) The d.ominance
of the I/e term in (o') highly enhances the Iow-v
contribution.

Another interesting property which results from
the monotonic behavior of L(q) is that the Hopfield-
McMillian atomic parameter g tends to decrease
in the amorphous phase. This is based on the
assumption that there is no significant change in
the pseudopotential form factor t/'~ associated with
the phase transformation. q is defined in the
usual way as

g~ = —— (do/ E (d d(d

2M
[N(q)+ 1.,(q)]5,(~ —»,)d~ + 1.,(q) 5, ((u —(u, )d(o

xtal xtal g q
~ t q (12)

The last step follows from the fact that 1V(q) only
couples to the longitudinal phonons. I.(™)is given
in (9). It should be noted tha, t q so defined for the
amorphous phase depends on the phonon spectrum.
An absoh~te upper bound q,„&(~3)q„„, is obvious
from (12). A more stringent upper bound is ob-
tained by taking L,.(q) at the characteristic wave
vector qo. Using the I., (qD)/L(~) values from Fig.
1, oneobtains g smaller than 0.97, 1.0, 1.1, and
1.2 times of q„„,for amorphous Tl(+Te), Pb»Cu»,
Sn9pCuyp and InspSb2p al loy s, re spec tive ly . In
Table IQ are listed the values of q in amorphous,
highly disordered and crystalline phases of dif-
ferent s-p metals and alloys. It is observed that

the above inequalities are obeyed and that there
is a general trend for q to decrease in the amor-
phous state. This point was first noted by Allen
and Dynes. " The fact that good agreement is
reached by taking 1.(q) at the characteristic wave
vector qD suggests that the intermediate-to-high
energy phonons are better described by large
wave vectors.

Mathematically, the decrea, se in I.(q) at low

q originates from the particular form of A(K) for
an amorphous structure. In Fig. 4(a) is shown
the graph of a, typical structure factor in which
the positions of 2k~ for metals of different valen-
cies z are marked, Since the factor Q'V~ of the
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TABLE IH. Values of the Hopfield-McMillan atomic parameter q (eU A ) for c (crystalline).
d (disordered), and a (amorphous) superconductors.

c-Pb (2.4)
c-Sn (2.2)
c-Tl (1.2)
c-In (1.3)
P -Ga (2.0)

d-Pb (2.24)
d-Sn (2.1)
a-Tl (1.1)
d- InspSb2p (1.3)
a-Ga (2.1)

a-Pb„Cu„(1.8)
a-Sn OpCu&p (1.5)

In8pSb2p (1 4)

a-Pb (2.0)

A(K)

AMORPHOUS Ni7~ P2~

(a)

0
6

254 5
I

0

0
r(A)

FIG. 4. (a) Structure factor A (K) and (b) reduced ra-
dial distribution function G (~) for amorphous Ni76P24 al-
loys (Ref. 16). Positions of 2hz for different valences
are marked on A (K). The dotted line in (b) is a Fourier
transform fitting of the dashed line in (a).

integrand A(Q)Q'V@ of I (0) has appreciable con-
tributions in the region where A(Q) is small, the
intermediate Q (or equivalently the intermediate
range) portion of the electron-ion interaction
Q'Vo2 is attenuated. The loss of periodicity ap-
parently leads to a partial "destructive inter-
ference" in the electron-ion interaction. Even
from a structural point of view, the sharp peak
in A(K) does originate from the periodic oscillation
in the reduced radial-distribution function G(x)
=4mx[p(r) —p, ] which is characteristic of the loss
of long-range order in a solid. In Fig. 4(b) is
shown a typical graph of G(r). The dotted line in
Fig. 4(b) is a Fourier transform fitting of the
dashed line in Fig. 4(a) for amorphous Ni-P al-
loys" illustrating the correlation between the
first peak in A(K) and the loss of long-range or-
dering. By inc&easing q, there is a tendency to
move Q'Vc2 away from the low-Q region and thus

L(q) is enhanced. Physically, the high-q phonons
do not "see" the structural disorder since they
are more or less localized to interatomic distan-
ces. While at intermediate q, the long-range dis-
order is well scanned. Lastly, it should be men-

tioned that the above discussion is valid only wben
Q'Vc2 has significant contribution at low-to-inter-
mediate Q, such as in the case of s-p metals.
However, in transition metals Q'V has the most
important contribution around 2k~ and equals =-0

for q ~ 2k~ typical of d resonance. In that case,
the short-range character of A(K) is fully utilized.
This will be discussed in detail in our future work.

We have not succeeded in finding a rigourous
correlation between the enhancement in the elec-
tron-phonon coupling constant X and i.ts effect on
the transition temperature T,. However, several
points we observed deserve mentioning. The de-
tailed analysis of T, for strong-coupled super-
conductors was due to Allen and Dynes. " They
included thermal phonons (pair breakers) effect
in their self-consistent solution of the Eliashberg
equati. on. The consequence is that it is more dif-
ficult to enhance T, in soft materials than one
would expect at first sight. It was found that T,
is rela, ted to the different moments of a'F(&u) in
a sophisticated way. From Fig. 10 of their work,
one observes a general trend between T,/u&„, and

An enhancement in ~ certainly increases the
ratio T,/~„, but it does not imply an increase in
T, since (d„, decreases. We can compare the two
cases (i) Pb versus amorphous Pb„Cu„, and (ii)
Sn versus amorphous Sn»Cu». " In (i), A. in-
creases from 1.66 in Pb to 2.0 in Pb»Cu, o, T,/m„,
increases from 0.15 to 0.1.8. However, ~„,
& (&u')'~' =- (q/AM)'~' decreases by -22% which
causes an overall decrease in T, by -0.5 K. In
case (ii), X increases from 0.7 in Sn to 1.82 in
Sn„Cu» and q decreases from 2.2 to 1.5 eV/A',
T,/&u„, increases by a factor of 4. On the other
hand, co„,decreases by a factor of 2 which still
maintains an overall increase in T, by -3.6 'K.
The thermal phonons effect leads to a decreased
increment in T,/&u„, per unit X for A. &2. Thus,
a small decrease in q is sufficient to nullify the
effect of enhanced A. in the high A. region. Given
the fact that X cannot be too large (say, 62) as
limited by lattice instability, the change in T,
would depend strongly on the initial A. in the crys-
talline phase. The latter sets a range over which
A. can be further increased.

The last point we discuss in this section isle
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relationship between amorphousness and the
strong-coupling criterion. By using McMillan's
criterion, the crossover point from weak coupling
to strong coupling occurs at A. =1. An "equivalent"
criterion is the positive deviation from the BCS
gap coefficient 2h, /ks T,. It should be noted that
some of the superconductors considered here are
already strong coupling in the crystalline phase.
It was found that amorphous- s-P superconductors
are mostly strong coupling. Qne can understand
this property by considering the increment 5A. due
to phase transformation. In the crystalline phase
n'E(&u) is small while in the amorphous phase
o.'E(&u) =A~ for &u ~ 1—2 meV. From Sec. lIC,
A ~ 150-1000 eV ' and thus 5A ~0.6—1 (we have
used the experimental values of A to obtain the
range of 5X). Such increments can easily bring X

above one in the amorphous phase. Qn the con-
trary, it was found that amorphous transition-
metal alloys are weak coupling. " From (10),
Aak~2EF N(0) pD/M '8g, the factor M '83D/E~k~2

(8~ =250 'K estimated from T, = 8 'K for amor-,
phous Mo, M =100 amu, E~= 5 eV) is -30 times
its corresponding value in s-p metals (8n = 60 'K).
Therefore, A is still decreased by a factor of -2
despite an increase in DN(0)p and thus the en-
hancement 5A. is suppressed.

IV. COMPARISON STUDY-'n2F(u) IN CRYSTALLINE Pb

In order to compare the features of electron-
phonon interacting in the amorphous and crystalline
phases, a simple calculation along the line of Sec.
II is done for crystalline Pb. n'E(&u) is derived
based on the assumptions of isotropic Ferxni sur-
face and phonon spectrum, and free-electron ma-
trix elements. An additional assumption of a
Debye sphere for the phonon Brillouin zone al-
lows the evaluation of (n'). There had been cal-
culations of A. for simple metals using a similar
set of assumptions. " It was concluded that re-
sults on metals like Al and Pb with the fcc struc-
tures, mell-known phonon spectra, and rather
free-electron-like Fermi surfaces were in good
agreement with experiments. To obtain the fine
structure in n'E(e) in addition to the two main
peaks, more sophisticated calculations are re-
quired, such as those performed by Carbotte"
for crystalline Tl. Carbotte obtained the phonon
energy (d, for g~, , by fitting neutron-scattering
data to the Born-von Karman force-constant mod-
el. However, for our purpose of qualitative com-
parison at the present, a simplified calculation
of o. 'E(e) is sufficient.

The condition k' —k+ q = 0 or G with both k and
k' lying on the Fermi surface allows us to write
n'E(~) in the form of (6a) with L, (q) of (6b) now

given by

v'k N(0) ~ I 7, (q+ G) I
' V'-..-,

6MkF ~0~0
I q+Gl

x H(2k~ —I q+ Gl ),

I ~ 4 . I I

I5—

CRYSTAlLINE Pb

"Io-
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UJ
N
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O
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HE I N E —A Nl M A LU
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FIG. 5. U&(q)+N(q) and U&(q) vs q evaluated for the
Heine-Animalu and high-P pseudopotentials (Ref. 20).

where H is the Heaviside step function which re-
sults from the condition ~k' —k~ ~ 2k~, the factor
~q+ G~ in the denominator comes from restricting
the final states k' to the Fermi surface. To sim-
plify further, we assume that the polarization
vectors e, are purely longitudinal (E, ~~q) for
transverse (e, &q). Thus, the N process will be
purely longitudinal. We also assume an isotropic
phonon spectrum so that I.(q) =L(q) and rewrite
I.(q) as

L (q) = U, (q) + U, (q)

The first term represents the l contribution and
the last term represents the t contribution to the
U process. The latter results from averaging
~e, G

~
over orientations of q, perpendicular to q.

We have also used the Heine-Animalu pseudopoten-
tial form factor for Vq, G The computer results
of U, (q)+N(q) and U, (q) for crystalline Pb are
shown in Fig. 5. (n') is then. obtained by the pro-
cedure described in the last section and is shown
in Fig. 6. The arrows indicate the l and t peaks
in the n'E(&u) spectrum. It is seen that in the
region of interest 2&sr &9 meV, (n') deviates sig-
nificantly from the 1/m line. The slow variation
of (o.') as a function of ur implies a close similarity
between E(e) and o."E(ur) in crystalline Pb. In
fact, this latter feature might even be more gen-

I
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0!I'IG. 6. (o.') vs cu for the Heine-Animalu and high-P
pseudopotentials. All values are normalized to EJ&(0)

determined for the Heine-Animalu case. Th j./ l'
included for comparison.

eral than the present result would imply. ' One
also observes from Fig. 5 that (o.") tends to di-
verge at &&2 meV. However, a careful considera-
tion shows that such a divergence is fortuitous.
The faults are in the choice of model pseudopo-
tentials and the use of single orthogonal plane
waves in our calculation. It is found that the low-(o
results are very sensitive to the choice of pseudo-
potentials since the values of Vo (6, are those
reciprocal lattice vectors which satisfy

~

G~&2kz)
determines I.(e) in the low-w region. Gn the con-
trary, such sensitive dependences on the pseudopo-
tentials are not found in the amorphous case. For
example, we have repeated our calculation by using
the high-p pseudopotentlal which ls supposed to
be more realistic than the Heine-Animalu pseudo-
potential for crystalline Pb. The results are in-
cluded in Figs. 5 and 6. It can be seen that th
divergence is highly attenuated even at a & 1 meV.
Desp1te a lal'ge1' ovel all varlatlon U1 (Q" t'

couplings are almost equal for both l and I, modes.

tlon of lattice momentum in the conventional
sense. This range depends on the valence z as
can be seen in Fig. 4. For the high valence
materials (g ~ 3), it contributes to a rather appre-
ciable value of I.(0). The range of q over which
I (q) is constant then yields a linear dependence of
o."E(co) on e jn the low-energy region. We find
that the e dependence of n'E(ur) in this region is
sensitive to the degree of disorder. The result
is found to agree well with tunneling experiments.
%'e have attempted to deconvolute the phonon
spectrum E(e) from n'E(u&) using the quadratic
phonon-dispersion relation and also taking into
account the uncertainties in q for. a given v in the
amorphous phase. The results indicate the domi-
nance of the I/a term in (o.") in the low
There is no appreciable change in the first mo-
ment and first inverse moment of E(&u) due to
phase transformation despite an appreciable
smearing in the phonon density of states. The
jongitudinal modes are still distinctly separated
from the transverse modes. These observations
suggest than any first-principles calculation of
E(e) should take into account a more realistic
short-range order in the amorphous phase. The
present results should also be checked by perform-
ing neutron scattering experiments on amorphous
metals. We have correlated the absence of long-
range order and a general suppression of the
Hopfield-1VicMillan atomic parameter 1j (which
depends on the phonon spectrum) in amorphous
superconductor s. However, we have not succeeded
in deriving a rigorous relationship between &T,,

and ~ The effect of amorphousness on the
strong-coupling behavior is discussed. We have
al.so performed a similar calculation for crystal-
line Pb. It is found that (n') weights almost equally
on both / and t phonons. The feature in the low-+
region is observed to depend sensitively on the
choice of pseudopotentials.
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The first-order matrix element of the electron-
phonon interaction has been evaluated in Sec. IIA
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using a free-electron model. Here we estimate
the corrections due to the second-order term.
The electron-ion scattering ma.trix element cal-
culated to second order is given by"

&u lVlu) =&u'lvlu) + „,„„,, (A1)
&a lvla") &u"lvla)

where v = (1/N)Z, v(r —R, —u, ), u, is the atomic
displacement. Writing v(r R, ——u, ) as v(r —R)
+ u, .Vv in (A1) and retaining terms up to u„we
obtain

iE&. Rl

s

l slnKR
4~f~'P(B) i

—dft = real.
KR

Using the pseudopotential form factor and the
amorphous structure factor, one notices that
vs[A(K)]' '-0 at low K and it reaches a plateau
value of - 1 eV at intermediate K. At K~ 2k~, it
approaches zero as 1/R'. This has been checked
for several simple metals of interest. Thus, one
can use a square-well model of the form

&I'lvln") &
u" lvla) =PB„.„,QB„:,. K&2k

[g (ft)] 1/2 07 E

0, K&2k'.
(A4)

+ Q B„„QB„ I, , u, (k' —k")
m l

++BI,i, i~, QB»„, u (k" —k),

(A2)

where B, „i, = vi„e px[i(k' —k,") ~ 8,] and v, ,i

is the pseudopotential form factor.
The last two terms in (A2) corresponds to

higher -order "structura l" cor rec tion to the
electron-phonon matrix element. Taking a po-
sitional average on u;, these correction terms
give

Using (A4) in the correction term, one obtains

g &A, 'lvlu")&u" lvlu)
(k'/2m) (lP —k" ')

S~' Z',&g. (k' —k)
(@'/2m) (u' —u"')

where the dots stand for second-order non-phonon
terms and for terms higher in order than E',.
The factor (3m'/4k+') comes from the normalization
condition 2& ~lk")&0"

l
= 1. The summation in (A5)

ca,n be ea,sily shown to be

QBa"am 2Ba'a" i&u) ' (k' —k)
m

3m' 2Z'm' 47 2~p Qtf 2d gll @~2
Ap

, k —k" E

since

A(lf)=-'(Z e ' )

= v„,„-[A(lT' —T"l)]"'

xv, .„-t&(lk" -Tl)] "&R (k' -T),
Hence, the ratio of second-order term to first-
order term for electron-phonon interaction is- FJFz. With F,- 1 eV and F~ 10 eV for-simple
metals, one sees that the correction term is an
order of magnitude less than the original term
we derived in Sec. IIA.
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