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Study of melting in two dimensions
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Techniques developed in studies of the two-dimensional planar model of magnetism are applied to the
Kosterlitz-Thouless dislocation model of melting in two dimensions. Duality transformations relate the
dislocation problem to Hamiltonians with short-ranged interactions amenable to a Migdal-Kadanoff recursion-
relation analysis. In an approximation which neglects an angular dependence in the decay of correlations, the

melting problem is equivalent to the statistical mechanics of two interpenetrating superfluids with coupled
phases. The coupling between the phases is a marginal operator which (together with other marginal

couplings) destroys the universality of critical exponents at the melting temperature T . Indeed melting

seems to bear roughly the same relation to the planar model as the Baxter model does to the Ising model. A
recursion scheme similar to that developed by Kosterlitz for the planar model is used to study the correlation

length, specific heat, and Burger s-vector correlations near melting. For melting of a triangular lattice, the
correlation length diverges, t'+ —exp(C(T/T —1) "], as T approaches T from above. There is an

analogous essential singularity in the specific heat.

I. INTRODUCTION

The statistical mechanics of systems with a
continuous symmetry in two dimensions is espe-
cially peculiar. High-temperature series expan-
sions for classical spins with a continuous ro-
tational symmetry' ' suggest a finite-temperature
phase transition, despite rigorous proofs of the
absence of conventional long-range order' ' in
such systems. Spin-wave calculations by Wegner'
and Berezinskii' indicate the existence, for n =2
component spins, of a bizarre low-temperature
phase in which correlations decay as power laws
with temperature-dependent exponents. Kane
and Kadanoff" have arrived at similar conclu-
sions for two-dimensional superfluids.

A two-dimensional solid, where the importa, nt
symmetry is translational rather than rotational,
has some similarity to superfluids a,nd pla, nar
(or two-component) models of magnetism in d =2.
Despite arguments due to Peierls" and Landau"
(and a rigorous proof by Mermin") that ordinary
long-range order cannot exist in such systems,
Ja.nocovici" has shown that a theory of harmonic
phonons gives rise to a low-temperature "crys-
talline" phase with 5-function Bragg peaks in the
structure factor replaced by temperature-dep-
endent power-law singularities.

Kosterlitz and Thouless" have proposed that
transitions out of such anomalous low-temperature
phases are driven by the dissociation of bound
pairs of singularities. In a lattice of two-com-
ponent spins, bound vortex-antivortex pairs
populate a low-temperature phase, coexisting
with spin-wave excitations. The dissociation
of these pairs above a critical temperature T,
gives rise to an exponential decay of correlations

at high temperatures. Bound dislocation pairs
(with equal and opposite Burger's vectors) are
presumed to play a similar role in two-dimension-
al crystals, "coexisting with phonons at low tempera-
tures. Although Berezinskii" has advanced similar
ideas for spin systems and crystals, he failed to dis-
tinguish between n = 2 and n = 3 component spins.
Recent work on phase transitions in 2+& dimen-
sions" "strongly suggests that spin models with
n & 3 components have no finite-temperature phase
transition in d =2. According to reports by Elgin
and Qoodstein, "Feynman has also viewed the
problem of melting in two dimensions in terms
of the dissociation of dislocation pairs. The
predictions of a harmonic theory of phonons have
been worked out in detail by Imry and Qunther, "
who also discuss effects due to the finite size of
the sample.

Kosterlitz, "and subsequently Jose et al. ,"
have produced quantitative model calculations
which make the vortex pair picture of magnetic
phase transitions in two dimensions concrete.
Duality transformations and an approximate
recursion-relation analysis were used in Ref. 24
to argue that the detailed predictions that Koster-
litz obtained for a particular model were in fact
univet'sal for d = 2 magnets with an underlying
XY symmetry. The theories of Refs. 23 and 24
predict a universal jump in the superfluid density
of two-dimensional superfluids, "which should
ultimately allow a precision experimental test
of their validity.

In this paper, we undertake a detailed studyof
melting in two dimensions, based on the Koster-
litz- Thouless ideas" and building on calculational
techniques developed by Kosterlitz" and by Jose
et al." Vfe first relate an effective Hamiltonian
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with logarithmically interacting dislocations to
a statistical-mechanical problem with short-ranged
interactions, in order to better study the univer-
sality of this description of interacting singular-
ities. The resulting local problem is easily treated
using a bond-moving recursion-relation scheme
developed by Migdalis and by Kadanoff. In an
approximation which neglects an angular
dependence in the decay of correlations, we find
that the melting problem is equivalent to the
statistical mechanics of two interpenetrating
superfluids with coupled phases. The Hamiltonians
we have studied appear to relax after several
iterations of a renormalization-group transfor-
mation to a surface of fixed points parametrized
by an effective temperature and the strength of
the coupling between the superfluids. The fixed-
point Hamiltonians obtained in this way confirm the
universality of an effective Hamiltonian with log- .

arithmically interacting dislocations. This local
representation of the melting problem can be ex-
ploited to show analytically the existence of several
marginal operators, and the irrelevancy of dis-
location excitations with large Burger's vectors.

Armed with an understanding of the stability
(in the sense of renormalization theory) of this
simple model of melting, we carry out a detailed
scaling analysis of the effect of dislocation pairs
similar to that undertaken by Kosterlitz" and by
Jose et al."for planar spins. The results are
qualitatively similar to those for magnetic sys-
tems, as has been suggested previously by Koster-
litz and Thouless. " In particular, we find an
exponentially diverging correlation length above
and below T„and an essential singularity in the
specific heat at T . In contrast to the results for
two-component magnets, the presence of several
marginal operators destroys the universality
of the critical behavior at the melting temperature.
In fact, melting bears qualitatively the same re-
lation to the planar model as the Baxter model
does to the Ising model in two dimensions. Below
T, the long-wavelength properties of the crystal
can be described entirely in terms of a harmonic
Hamiltonian with no dislocations, provided one
uses renormalized Lame coefficients p~ and X„.
The renormalization of p,„and X~ near melting,
as well as the effect of weak periodic substrate
potential on the results presented here, will be
discussed in a subsequent publication. "

The organization of this paper is as follows:
In Sec. II, we discuss an effective Hamiltonian
for dislocations. Various duality transformations
which allow the global universality of this de-
scription to be studied analytically and through
the use of approximate recursion relations are
discussed in Sec. III. In Sec. IV, the scaling

equations for dislocations are calculated and the
properties of crystal near its melting temper-
ature are determined. Various singularities
which occur at the melting transition are dis-
cussed in Sec. V. Issues which must be resolved
before the Kosterlitz-Thouless model of dis-
location-mediated melting can be applied to real
physical systems (such as absorbed monolayer
films) are discussed in Sec. VI.

II. HARMONIC PHONONS AND DISLOCATION

HAMILTONIAN

One conclusion of this paper is that a simple
theory of harmonic phonons such as that discussed
by Jancovici' becomes an arbitrarily accurate
description of the long-wavelength properties of
two-dimensional crystals below the melting
temperature. " The harmonic prediction for the
structure factor near a Bragg point, for example,
is correct provided one uses elas tic constants
normalized by the effect of dislocations. " In this
section, we discuss a continuum description of
harmonic phonons, modified by the presence of
dislocation singularities in the phonon field, a
description due originally to Kosterlitz and Thou-

Consider the reduced Hamiltonian which arises
in standard treatments of continuum elasticity
theory, '

(2.1)

where p, and & are the usual elastic constants
divided by k~T and multiplied by the squared
lattice spacing ao of the underlying lattice,

P,-=ija20/ks7', X = Xa', /kaT', (2.2)

and u;&(r) is the stra, in tensor corresponding to
a displacement field u( r),

1 su;(r) su, (r) (2.3)

Assuming that the medium is subject to periodic
boundary conditions, it is often convenient to
integrate (2.1) by parts and obtain an equivalent
description in terms of the displacements,

2

K= ——,[p,(%u)'p(p, +7)(V ~ u)']. (2.4)
2 a',

Equilibrium averages can be calculated with (2.4)
by integrating over all configurations of the dis-
placement field u(r), provided we imposed a
short-distance cutoff which simulates the effect
of an QQ(3erlging . ':"..c-.

Kosterjitz and ". t'. i:.ss"'" have emphasized
that the translatio;. . ~d rotational symmetries
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u, ,(r) =P,,(r)+u'„"'(r), (2.6)

where Q,z(r) —= 2(8;Q&+8&@,) is the stress tensor
associated with a set of smoothly varying dis-
placements p(r), and u',.z'~(r) is the contribution
from a collection of dislocation singularities
represented by the field b(r). According to Refs.
31 and 32, u',."(r) can be conveniently expressed
in terms of the singular part of the stress tensor
P;g(r),

of such a lattice can give rise to important sin-
gularities in the displacement field. Dislocations
in particular, as opoosed to higher-energy ex-
citations such as disclinations, are assumed to
be responsible for melting in two dimensions. A
dislocation at the point r can be characterized by
the amount by which a contour taken around r
fails to close,

jd u =a,b(r), (2.6)

where b(r) =n(r}e, +m(r)e, is the (dimensionless)
Burger's vector'"3' of the singularity. Here, n(r)
and m(r) are integers, a, is the lattice spacing,
anda, e2are the basis vectors of the underlying
Bravais lattice.

We shall be primarily interested in melting of
triangular lattices, which are the most close-
packed periodic structures in two dimensions.
Both triangular and hexagonal lattices can be
described in the harmonic approximation by an
isotropic Hamiltonian of the form (2.1)." The
Burger's vectors of dislocations on a hexagonal
lattice with spacing a, form a triangular array
with spacing M&a, . Provided disclinations can
be neglected, we expect that melting of a hexagonal
crystal will be described by the theory appropriate
for a triangular lattice. In addition to a triangular
array, we shall also consider melting of a square
lattice, described in the harmonic approximation
by (2.1). Although this model is somewhat ar-
tificial, since in reality three elastic constants
are necessary to describe a square-lattice crys-
tal, "its treatment is somewhat simpler than for
a triangular array.

To display explicitly the effect of dislocations
on (2.1), we write

P~~"=«*a«yisa 8iX(r}.
The function }t(r) obeys the equation'""

(2.&)

2 I
&4}t(x)=Kao, «,.& [b&(r)5(r —r')],

whose solution may be written
2

y (r ) = a, , b, ( r') G, ( r —r'),

(2.9)

(2.10)

where

K =4p(p, +X)/(2 p+X) . (2.11)

The quantity G&(r —r'), which is closely related
to the Green's function of (2.9), satisfies the
periodic boundary conditions, and is given ap-
proximately by

Q, (r)= ——«,&r& ln —~+C
K
4w " ' a) (2.i2)

K =Ko+Xg) ~

where

(2.1&)

2y
Ro = —

2 [p, ( V p)'+ (P, +x)( V ~ p)'] (2.14)

is the purely harmonic contribution, and the effect
of dislocations is given by

XD
1 d'r $8')((r) )'

pksT a (8'A)8 Yy)'

We can evaluate KD by first integrating by parts,

for r large and far from the boundaries. The
number a is a short-distance cutoff or "core
diameter" for the dislocation, while C is a positive
constant whose value depends on the lattice struc-
ture. The core diameter a need not be the same
as the lattice spacing ao.

On inserting (2.6) into (2.1), and making use of
(2.V) and (2.&}, the Hamiltonian breaks into two
parts,

u';,"'= (1/2 p )P';,j~' —[X/4 p(X+ p)] P~~"' Gay, (2.V) (2.16)

which itself may be written in terms of scalar
function y(~)," and by then making use of (2.9), (2.10), and (2.12)

to obtain

&Py'I;, ~, l r- r'l b(r) ~ (r —r') b(r') ~ (r- r')V., =-, =, (-r) b(r }in —--——--, , +b(r) ~ b(r)(C+1),«k~T g2, .: -, „&' '-.
' ' '

a l~-~'I2

(2.iv}
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where we have excluded configurations in which
two dislocations approach each other at distances
closer than the core diameter a. In deriving
(2.17), we have made use of the identity, valid
for any R, b(r), and b(r'),

b, (r)(-', R b (r')E„„R„+b,(r)R, b (r')R

= b, (r) b, (r') R'. (2.i8)

Equation (2.1'I) gives the energy for only those
complexions of Burger's vectors with

condition. This constraint can be used to simplify
a portion of (2.1V):

(Cr() ' f — b(r) ~ b(r')
8mk~T „-;,, &, a a

xff, , b(r) b(r')

d22 b(r)=0. (2.i9)

There is an infinite energy (in the limit of infinite
volume), associated with configurations that do
not satisfy this vector "charge conservation"

Eu' d'g= —(C +1),b'(2') . (2.20)
8n'k~T a'

In its final form, the Hamiltonian for dislocations
is thus

K d2r dV', Ir- r'I b(r) ~ (r- r'}b(r') ~ (r- r')
n +in(r —r I a

(2.21)

where

K=Ka20/ksT, y = exp[-(C + 1)K/Sv] . (2.22)

III. DUALITY TRANSFORMATIONS AND APPROXIMATE

RECURSION RELATIONS

A. Angular terms in the dislocation Hamiltonian

Note that y becomes exponentially small as T -0.
To calculate the average of' any quantity in the

ensemble specified by (2.13), we must integrate
over smoothly varying displacements T()(r) and over
distinct complexions of Burger's vectors specified
by b(r}. At low temperatures, we expect that
b(r) will be zero nearly everywhere, and equal
to ~e„+e„and ~e, +e, at isolated points. Al-
though it appears from (2.13), (2.14), and (2.21)
that the harmonic excita, tions in R, are decoupled
from the dislocations in KD, most correlation
functions depend on both the phonon and dislocation
degrees of freedom. The effect of the dislocation
field on such correh, tion functions can be absorbed
into renormalizations of the elastic constants p,

and X which enter (2.14)." fn the present paper,
however, we will concentrate on the statistical
mechanics associated with the dislocation degrees
of freedom.

I' (r) =(b(0) b(r))

2y 2(~/a)-E/4((

&Iexp [-(K/4v) cos'8]

+ exp[- (I7/4w ) sin'8], "+0 (y') (3.i)

when the allowed Burger's vectors form a square
lattice, and

Provided the dot product or angular terms in
(2.21) can be neglected, the dislocation Ham-
iltonian X~ is just a vector generalization of the
Coulomb gas which arises in studies of magnets
and superfluids. "'"" To see the effect of the
angular part of X~, consider the correlations
between two Burger's vectors at large separa, tions
r. To leading order y, we have

& (r) = -2y'(2'/a) /" (exp [-(17/4v) cos'8] + exp[-(K/4v) cos'(8 + 2v/3)]

+ exp[-(K/4&) cos'(8 —2v/3)D+0(y') (3.2)

when the excitations form a triangular lattice.
The angle 8 entering (3.1) and (3.2) is the angle
between ey or e2 and the separation vector r. Vfe
expect that (3.1) and (3.2) provide an accurate

representation of the decay at low temperatures,
since y becomes exponentially small with de-
creasing T. As will become evident in Sec. IV,
the large-4' behavior of I's(4') and of related cor-
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SQUARE LATTICE

),Y

TRIANGULAR LATTICE

(a) (b)

FIG. 1. Contours of constant correlation between
Burger's vectors for melting of (a) square and (b)
triangular lattices. The correlation 1& (r) is nor-
malized to unity at nearest-neighbor separations, and
the contours shown satisfy the condition I z (r) =- 0.0002.
The outer "surfaces" of constant correlation are for
K=16m, which is very close to the melting temperature.
The inner "surfaces" correspond to a lower tempera-
ture, K=32~.

of nearest-neighbor vector spins studied by
Fisher and Aharony. " A second order in E

(e =4 —d) calculation" eventually showed that
such perturbations are irrelevant to critical
behavior in magnets.

Because a detailed treatment of the angular
part of (2.21) presents technical difficulties near
the melting temperature, we shall attempt to
approximate its effect by replacing it by an angular
average. This amounts to substituting circles
for the contours in Fig. 1. The vector Coulomb
problem which remains is still rather complicated,
and in fact exhibits the qualitative behavior one
expects for a dislocation-mediated melting transi-
tion. We indicate how the complete dislocation
Hamiltonian (2.21) could be studied using a Migdal-
Kadanoff recursion scheme in Appendix A.

B. Local formulation of the dislocation problem

relations between Burger's vectors controls the
dislocation unbinding at the melting temperature.

Surfaces of constant correlation for the square
and triangular lattices are displayed in Fig. 1.
Although the angular part of K~ is numerically
negligible compared to the logarithm at large
r, it does give rise to a characteristic angular
dependence of I's(r) that persists indefinitely.
Apparently, correlations "remember" the ori-
entation of the underlying lattice, which is con-
s is tent with Me rmin's obse rvation" that two-
dimensional harmonic solids display long-range
"orientational order. " A measure of the anisot-
ropy in such correlations is the ratio of the max-
imum to the minimum radius vector on a surface
of constant correlation. For a square lattice,
this ratio varies monotonically from 1.65 at low
tempera, tures to about 1.4 near melting (as we
shall see, melting occurs when K= 16n'). For a
triangular la, ttice, the variation is from 1.3 to
1.1.

In Appendix A, we demonstrate that the angular
part of Kz represents, in the jargon of renor-
malization theory, a marginal perturbation to the
Coulomb gas obtained by neglecting it. Marginal
operators which lead to an angular dependence in
the falloff of correlations often arise in studies
of critical phenomena. For example, one expects
that an Ising model with different nearest-neighbor
couplings in the x, y, and a directions will have
ellipsoidal surfaces of constant correlation. '4

Although the operator corresponding to this spatial
anisotropy is marginal, it does not change the
Ising-model critical exponents. The angular terms
in K~ also resemble a "pseudodipolar"" coupling

Motivated by the discussion in Sec. IIIB, we
consider a simplified version of K~ with only a
Coulomb interaction between vortices, namely,

Kc= 2, br ~ b r'
87t' 0 )" i )~ 8

x ln(
l

r —r'
l
/s)

+ln(y), b'(r). (3.3)

The parameter y now includes a contribution from
averaging the angular part of (2.21) over orien-
tations of the separation vector r —r' in the most
likely excited state at low temperatures —two
dislocations at r a.nd r' with b( r) = —b( r'). Esti-
mating y in this way, we find

y = exp [—(C + —,') K/8w], (3.4)

where the & in the exponent comes from the an-
gular average of cos'8. Of course, one can ima, g-
ine other ways of eliminating the angular de-
pendence of KD. The physics at the melting tran-
sition turns out to be independent of precise value
of y, however.

Jose et a/. '4 have shown that a scalar Coulomb
gas similar to (3.3) arises from a series of duality
transformations applied to two-component spins
on a lattice. At an intermediate stage in this an-
alysis, one obtains a local formula, tion of the
Coulomb problem which allows an immediate
assessment of the stability of this description
to small perturbations. We have found it con-
venient to work backwards from (3.3), and obtain
the corresponding local description of melting.

Let Z, be the partition function obtained fro~
(3.3) by integrating over Burger's vectors,
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(3.5)

~here the prime restricts the sum to configura-

tions consistent with vector charge neutrality.
The statistical mechanics associated with (3.6)
is, in fact, closely related to that determined by
the partition sum

(20 (2O

exp~ —,g ([P( r) —P( r')]'+[q( r) —q(r')]' —2x [p( r) —p( r')]
[&r&r)= re] &((&)-')=- ]ee~ +(I + ) &r, 2')

(3.6)x [&I( r) -&I( r')]]

where P(r) and q(r) are integer-valued variables defined on the sites r of a square lattice, and x is the
inner product of the basis vectors of the Burger's lattice,

X =e(' e2. (3.7)

The square lattice on which we have placed the p's and q's has absolutely no relation to the lattice of
allowed Burger's vectors. It merely provides an explicit ultraviolet cutoff, and fits naturally into the
duality arguments and recursion-relation analysis of Sec. III C. The summation over r and r in (3.6)
is restricted to nearest-neighbor pairs, so this description is indeed a local one.

To see that S', is really Z, in disguise, we apply the Poisson summation formula" to the sums over P
and q,

4m2
&&(exp — Q g[P( r) —P( r')]'+ [Q ( r) —Q ( r')]'

K(1 —x')

+2r(g [m(r)P(r) +e(r)Q( r)]), (3.8)

and then diagonalize the quadratic form in I' and
Q. On defining

b(r) =m(r) e, +n(r) e, . (3.10b)

P( r) -xQ( r) P(r) +xQ( r)

we find that Eq. (3.8) can be rewritten rather
compactly,

(3.9)

Carrying out the Gaussian integrations over
T()( r), we are led immediately to a quantity pro-
portional to the vector Coulomb-gas partition
sum (3.6) (see Appendix A), with, however,

y ~ e K/1

+2vi Q b( r) ~ T()(r) ~, (3.10a)
r

where JS (t) means a functional integral over
T()(r), and

replacing Eq. (3.4). The charge-conservation
condition arises as a byproduct of the functional
integration, and we must make use of an approxi-
mate long-wavelength form of the Green's func-
tion for a square lattice. This local represen-
tation of the dislocation partition function becomes
especially useful when we consider finally a gen-
eralization of (3.10), namely,

r2
Z,'= Z f rr2 exp — g [$(r) —2(r')] e Q[) r(r)+22rei5(r) ~ j(r)]I;

{b(r)) K (r~r' )
(3.12)
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so that. (3.11)becomes

y ~y e K/16 (s.is)
'The new parameter lnyp can be interpreted as a
core energy associated with each dislocation.
Even if lny, =0 initially, a nonzero value of y,
is generated after one iteration of the renormaliza-
tion transformation described in Sec. IV. A.l-
though y, could be adjusted to force (3.13}to agree

with (3.4), the renormalization equations con-
structed in Sec. IV actually drive yp to zero below
the melting temperature. Dislocations then occur
with small probability, and their effect on the
Gaussian or "harmonic" part of (3.12) can be
treated perturbatively. In this limit, we can carry
out the summations over Burger's vectors in
(3.12). For a triangular lattice, we find

g exp [ln(y )b'(r)+2mzb(r) 'p(r)] =1+2y, cos(2ve, ~ p)+2y, cos(2ve, Q)+2y, cos(2ve, ~ $)+0(y,')
b(r)

= exp(2yo[cos(2me, P)+cos(2me~ Q) +cos(2me, P)]), (3.14)

,2y, ggcos[2ve. y(r)]

+ cos [2v e~ ~ P( r)]

+cos[2ve, (f&(r)]} ~.
i

(3.16)

In Appendix B, we gauge the importance of the
periodic part of (3.14) by examining its auto-
correlation in the limit y, = o. These correlations
decay as power laws at large distances, and in-
dicate that the renormalization-group eigenvalue
Of yo ls

~, =2 K/S~. - (s.iv)
f

An identical result holds for all Bravais lattices
with

~
e,

~

=
~
e,

~

and -1&e, e, & l. According to
renormalization theory, ' dislocations grow in
importance with repeated iterations of a renor-
malization-group transformation whenever ~, & 0,
but fade into insignificance for X &0. Conse-

Pp
quently, we expect that dislocations will be un-
important at low temperatures, but that they will
ultimately cause a transition into some new kind
of behavior for

K~16m. (s.ia)

Dislocations with larger Burger's vectors may

where

e, =(1,0), e~=(-2, —,'&3), e, (-2, —2v3),

(3.15)

with a similar result for other lattices. Hence,
(3.12) is equivalent for a triangular lattice of
Burger's vectors and for smally, to a vector
version of a sine-Gordon" partition sum, namely,

m2
Z', = Q exp—

K

C. Duality and bond moving

If the angular part of KD can indeed be ignored,
and if the Burger's excitations form a square
lattice, the dislocation partition sum Z, factors
into the partition functions of two independent
Coulomb gases. The local formulation (3.6) of
melting also decouples in this limit, although
a nontrivial coupling is apparently introduced
whenever e, ~ e2W o. Since a scalar Coulomb gas
is supposed to be in the same universality class
as the two-dimensional planar model, '"'~" one
might expect that S', is in some sense equivalent
to two coupled planar models.

An approximate equivalence of melting to two
coupled pla, nar models or "superfluids" is also
suggested by the definition (2.5) of the Burger's
vector of a dislocation. The form of b(r) makes
it tempting to write

u(r) = [a08,(r)/2m]e, + [a08,(r}/2v] e, , (3.19)

where 8,(r) and 8,(r) are the phases associated
with complex wave functions |jI,(r) and g, (r). In-
deed, deGennes and McMillan have proceeded in
a similar fashion to draw a detailed analogy be-
tween smectic-A liquid crystals and superconduc-
tors. '4' Although the coupling between space and
the displacement field present in (2.4) complicates
the analysis in the present case, it is not hard to
find models of this kind which are in fact closely
related to (3.6).

Consider, for example, two such "superfluids"
or XY models embedded in a square lattice of

also be represented as periodic perturbations to
the Gaussian part of (3.12), but with a period that
is shorter than that of the terms exhibited in
(3.14). A calculation of the eigenvalue analogous
to (3.17) shows that these excitations become rel-
evant only at temperatures much higher than the
temperature at which the lowest-lying dislocations
become important.
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sites R, with a reduced Hamiltonian

V(8,(R) —8,(R'), 8, (R) —8,(i~')),

where

(R) = ei()y( R)
y (R) el e2(R) (3.22b)

&R.R'&

(3.20)

where V(8„8,) is periodic function of its argu-
ments:

V( 8, + 2)(e), 8, + 2vn) = V(8„8,),
vs=0, yI, . . . , n=0, +I, . . . ,

(3.21)

and the summation is restricted to nearest-neigh-
bor lattice sites. A potential function V(8„82)
which turns out to correspond rather closely to
melting is

V(8,(R) —8,(R'), 8, (R) —8,(R'))

= ( J/ksT) (Re[ ),(R)g,*(R') + g, (R)P,*(R')]

+ 2gim[|(I, (R)g(R')]
x Im [g, (R)g,*(R')]], (3.22a)

There is a "current-current" coupling between

g, and g, . We allow no explicit dependence on the
magnitudes of g, (R) and $,(R) in X„which is con-
sistent with recent studies of magnetism and
superfluidity in 2+a dimensions. " ' This work
suggests that fluctuations in the magnitude of the
order parameter are unimportant at all tempera-
tures below T, for n = 2 component spins and
superfluids. 4'

To see that (3.17) is related to (3.6), one can
proceed exactly as in Sec. II 8 of Ref. 24 to carry
out a series of duality transformations or X,.
The result is that the partition sum,

(3. )0» so 2w

can be reexpressed in terms of the I ourier trans-
orm e~ ~' of e" i'62 by

z, =

(O(r)= - j f(r(r)=-
exp g V( P(r) —P(r'), q(r) —q(r')) (3.24)

where

de "
d82e~(I .~)

0 2m
expV[8 8 )]

0 27r l~ 2

by 90' and repeating the procedure. Alternatively,
one can obtain essentially the same recursion
formulas by first moving both x and y bonds at
once, as suggested by Fig. 2(b). ' Recursion

x exp[-i 8,P - i 8,q],

(3.25)
4E +

I~~rv I

& ~nnn I

and P(r) and q(r) are integer-valued variables oc-
cupying the sites r of the lattice dual to the sites
R. Evidently, Z, will be identical to a vector
Coulomb-gas partition function Z,' provided
V(P, q) takes the form

V(P, q) =-[47('/I7(1 —x')](P'+q' —2xpq) (3.26)

for some EY and x. A rough calculation shows that
the Fourier transform of (3.22a) assumes this
form at low temperatures, with J/k~T = 17(l —x')/
8m' and q=x.

The connection between two coupled superfluids
and melting, as well as the global universality of
the description (3.6), can be explored 'further using
an approximate renormalization-group recursion
scheme due to Migdal. " According to Kadanoff's
reformulation" of this approach, one can con-
struct approximate recursion relations by first
moving nearest-neighbor interactions as shown in
Fig. 2(a), and then integrating over a "one dimen-
sional" subset of the degrees of freedom. The
transformation is completed by rotating the lattice

(a)

AL i E 4 L

(b)
FIG. 2. Schematic representation of Migdal's approxi-

mate renormalization-group procedure, as reformu-
lated by Kadanoff. In Fig. 2(a), vertic al bonds are first
moved sideways to create isolated "one-dimensional"
degrees of freedom marked by a ~. After integrating
over these variables, one obtains a rectangular lattice
with half as many degrees of freedom. The transforma-
tion is completed by turning the lattice on its side and
repeating the procedure. Figure 2(b) shows a one-step
version of this transformation which leads to essentially
the same recursion relation. Both horizontal and ver-
tic al bonds are first moved, followed by a "decimation"
of the degrees of freedom marked by an &&.
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relations are easily constructed in this fashion
from (3.19), or by performing partial traces over
the dual degree's of freedom displayed in (3.21).
Crude as it is, this procedure is known to.give
remarkably good results in situations where
fluctuations have destroyed conventional long-
range order. When applied to the two-dimensional
planar model, "'"this approach gives results al-
most indistinguishable from the line of critical
points with continuously variable exponents (cor-
responding to a line of fixed points) present in
Kosterlitz' more exact analysis. "

Working in the space of angular variables, using
the scheme summarized in Fig. 2(b), we find that
recursion relations for the Fourier components of
the potential may be written

OO oOe'"'=I g g expv(P„q, )
p = oo q = «aol

2

xexpv(P —Pz~ q —qg)

(3.27a)
Carrying out the Migdal-Kadanoff procedure in the
dual space of integer-valued variables, one ob-
tains

e"'" ' = g g exp2V(P„q, )
p = oo q —-oe

xexp2V(P Pz~ q —qz) ~—

(3.27b)

Although (3.27a) and (3.27b) lead to qualitatively
similar results, me have worked primarily with
Eq. (3.27b).

A numerical analysis of (3.27b) with a variety of
initial coupling functions V(8„8,) reveals that such
couplings rapidly collapse (in practice, after four
or five iterations of the transformation) to a two-
parameter family of functions with Fourier com-
ponents of the form (3.26). This rapid collapse
strongly suggests that the partition function Z,
for tmo coupled superfluids mill display singulari-
ties identical to those associated with the vector
Coulomb-gas partition sum Z,'.

'%IIIte have explored in some detail the action of
(3.27b) on initial couplings of the form (3.26).
There is an apparent surface of fixed points
bounded by a line K '(x), which we associate with
a locus of melting transitions (see Fig. 3). The
lom-temperature shaded region of fixed points in
this figure presumably corresponds to a solid
phase. Fixed point functions V (8„8,) in this
region for a square (x=0) and triangular (x = —,')
lattice of excitations are shown in Fig. 4. Hamil-
tonians in the high-temperature or "fluid" region
of Fig. 3 iterate rapidly tomard an infinite-tem-
perature fixed point where all Fourier components
except V(0, 0) are zero. As was the case for the

X

T / LI QU I D

I i +Iz
0.5 1671' K

FIG. 3. Phase diagram for melting obtained from the
Migdg procedure as a function of the temperaturelike
variabie 16K"~ and x=e&.e2, the dot product of the
basis vectors of the Bravais crystalline lattice. The
Hamiltonians in the shaded region are attracted to an

apparent surface of fixed points. Although the analysis
of Sec. IV suggests that melting is indeed described by
such a fixed surface, the approximate Migdal recursion
relations display an exponentially small (-e +) drift
toward higher temperatures even in the shaded region.
We regard this drift as an artifact of the approxima-
tion, and estimate a locus of melting temperatures
K (x) separating the fluid and solid phases by the con-
dition that thy fractional change of e" ~ ' in one itera-
tion equals 0.005. The melting temperatures K~ (x)
obtained in this way remains approximately constant as
x varies from zero (square lattice) to 2 (triangular
lattice), and then begins to decrease. The behavior for
x ~ 0.7 was not investigated in detail.

two-dimensional planar model, ' a more careful
analysis of the Migdal-Kadanoff transformation
shows that the fixed points in Fig. 3 are only ap-
parent —at any finite E7 '&0, there is an exponen-
tially small (in 1/T) drift of Hamiltonians toward

SQUARE LATTICE

1.0—
TR I AN G ULA 8 LATT I C E

1,0

82/2 '

0.5 0.5

0.5 1.0 0.5 1.0

FIG. 4. Fixed-point potentials. V~(0» 0 2) which
arise from a representation of melting in terms of two
coupled superfluids for (a) square and (b) triangular
lattices. There are minima at the four corners of the
squares in both figures, and saddle points along the four
sides. Figure 4(a) has a maximum at the center, while
Fig. 4{b) has two maxima separated by a saddle point.
All fixed-point potentials along the lines x= 0 and x
= 2 in Fig. 3 have the shapes shown in Figs 4(a) and 4(b),
respectively.
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high temperatures with repeated iterations of the
transformation. We regard this (virtually in-
detectable) drift as an artifact of the approximation
procedure, and shall argue in Sec. IV that melting
in two dimensions is in fact characterized by a
two-dimensional "surface" of fixed points.

The "fixed surface" which is swept out as x
varies from zero to unity in Fig. 3 is reminiscent
of the fixed line (with continuously variable
critical exponents) generated by varying the four-
spin coupling in the Kadanoff-Kegner reformula-
tion ' of the Baxter model. ' The potential (3.18a)
is written in a way which reinforces this analogy.
Taking over a trick used in Ref. 46 we can show
analytically that x is a marginal operator at
every point along the line of fixed points present
for x=O:

Consider the reduced Hamiltonian associated
with (3.6),

where

S

K(1 —x )
(3.28)

K~ = —[4v'/K(1 —x')] Q [P(r) —P(r')]',

The summation in (3.27) runs over unit vectors
5, = (1,0) and 5, = (0, 1) connecting nearest-neigh-
bor lattice sites. Accroding to a criterion pro-
posed by Kadanoff, ~' the importance of 0 (r) can
be gauged by examining a correlation function
evaluated at x=0 (see Appendix B), namely,

C(r, —r, ) = (O (r,) O (r, ))a, x . (3

Substituting (3.30) into (3.31), we can estimate
C(r, —r, ) at large (r, —r, ),

x [p(r, ) —P(rp+ 5'}])

g2

6, 6

x (p(r, )p(r, )&~ (3.32)

Provided dislocations are sufficiently dilute, we

(3.29a)

4 2

[q(r) —q(r')]', (3.29b)

and we want to assess the importance of the den-
sity

O(r) =P [P(r) —P(r+ 5)] [q(r}—q(r+ 5)]. (3.30)

can determine (P(r,}p(r,))a simply by integrating
rather than summing over the variables p(r) .At
large (r —r'~, we find

(P(r, )P(r, })-1n
~
r, —r, ], (3.33)

so that

e(r, —r, ) -1/~ r, —r, (' (3.34)

as ~r, —r, ~- ~ independent of the value of K. Fol-
lowing the discussion in Appendix B, we conclude
that O(r) is a marginal operator for all values of
K ' less than f7 '(0), as suggested by the apparent
surface of fixed points displayed in Fig. 3.

IV. SCALING EQUATIONS

A. Scaling equations for the square lattice

Consider the correlation functions

I'~(r», K, y) —= {b(r,) b(r2))c, (4.1)

where r» ——
~
r, —ra ~, and the average is evaluated

in the vector Coulomb-gas ensemble (3.3). If
the allowed Burger's vectors form a square lat-
tice, K, breaks into two decoupled scalar Coulomb
gases, and we can write

I'~(r„,K, yg = 21'„(r», K, y)

(4.2)-=2(rn (r,)m (r,)),c,
where m(~) = 0, +I, a2, . . . , and the average is
evaluated in a scalar Coulomb (sC) gas ensemble
with probability proportional to e~c,

In principle, corrections to results such as (3.1)
and (3.2) for correlations between Burger's vectors
canbe determined by perturbation theory iny. Such
aperturbation series breaks down, however, at suf-
ficiently high temperatures. Difficulties in the per-
turbative calculation of correlations can be over-
come with a renormalization procedure similar to
that developledby Kosterlitz" and by Josb t.t al.~. As
a byproduct of the calculations, we obtain as a
perturbation series in y recursion relations or
"scaling equations" for melting which complement
the nonperturbative, but approximate, renormal-
ization-group equations studied in Sec. QI. The
calculations will be carried out neglecting the
angular factors discussed in Sec. IDA. As we
shall see, the probability y of a dislocation pair
excitation is driven to zero below T, so that a
purely harmonic theory of phonons with no dis-
locations should become arbitrarily accurate at
long wavelengths.
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f ". -(a-(n
lr-x' l&a

x ln(
I
r —r'

I
/a)

de+ln(y), m'(r) . (4 3)

model, ~*" it is interesting to see how they arise
from a, consideration of the correlation
function (4.2). The same calculational procedure
is applied to the more-interesting problem of a
triangular lattice of Burger's vectors in Sec. gt B.

The pertur'bation expansion in y for I'„(r», K, y)
takes the form

In evaluating averages, we sum only over those
complexions of integers which satisfy the charge-
conservation condition J d'rm(r) =0. Although
the scaling equations for a scalar Coulomb gas
are quite well known from studies of the XF model

F„(r»,K, y) =Zsc[I'2(r», K)y + I'4(~,2, K)y

+ o(y ')1,

where

F,(r», K) = —2(r»/a) (4.5a)

I'~(&», K) = -2I&
" —,',. ' — ' exp[ ng(r,——r,)+ ng(r, —x„)+ ng(r, —r,) —ng(r, —x,)],

(4.5 )

and where we have introduced the abbreviations + I"i + r)

n =K/4. , g(r)=in( IrI/a) . (4.6)

Ir I &a
(4.V)

The quantities I', (r», K) and I'4(r», K) come from
the configurations of m(r) excitations shown in
Figs. 5(a) and 5(b). Two excitations with m(r) = +1
are anchored at r, and r„while we integrate
freely over the excitations at r, and r~ in Fig. 5(b)
As suggested by this figure, we expect that the
renormalization of F„(x,K, y) will be dominated
by tightly-bound pairs of excitations. Another
tightly bound configuration associated with
(4.5b), together with a complexion that cancels
it to lowest order, is shown in Fig. 5(c). The
scalar Coulomb-gas partition sum which enters
(4.4) will be needed to O(P),

(a)

+ f'i

a

i

r2

+ rt

0

r2

(b)

a

where 0 is the area of the system.
The expression for I"(r,K) can be simplified

by assuming that the renormalization of 1 (x, IC, y)
is dominated by conf igurations with r, very close
to r~. On changing integration variables to

R=2(r.+ r,), (4.8)

—
r2

rb

+ r2

r= r —rg

and expanding in r, the exponentiated part of F, can
be rew ritten,

exp[-ng(r, —r,) + ng(r, —r~) + ng(r, —r,}
—ng(r, —r,)j

= e"p(nr &B[g(rl —It) -g(r2 —R)9 (4.9)

FIG. 5. Configurations of excitations which enter the
correlation function I"~(x&2,K,y) for the scalar Coulomb
gas. The complexions which contribute to I'2(r&&, K) and
I'4(x&2, K) are shown in Figs. 5(a) and 5@), respectively.
As suggested by Fig. 5(b), the important part of
I'4(~q2, K) comes when r is close to r~ . The "discon-
nected" part of I'4(~~2, K) which occurs when r is very
close r~ and r

&
is very close to r2 is canceled by another

complexion of four excitations, as shown in Fig. 5(c).
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Expanding the exponential to second order in r, and carrying out the angular average over R, we find

I', (~», K)=-2 —,"&I + . I- I
41+-'~'~' I&~rg(r, -&)-r(r3-&)]I3] (4.10)

which simplifies after a partial integration to

I"4(r», K) = 2(r-»/a) '

with

ae yr r 'II 3-X/4'

a aj (4.17a)

Q d'rf'r ~
x —,a . a (a

I r l)a

+ 2«'o. 3g(r»)
a

(4.11)

(2-1(.'/8 m) i— (4.17b)

Setting l = 5 and letting 5- 0, we can easily con-
struct differential recursion or scaling equations
from (4.16}and (4.17). After length scales be-
tween a and ae' have been integrated out, the
series (4.16) takes the form

We have cut off the integrations over r at the core
size a, and made use of the identity V3g(r) =2«6(r).

Collecting together the various contributions to
I' (3», K, y), we find that the terms proportional
to the area of the system in (4.7) and (4.11) cancel,
and that

I'„(3»,K, y) = —2y3e ~'-"»'

x 1+ 2v3n3y ln[g(r„)]

dK '(l) = -' «y (i) + o(y (i)), (4.19a}

3-Tc(~ ) /4f

K,ff =17(l) ——,
' wK'(l)y'(l)

a

(4.18)

with

dy l = [2 -K(f)isv]y(f)+ O(y'(I)}, (4.19b)

To O(y ), we can exponentiate the logarithm in

(4.12) and find that I'„(r», K, y) takes the form

and K(l = 0) =.K, y(l = 0) = y. Applying the same
procedure to the series (4.12), we obtain the be-
havior of I' (r», K, y) under the renormalization-
group procedure,

I' (3», K, y) = -2y3(3„/a) ««&(", (4.13) I' (3'», K, y)=e 'I' (e 'r», I7(l), y(l)} . (4.20)

where " dr (r&' ~"
K,ff ——R' —,' nK'y'—'

a Iaj (4.14)

(4.15)

and we have made use of the definition (4.6) of n.
Although (4.14) correctly gives the modification in
I' (3', K, y} due to screening by dislocation pairs at
low temperatures, difficulties arise when K ap-
proaches 16m, since the integral then becomes
very large. Following Jose et al. ,

' we study this
problem by splitting the integrals over r into two

parts

The familiar Hamiltonian flows associated with
(4.19) are displayed in Fig. 6(a}. The low-tem-
perature crystalline phase is associated with the

set of trajectories which approach the line of fixed
points at y =0. A typical locus of initial Hamil-
tonians given by (3.4) with C =3 is shown as a
da, shed line. The intersection of this line with the
incoming separatrix determines the melting tem-
perature. The dislocation probability y(l) appears
to grow without bound to the right of this separa-
trix, presumably signaling the dissociation of
dislocation pairs predicted by Kosterlitz and
Thouless. "

(~) 3 «'/43-
x —

I
-I,o((y) ),a Iiaj

(4.16)

and absorbing the small-r integrations into a re-
definition of K. Upon reseal. ing the remaining
integrations so that the large r integrals again run
from a to ~, we find that (4.14) can be rewritten
in the form

K„,=K' ——,
' v(K')'(y')3

8. Scaling equations for the triangular lattice

Since X, does not break into two decoupled
scalar Coulomb gases when the allowed excitations
form a triangular lattice, the derivation of scaling
equations is somewhat more complicated. The
perturbation series for I',(r», K, y) now takes the
form
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0.3
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0.1
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I'0

rb

V
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0.5

(a)

1.0 1.5

(a)
f 2 f 2

(b)
f 2

0.2

0.1

ir,

"a]

0.5

(b)

1.0
167' /K

1,5 =0

F~(r», K, y) = Z, '[I;(r», K)y~+ I',(r», K)y'

+r,(r„,K) y +O(y')],

with

(4.21)

FIG. 6. Hamiltonian flows induced by the scaling
equations for melting of (a) square and (b) triangular
lattices. Typical loci of initial conditions are shown as
dashed lines. Hamiltonians which start in the shaded
region are mapped by the renormalization transforma-
tion into the line of fixed points at y = 0. Dislocations
become unimportant at long wavelengths in this region,
which we identify with a crystalline phase. Dislocations
ultimately increase in importance in the remainder of
the K -y plane, which we identify with a fluid phase.
The fixed lines at y =0 represent two cross sections of
the fixed surface shown in Fig. 3.

orb

)rp

(c)
FIG. 7. Configurations of dislocations which contri-

bute to I'& (r&2, K,y) for melting on a triangular lattice.
The order-y contribution is not shown while Fig. 7(a)
shows one of the 12 complexions which occur at O(y ).
The dominant part of I'3(r&2, K) occurs when r is near
r

&
or r2. Figure 7(b) shows the three dominant con-

figurant configurations of four dislocations which enter
at O(y ). The first complexion gives a contribution
I 4 f ( r&2, K) while the second and third e ach give
I'4, 2(r f2 K). The important parts of the integrations
over r~ and r& are again for r, close to r&. Contri-
butions to the integrations where r~ is close to r

&

and r
&

is close to r2 is canceled by other configurations
by Burger's vectors, as illustrated in Fig. 7(c).

(4.22a)

2

exp[--,' ng(r —r, ) ,' ng(r r, )]-, -—a'

(4.22b)

and where F4(r», f7) can be written

F,(r», K) = -6[I'~,(r», K) + 2F, ,(r», K)] . (4.22c)

The contribution to I'3(r», K) comes from three
dislocations, with Burger's vectors oriented at

120' to each other as shown in Fig. 7(a). Two of
the dislocations are fixed at r, , and r„while the
third is at a position r over which we integrate
freely. The configurations of four dislocations
which dominate I',(r», K) are shown in Fig. 7(b).
Two dislocations are again anchored at r, and r„
although we integrate freely over the positions
r, and r, of the remaining two. We again expect
that the renormalization of 1 ~(r», K, y) will be
dominated by tightly-bound pairs of singularities.
Other tightly bound complexions whose contribu-
tions cancel to lowest order are shown in Fig.
7(c). The first complexion shown in Fig. 7(b) con-
tributes

r. 1(r») =
I I .' t ~

' exp[-ng(rx —r.)+ ng(ri —rs)+ a'g(r. —r.)
t'r» " d'r, f' d'r~ Ir, —r, i

(4.23)
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while the second and third complexions each give a, contribution

I;,(r») = ",', ' '
'&I exp[-2 og(r, —r,}+2 ng(r, - r,)+ 2 eg(r, —r, )0 g 0 Q a

-2 o'g(r, —r,)]. (4.24)

The vector Coulomb-gas partition function is

The quantity I', (r», K} simplifies provided we
suppose that x»»a and assume that the integral
is dominated by configurations with r very close to
r, or r, , If r is near r„ for example, we have
g(r —r, ) =g(r»). In this approximation, I;(r», K)
becomes

As was the case for the scalar Coulomb gas, the
integrals in (4.85) are poorly convergent for a
& 4. Again breaking the integrations in two parts,
we discover that the small-r portions of the O (y')
and O(y') terms in (4.28) can be absorbed into
additive renormalizations of y and E, respectively.
On rescaling the integrations, we obtain (just as
in Sec. IV A) differential recursion relations for
K(L) =4wn(L) and y(L), namely,

= —.
' vy'(L) + O(y'(L)), (4.29a)

(4.26)

The contributions I;,(r», K) and I' 4(rK») can
be simplified as in Sec. IVA to give

= ( 2 — ) ()) + Rw) '()) + o (y '()))

(4.29b)

The transformation law for I'~(r», K, y) under this
procedure is

F,(r„,l7, y)=exp(-4) —4w y()')d(')
0

+ 2v 'e'g(r») xr, (e 'r», R'(L), y(L)) . (4.30)

X

(~»l g d'y

Ir l&a

+ —,
' v'n'g(r»)

t" dr r)'
a a]

(4.27a)

(4.27b)

The initial conditions associated with (4.29) are,
as usual, K(L= 0) =K, y(L =0) = y.

Hamiltonian flows generated by (4.30) are dis-
played in Fig. 6(b), together with a locus of in-
itial Hamiltonians. Although there is now an
asymmetry in the slopes of the incoming and out-
going separatrices, the qualitative picture of
melting is the same as for a square lattice of ex-
citations. For melting on more-general lattices,
we find that the term 2vy'(L) in )4,29b) is re-
placed by a term of order y' '~'~'2~. The surface
of fixed points swept out as e~ e, is varied (Fig.
6 shows two cross sections of this surface) corre-
sponding to the apparent fixed surface discovered
using the Migdal transformation in Sec. HI.

Collecting together the various contributions to
I'(,(r», K, y), we find that the terms proportional
to the area of the system again cancel, and that

I', (r», K, y) = -6y'e

x 1 +4py

+ Sv'o.'y ' lng(r„)

'() 3-cf
x ——

I + O(y*) (4 26)a aj

V. SINGULARITIES NEAR MEL'TING

The scaling equations derived in Sec. IV predict
a variety of singularities at the melting tempera-
ture. Because the equations appropriate for a
square 1.attice have already been studied in detail
by Kosterlitz, we will concentrate blare on the
predictions which follow from the more compli-
cated triangular-lattice recursion relations.

A. Correlation length

The structure factor of a two-dimensional crys-
tal is proportional to
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S(k) —= Q e'~ ~(exp[ik - [u(R) —u(0)])), (5.1)

where the sum if over the sites R of a regular lat-
tice, and the actual position r of an atom in the
crystal is r =R+6(R). In the harmonic approxima-
tion, which, as we have argued, becomes arbitrarily
accurate in the low-temperature crystalline phase,
the correlation function

C-„(R)=- (exp[ik ~ [u(R) —u(0) g)

decays as a power law with an exponent depending
on temperature and the elastic constants. This
slow decay leads to a power-law singularity in
S(k) as k approaches a reciprocal-lattice point
G. For T &7" „however, we expect an exponential
decay of C-„(R),

g~(R) &-IR I/5+ (5.3)

where the correlation length $, diverges as T
approaches T from above.

To determine the form of this divergence, we
make use of the standard result ' for the way in
which $, (K, y) transforms under a renormaliza-
tion transformation, namely,

scaling equations in the vicinity of K=16m. To
lowest order in a deviation x(L) defined by

[1+x(l )]
16m

(5.6)

the triangular-lattice recursion relations may be
written

0 =12 ' '(I) (5.7a)

dy(l) = 2x(I)y(I) + 2~y'(I) . (5.7b)

m+ = I /2m, rn = -1/3m . (5.8)

As shown in Fig. 8, a Hamiltonian which starts
slightly above T will initially hug the incoming
separatrix (m =m ), and then cross over and ap-
proach the outgoing separatrix (m=rn, ). Ac-
cording to (5.7b), the point where y(l) stops de-
creasing and begins to increase is given by the
intersection of a trajectory with the line

To find the j.ncoming and outgoing separatrices in
this approximation, we search for solutions of the
form y(l) =mx(l). There are two such straight-
line trajectories, with slopes

h, (&, y) = e'h, (&(&),y(I)) . (5 4) y= x/w. (5 9)

(5 5)

To determine /*, it is necessary to study the

As suggested by I'"ig. 8, the behavior of $, as T- T'„can be determined by integrating the scaling
equations for I7(l) and y(l) into the high-tempera-
ture fluid phase until I= I* such that y(I*) equals,
say, —,', . At this point, $,(K(l*), ,—', ) is just some
finite number, and we have from (5.4),

$(K, y) -e'

The quantity l* is conveniently calculated in two
steps. %e first determine the "time" ),* it takes
for a trajectory to reach the line (5.9), and then
estimate the "time" /,* it takes to go from this
line to y(l) =0.1. I et us parametrize the trajec-
tory of a Hamiltonian slightly above T by

(5.10)

where the deviation D(l) from the incoming separa-
trix is initially small and proportional to (T —T )/
T

D(l = 0) =-Do c(- i. (5.11)

Inserting (5.10) into (5.7), we find that, for small
deviations,

= -2x(l)D(f), (5.12)

FIG. 8. Expanded version of the region about K
=167(. in Fig. 6(b). The correlation length Bnd other
functions of physical interest can be calculated by in-
tegrating along a renormalization-group trajectory
from a point slightly above T on the dashed line until
y I,

's) equals, say, O.l. At this point, one is sufficiently
far from 7 to permit some approximate evaluation of
the desired functions. As discussed in the text, differ-
ent approximation schemes are used to integrate the
scaling equations on the left and right sides of the dotted
lirie y =. —x/m.

so that
l

22 ( 1) = D„exp (-2 I x(2) d 2) .
0

(5.13)

dx(l)
3 (5.14)

namely,

To lowest order in Do, x(l) is given by the solu-
tion of
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where x, is the negative initial value of x(l). Com-
bining (5.15) and (5.13), it follows that

(5.16)

angular terms in the dislocation Hamiltonian dis-
cussed i.n Sec. IIIA.

8. Free energy and specifjc heat

The transformation law for the reduced free en-
ergy per unit area,

The quantity l,* can now be determined by the re-
quirement

E(I7,y) =-InZ, (Z, y)/0, (5.24)

(5.17)
which holds for the triangular-lattice renormali-
zation group is

Making use of (5.11), we find that the solution I2*

of this equation may be written
E(Z, F)= 6v e-2Iy'(l )dl

p

l*=C t '/
1 1 (5.18)

+ e "E(Z(l),y(l)) . (5.25)

where C, is a nonuniversal constant.
To estimate I,*, we solve the equation for y(l)

along the outgoing separatrix,

(5.19)

The solution with initial condition y/=y(l, *) is

(5.20)

and it follows from (5.10}and (5.15) that y(l,*)
= 3/4~/, *. Imposing the requirement y (I,*)= 0.1
gives the result I,*-I/y(l,*)-l,*, so that

l*=C t 2
2 2 (5.21)

where C, is another nonuniversal constant. Equa-
tion (5.5) now leads to our final result for the cor-
relation length,

el 6' l Sl 2 e2eCt 2/6 (5.22)

as t- 0', with C =C,+C,. This prediction should
be compared with Kosterlitz' prediction" for XY
models, which also applies to melting on a square
lattice, namely

Cg 2/2 (5.23)

Since correlations decay as temperature-depen-
dent power laws below T, one could, following
Kosterlitz, "say that g = ~ everywhere in the
crystalline phase. If one instead defines a cor-
relation length in terms of a screening distance
associated with dislocation pairs in analogy to
recent work by Ambegaokar et al."on superfluid-
ity, one finds a correlation length g which be-
haves as T- T essentially like $. as T- T'

The exponents —', and 2 which enter (5.22) and

(5.23) also affect the renormalized elastic con-
stants. In analogy to results for the behavior of
the superfluid density p, as T- T„a' we would
expect a -', -root cusp singularity in the elastic con-
stants as T- T, provided one can ignore the

The first or "trajectory integral" P term in (5.25}
comes from the contribution to Z, displayed in gq.
(4.25). Evaluating (5.25) at the same value of l*
as was used for the correlation length we find that

E(I7,y)- e (5.26)

as T- T'. The specific heat has the same essen-
tial singularity, as can be seen by differentiating
(5.26).

C. Correlation bebveen Burger's vectors

The scaling law (4.37) for Burger's vector cor-
relations on a triangular lattice can be used to de-
termine their large-r behavior in the crystalline
phase. Let us choose I= I* in (4.37) such that re '*
=a. As r-~, i*diverges, and y(l*) tends to zero.
For y(l*) sufficiently small, we have

(5.27)

so that
gg

P,(r, l7, y)=-py'(l')exp(-41 —4r f y(1)dl ).
0

(5.28)

From (4..36b) it follows that

g

y(l)=y, exp(2(e2x y(l)dl —— ll(l)dl/
p 8m

(5.29)

which, when inserted into (5.27), gives

P, (r, l7, y)=-6y', exp(~- — 14())d)). (5.25)( 1

Since K(l) tends to a constant value as I-~ for
T& T, and because /*=In(r/a), we find from
(5.30} that

I',(r, Z, y) (r/a}-r, «-/4'

where Z,« = lim, ~(l) .
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The logarithmic corrections now follow if we use
the result (5.15) for x(l) along the incoming sep-
aratrix, which gives

I'~(r, K,y ) = —6yo/e~~ (1+ ~ I
+0

1

I *. ) (5.33)

I'~(r, K, y ) I/x-' ln'x

as x-~ at T . The analogous result for a scalar
Coulomb gas is

I' (x,K,y ) - 1/r' ln'r (5.35)

VI. REAL MELTING

It is important to determine the re'evance of the
results presented here to melting of say, rare-
gas atoms adsorbed onto a periodic substrate. "
Such systems might provide an experimental test
of the Kosterlitz- Thouless model of melting, some of
whose consequences are worked out here. In this
concluding section, we raise. several issues which
affect the applicability of a simple model of dis-
location-mediated melting to realistic experimen-
tal situations.

It is rather striking that the analysis presented
here leads to a second-order phase transition
(with a diverging correlation length}, contrary
to our experience with melting in three dimen-
sions. (Quantities such as the shear modulus can
vanish discontinuously at T, however. ) This con-
clusion is based on a perturbative renormaliza-
tion analysis —an expansion in powers of y, which
is only correct at low temperatures or if the core
energy of a dislocation is large. Although the re-
sults of this paper suggest that an initially large
value of y will be driven to zero by the renormal-
ization equations, this can only be checked per-
turbatively. A first-order transition is not com-
pletely ruled out for systems whose dislocations
have very small core energies. Holz and Medeir-
os" have recently obtained a first-order transi-
tion for a gas of dislocations using a kind of mean-
field theory. Their analysis is motivated, how-
ever, by an assertion that the "dielastic" polar-
izability of dislocation dipoles increases with in-
creasing T until it diverges at T . The results of
this paper suggest that this polarizgbility is per-

There are logarithmic corrections' to the
power-law decay of I",(x,K, y) at T„. To leading
order in x(l), (5.29} may be written

I', (r, l7, }}=-6}*,axp( 4(-+4'x((}d().
(5.32)

fectly finite at all temperatures up to and includ-
ing T . The finiteness of the polarizability (ex-
cept above the melting temperature) is due to the
extra logarithmic' factors in the decay of Burger's
vector correlations at T discussed in Sec. VC.

To apply our results to melting of absorbed
films, one must come to grips with the effects of
a periodic substrate potential. This question is
discussed in detail in Ref. 28, where it is found
that a substrate with a sufficiently small mesh
size will have no effect on the melting transition
discussed here. Defects and interstitials, which
are also a factor in real systems, have in fact
already been taken into account. Such imperfec-
tions can be regarded as two dislocations one lat-
tice spacing apart, and, as such, are included
in the present analysis.

Finally, it should be emphasized that the prop-
erties of the dislocation Hamiltonian (2.21) have
not yet been completely worked out, since we have
neglected the angular terms in KD. Indeed, in
Appendix B it is shown that these angular terms
represent a marginal perturbation to the two-di-
mensional surface of stable fixed points discussed
in this paper. A three-dimensional volume of fix-
ed points is necessary to describe the dislocation
Hamiltonian in complete generality. Consequently,
we would expect some slight qualitative change in
the results of Sec. 7 when these angular terms are
taken into account. The relevant calculation is
carried out for melting of triangular lattices in
Ref. 28; the results confirm this expectation.
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APPENDIX A: LOCAL REPRESENTATION OF THE

, DISLOCATION PARTITION SUM

The transformations which led to a local repre-
sentation of the vector Coulomb-gas partition sum
in Sec. III can also be applied to the more-com-
plicated dislocation Hamiltonian (2.21). . In Sec.
III, we asserted that Z, could be approximately
represented by
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Z,'= Q f xrp exp( f, [vp(r)]'

d x+27t'$2 br ' r and

Z qo g c ~

2+B g e r 2 (A5)

(Ae)

which is (3.10a) expressed in a. convenient con-
tinuum form O.n transforming (Al) into momen-
tum space, we shall simulate the effect of a lattice
cutoff by restricting the momenta to a circular
Brillouin zone of radius a '. %'hen we say that
Z,' "approximates" Z„we mean that the effective
interaction betmeen Burger's vectors obtained by
integrating out the (II) field in (A1) has the same
large-distance form as the Burger's vector inter-
actions in X,. If melting is indeed characterized
by a diverging correlation length (see Sec. VA),
we would expect that only this large-distance be-
havior would be important in determining the

, nature of the transition.
To find a local representation of

In order that the functional integrals over P con
verge, me must have

A&0, A+B) Q.

It is easy to shorn that

G, e(r)=-(p (r)pe([„))), fG„=(q)e"

where

(Av)

(A8)

B qq&
rq)=A "- -A( B) ~ (Ag)

and f means I/2v'f dmq. If this result is inserted
into (A4), we clearly obtain a divergent result
unless

Z gRg)
{b&P)}

(A2) d rb(r) =0. (A10)

we consider a generalization of Z,' analogous to
(3.12), namely,

Z,'= Q J xrp exp( f- —, {Z[rp[r)]'
{b(r)}

+B[V y(r)j'f
d2+2mi, br ' r

Restricting the summation over b(r) in (A4) to
complexions satisfying this condition, we see that
G ]I(r) can now be replaced

G.', tr)= fG.,tq)(e"'- t). (A11)

An analysis of the large-r behavior of 6']](r) shows
that

d z
(AS)

1 2A+B r
&

B4' ((4+B) a ~ 4vA(A+B)

The constants A and B mill be adjusted to make
the effective interaction between b's after elimi-
nating the (])) field as similar as possible to that
which occurs in XD. Carrying out the Gaussian
integrals over P, we find

z,'=z, I exp(-qr'f,",": p„(r)tteF)
{b(r)}

x ~, ~ -C&,qy' (A12)

where C is a cutoff-dependent constant. Lqt
us take this as an approximate result for all.
r&a and set &'1(r) =0 for r &a Inserting . this ap-
proximation into (A8) and (A4), we find the Z~ be-
comes

x (p, (r) p etr')),),
(A4}

f
Z~ =Z~

{b(I')}
(Ala}

where ( )0 means an average evaluated in an en-
semble specified by

where the sum over b(r) is restricted according
to (A10), and

b(r) (r —r')b(r') ' (r —r')
j

)T(2A+B) d'r d'x' ~ ~, I r r'I B—Xg) 2A(A+B) a2 a' s (2A+B)
b(r) b(r' ln

lr-r' l&o
de.

+ C b(r) 'b(r') +Inyo q Ib(r) I
(A14)
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Evidently, KD is the same as XD in this approxi-
mation [see Eq. (2.17)J provided we take

Ra' v(2A+B)
6~&.T 2A(A+~) ~ (m+~) =1. (A16)

The coefficient of the term proportional to

J (d2r/a2)b(r) arising from (A14) can be adjusted
by changing y, .

Unfortunately, we must take A. = 0 to satisfy the
second condition in (A15)! Thus, the most inter-
esting case just violates the stability conditions
(A7). One way to sidestep this technical diffi-
culty is to consider (A4) to be a generalization
of R~. For A&0, the functional integrals over (t)

still converge and we can at least assess the im-
portance of the angular factors in X~ by perturba-
tion theory in B. This is done in Appendix B,
with the results that they represent marginal
perturbation. to the vector Coulomb-gas partition
sum. For 8 =0, we obtain the result (S.10).

As is pointed out in Ref. 28, the Hamiltonian
(A14)

withe�

&0 is of physical interest in its own

right„since it arises in studies of melting on a
periodic substrate. With the local representations
(Al} and (AS) at hand, one is in a position to study
this melting problem using, say, the Migdal-
Kandanoff renormalization procedure.

APPENDIX B: RENORMALIZATION-GROUP

EIGENVALUES FROM THE DECAY OF

CORRELATIONS

Given a fixed-point reduced Hamiltonian R~, one
often wants to determine its stability to small
perturbations. Consider, in particular, the
Hamiltonian

X, =BC~+h d2rO r, (Bl)

where h measures the strength of the perturbation,
and O(r) is a density constructed from the fluctuat-
ing degrees of freedom. At a fixed point, we ex-
pect a power-law decay in correlations, and in
particular, that

(B4)

4 2

[4 (r) —4 (r')]'
&r, r '&

The density whose correlations determine the
eigenvalue ~, is

O(r) =2cos[2we, (j)(r)]+2cos[2)re, - (())(r)]

+2cos[2ne, ~ (t)(r)].

(B6)

(B6)

Since it is easily shown that the autocorrelation
of O(r) behaves like the autocorrelation of any one
term in (B6), we have

&(r) -(cosf2ve, $(r)]cos[2we, $(tt)))

-exp[-2v'e. es(y (r)ye($))].
However,

(4 (| )4~(()))=, (n(—)&

(B7)

(B8)

at large r, so that

r -)'(' /4)) (B9)

Thus, x,o =K/8n', and the renormalization-group
eigenvalue of y is

so the sign of A„determines whether h(l) grows or
shrinks under a renormalization-group transfor-
ma, tion.

In this Appendix, we examine the autocorrela-
tions of several important densities O(r) which
arise in the theory of melting, and thus determine
their renormalization group eigenvalues. This
procedure was used in Sec. III C to show analyt-
ically that x=e, .e, represents a marginal per-
turbation (A, =0) to the line of fixed points present
for x=O.

%'e first assess the importance of the periodic
part of (S.16). For y, =0, we have a Gaussian
Hamiltonian which is easily seen to be a fixed
point under the renormalization transformations
used in this paper,

C(r) = (O(r) O(5)) r'"~, - (B2)
~„=2-IC/6v. (B10)

A, Q d Xfg p (BS)

where the average is evaluated in the fixed-point
ensemble. It can be shown~0' that the exponent
x„ is related to the renormalization-group eigen-
value && of A by the formula

As a second application of this technique, we
treat the angular terms in (AS) represented by
,'BJd'r/a'[V' (T)(r—)]'in the limit of small B. We
assume that the renormalization-group equations
have driven yo to zero, so that Burger's vector
excitations are unimportant. One is left with a
fixed point Hamiltonian

where d is the dimensionality. The corresponding
recursion relation for h is

d2rX*= - ~A [V (r )]2 (B11)
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perturbed by a density

Although it is evident merely from dimensional

analysis that (B12) must represent a marginal
perturbation to (Bll), it is interesting to see how

this result follows from the decay of O(i') correla-
tions. The relevant correlation function is

C(r, -r, ) -=(O(r,)O(r, )) =-,' (Q (r,)ps(r, )fr(r, )pq(r, ))
+y, y +y, 6

Since

at large separations, we find that

&(r, —r, ) =
l r, —r„ l

' (B15)

so that x~ = 2 and y~ =0, which are the required
results.

IVotes added in Proof The s.ign of the angular
terms in (2.17) is given incorrectly in many places
in the literature, including Ref. 27, Ref. 31, and
in F.R.iV. Nabarro, Adv. Phys. 1 269 (1952). It is
given correctly in Refs. 15 and 32, however. I

am indebted to A. P. Young for discussions on this
point.

The exact nature of the cancellations between
different complexions of Burger's vectors shown
in Figs. 5(c) and 7(c) is quite subtle. As was
pointed out to me by T. Spencer, it is difficult to
show that such configurations are indeed negligible
for below T, although this is certainly expected
on physical grounds. Such considerations have no

effect on our analysis of dislocation unbinding near
T, however.

As is shown in Ref. 28, the "fluid" phase dis-
cussed in this paper (corresponding to the region
of instability in Fig. 6) is actually a bizarre kind

of liquid crystal. A second disclination unbinding
transition is necessary to complete the transition
from a crystalline solid into an isotropic liquid. "

H. E. Stanley and T. A. Kaplan, Phys. Rev. Lett. 17,
913 (1966).

2H. E. Stanley, Phys. Rev. Lett. 20, 589 (1968).
M. A. Moore, Phys. Rev. Lett. 23, 861 (1969).
W. J. Camp and J. V. Van Dyke, J. Phys. C 8, 336
(1975).

~P. C. Hohenberg, Phys. Bev. 158, 383 (1967); see also,
T. M. Rice, Phys. Rev. A140, 1889 (1965).

N. D. Mermin, J. Math. Phys. (¹Y.) 8, 1061 (1967).
VD. Jasnow and M. E. Fisher, Phys. Rev. Lett. 23, 236

(1969).
F. J. Wegner, Z. Phys. 206, 465 (1967).
V. L. Berezinskii, Zh. Kksp. Teer. Fiz. 59, 907 (1970}
[Sov. Phys. JETP 32, 493 (1971)].

OW. Kane and L. P. Kadanoff, Phys. Rev. 155, 80 (1967).
'R. E. Peierls, Ann. Inst. Henri Poincard 5, 177 (1935).
L. D. Landau, Phys. Z. Sowjetunion 11, 26 (1937).

' N. D. Mermin, Phys. Rev. 176, 250 (1968).
B. Jancovici, Phys. Rev. Lett. 19, 20 (1967). See also
H.—J. Mikeska and H. Schmidt, J.Low Temp. Phys. 2, 371
(1970); and Y.Imry and L.Gunther, Phys. Lett. A 29,
483 (1969).
J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6,
1181 (1973).
V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 61, 1144
(1971) [Sov. Phys. JETP 34, 610 (1971)].

YA. M. Polyakov, Phys. Lett. B 59, 79 (1975).
A. A. Migdal, Zh. Eksp. Teor. Fiz. 69, 810 (1975);
69, 1457 (1975), fSov. Phys. JETP 42, 413 (1976); 42,
743 (1976)].

~~E. Brezin and J. Zinn-Justin, Phys. Bev. Lett. 36, 691

(1976), Phys. Rev. 8 14, 3110 (1976).
R. A. Pelcovits and D. R. Nelson, Phys. Lett. A 57, 23
(1976); D. R. Nelson and R. A. Pelcovits, Phys. Rev.
B 16, 2191 (1977).

2 R. L. Elgin and D. L. Goodstein, Phys. Rev. A 9, 2657
(1974).
See, e.g. , L. Gunther, Phys. Lett. A 25, 649 (1967);
Y. Imry and L. Gunther, Phys. Rev. B 3, 3939 (1971).
J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).

24J. Josd, L. P. Kadanoff, S. Kirkpatrick, and D. R.
Nelson, Phys. Rev. B 16, 1217 (1977).
D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett.
39, 1201 (1977).

2 L. P. Kadanoff, Ann. Phys. (¹Y.) 100, 359 (1976).
27J. M. Kosterlitz and D. J. Thouless, Prog. Low Temp.

Phys. (to be published).
B.I. Halperin and D. R. Nelson, Phys. Rev. Lett. 42,
121 (1978); D. R. Nelson and B, I. Halperin (unpub-
lished).
The harmonic approximation holds, however, only at
temperatures well below the temperature at which
Jancovici found a phase transition in this model.
L. D. Landau and E. M. Lifshitz, Theory of Elasticity
(Pergamon, New York, 1970).

'J. Friedel, Dislocations (Pergamon, New York, 1964).
F. R. N. Nabarro, Theory of Dislocations (Clarendon,
New York, 1967).

3The quantity e;& is an antisymmetric 2 ~2 matrix,



DA VID R. NELSON 18

We shall often make use of the identity e &&e;& = —5;&.
+M. E. Fisher (private communication).
3~M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974).
36M. E. Fisher and A. Aharony, Phys. Rev. B 8, 3323

(1973).
3~A. Aharony, Phys. Rev. B 8, 3349 (1973).
3 The Poisson summation formula asserts that the sum

over discrete states p of any function g(p) may be
written

gV ) = g ~&g(&) e"'
Pa ~oO t5»» +&

39See, e.g. , S. Coleman, Phys. Rev. D 11, 2088 (1972);
A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974).
See. e.g, L. P. Kadanoff in Proceedings of the Enrico
Fermi Summer School of Physics, Varenna, 1970,
edited by M. S. Green (Academic, New York, 1971);
and K. J. Wilson and J. Kogut, Phys. Rep. C 12, 77
(1974).
P. G. Degennes, Solid State Commun. 10, 753 (1972).

42%. L. McMillan, Phys. Hev. A 6, 936 (1972); 7, 1673
(1973).

+See, e.g. , R. A. Pelcovits, Ph.D. thesis (Harvard Uni-
versity, 1978) (unpublished).

+See also, J. Villain, J. Phys. (Paris) 36, 581 (1975).
4~See, e.g. , V. J. Emery and R. H. Swendsen, Phys.

Rev. Lett. 39, 1414 (1977), Phys. Lett. A 64, 325
(1977). See also A. N. Berker, S. Ostlund, and

E. Putnam, Phys. Rev. B (to be published).
L. P. Kadanoff and F. J. Wegner, Phys. Rev. B 4,
3987 (1971).

VR. .J. Baxter, Phys. Rev. Lett. 26, 832 (1971).
V. Ambegaokar,

' B. I. Halperin, D. R. Nelson, and

E. D. Siggia, Phys. Rev. Lett. 40, 783 {1978).
See, e.g. , D. R. Nelson, Phys. Rev. B 11, 3504
(1975).
Phase Transitions and Critica/ Phenomena, edited by
C. Bomb and M. S. Green (Academic, New York,
1976), Vol. 6.
J. G. Dash, I'ilms on Solid Surfaces (Academic, New

York, 1975).
~2A. Holz and J. T. N. Medieros, Phys. Bev. B 17, 1161

(1978).


