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Degeneracy of antiferromagnetic Ising lattices at critical magnetic field and zero temperature
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The zero-point entropy and magnetization per site of the square and triangular Ising antiferromagnetic
lattices in critical field have been calculated by a method that can be extended to three dimensions using a
computer. The entropy for the triangular lattice is found to be 0.3333k —1/3k per site.

I. INTRODUCTION

An appreciable fraction of the work on the Ising
model has been devoted to antiferromagnetism.
Various approximations have been applied to the
model in order to obtain the magnetic phase dia-
gram. ' This diagram gives the critical tempera-
ture as a function of the applied magnetic field,
and represents the line of singularities enclosing
the region of antiferromagnetic ordering. %here
this line intersects the field axis, the model gives
different ground-state degeneracy depending on the
topology of the lattice. For close-packed lattices,
the ground state at T =0 and B= 0 is degenerate.
%'annier' computed the zero-point entropy for the
triangular lattice which was later modified by
Bomb, ' while Danielian' ~ has shown that, despite
the degeneracy of the antiferromagnetic fcc model,
there is no zero-point entropy. The square and

simple cubic lattices evidently do not have degen-
eracy at T =0 and B=0. It is the purpose of this
paper to examine the ground-state degeneracy
problem at the nonzero critical field for lattices
of various geometry and dimension.

II. THE COUNTING PROBLEM

The energy of the antiferromagnetic Ising model
of N spins in a magnetic field B is

N

E=-J 00,. —8 o&,

where J& 0 &B. The magnetic moment is taken to
be unity for each spin. o, =*1 is the spin variable
at the ith site and the first sum is over nearest-
neighbor pairs of spins. The ground-state configu-
ration when 8 dominates has all spins aligned with
8 and has an energy

Eo= (2sJ+B)N, -
where z is the number of nearest neighbors of each
site. This state is nondegenerate. As & is re-
duced, a point is reached when overturning a
number N of spins not neighboring one another
will not change the energy E,. Since N =nN with

0& & &1, the entropy associated with this & is at
least N k ln2. This value of B is evidently B,
=a~J~. As 8 is further decreased, one enters
the antiferromagnetic region. The counting prob-
lem associated with the entropy evaluation at B,
can be stated as follows: %hat is the allowed num-
ber of ways QN of distributing spins antialigned
to the field among N sites such that each such
spin is surrounded completely by neighboring
spins that are aligned?

n ln2 & S/k & 1n2, (2)

where n is the maximum fraction of allowed anti-
aligned spins on the lattice.

(ii) We next compare a square lattice and a tri-
angular lattice with the same number of sites N.
The triangular lattice can be regarded as a square
lattice with diagonal bonds. Evidently, additional
bonds serve to restrict the number of allowed con-
figurations further. Thus,

Q„(square) & Q~(triangular) .
In general, the addition of bonds on a lattice will
decrease the entropy. From this follows

ln2 & S(hexagonal) & S(square) & S(triangular) .

(iii) A cubic lattice of size n x n xn can be re-
garded as n-plane-square lattices, each having a
size ~ x g with additional bonding in the third di-
rection. Patently we have,

[Q„„„(square)j"&Q„„„„„(cubic),
hence we get,

III. BOUNDS AND INEQUALITIES FOR THE ENTROPY

(i) The entropy per site S is evidently bounded
above by k ln2 for any lattice with N sites since
Q„&2". For loosely packed lattices (square,
hexagonal, cubic, etc.), it is evident that 2~~2"

-1&0„, since half of the spins can be antialigned.
This gives &k ln2&S. For triangular lattice, a
little reflection shows 3 X2N ' —2&ON. Thus, in
general,
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S(square) & S(cubic) .
It is then a simple matter to establish, using Eq.
(2), that

S (one dimensional) & S(hexagonal)

TABLE I. Average magnetization per spin for the triangular

lattice critical field ground state with lattice width I = 6 and

length n.

and

& S(square) & S(cubic) & S(bcc)

(4)

S(triangular) & S(fcc),

IV. THE TRANSFER MATRIX

(i) Consider a one-dimensional system of m

spins with periodic boundary conditions
(u„„=o',) subject to the critical field constraint.
%e now define a transfer matrix as follows:

where a bcc lattice can be regarded as a collection
of (110) planes.

2

3
4
5

6
7

8
9

10
11
12
13
14
15

0.661539
0.665072
0.678192
0.67S231
0.674754
0.675052
0.675100
0.675029
0.67S041
0.675054
0.675043
0.67S048
0.675046
0.675047

1, if a, and cr„, are allowed
't'&+~ in succession,

0, otherwise,

The total number of allowed states is given by

a„=P
fy&-+1 fy =+1

values since an allowed column state is an al-
lowed state on a periodic chain of length m. The
transfer matrix element 2 p,

&
p,&„ is unity if column

state p., can be followed by column state p, ,„and
is zero otherwise. The dimension of this matrix
is evidently 0„. We call this matrixA(Q„). The
total number of states allowed is

n„„„=Tr[A(n„)]" .
The expression for the average magnetization is

TrAm pm+ ym [~ (1 + ~g)]m+ [L (1 ~g)]m

where A., and X2 are the two eigenvalues of A. The
entropy is readily found to be, as m-~:

S=k in~ (1+v 5 ) = (0.4812. . . )k .
The average magnetization is calculated from

(8)

@S)„=„g g c,A. . A. . . (9)
f5 0'y tom

where o is the Pauli z-spin matrix. The evaluation
of this is straightforward and yields

y2

(M) 1

AN

0

[A(Q )]",(12)

TABLE II. Average magnetization per spin for increasing

width m.

ym

where y& is the magnetization of a column in the
state p,, =i, i = 1,2, . . . , A . Whether the y, 's take
on values m, m —2, m —4, ... down to 1 or 0 will
depend on whether m is odd or even.

(M)
m m

(10) (M)
N

which is well known. ""
(ii) The above scheme can be extended to two-

dimensional models. As' an example, we carry
out the formalism for the triangular lattice (square
lattice with diagonal bonds) with periodic boundary
conditions. Let the array be of m rows and n
columns. The indexing of states is done column-
wise by letting the state of the 0th column be in-
dexed by p,„0=1,2, ... ,n. Each p.~ can take on

2
3

5

6
7
8
9

0.6115
0.6667
0.6788
0.6745
0.6750
0.6752
0.6751
0.6751
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1n A.

TABLE III. Results of linear data fit for 1 n Tr A vs. n for
m = 2, 3, . . . , 9, slope s and intercept b

s /k s /mk

28

20

0.7645
1.005
1.329
1.667
2.000
2.333
2.667
3.000

0.3823
0.3350
0.3323
0.3334
0.3333
0.3333
0.3333
0.3333

16
Table I shows the convergence of (M)/nm for m
= 6 to a value of 0.6750. Increasing m from 2 to
9 gives finally a value of

/2 (M)um -0.5751 (13)

4'

/2

FIG. 1. P1ot for 1nQ~~=lnTr[A(O~)]" vs n for m
=2, 3, 4, 5, 7, 9.

for the magnetization of the triangular lattice
(Table II). The computation of the entropy utilizes
its extensive property. For sufficiently large mn,
the total entropy should depend linearly on mn.
Plot of ln TrA(Q„)" vs n is constructed for n
=2, . . . , 15 and m=2, 3, . . . , 9 (Fig. 1). Straight-
line fits are made for each m using linear regres-
sion. The slopes S„=S /n are given as a function
of m for m = 2, 3, . . . , 9 (Table III). The entropy is
then found to be

S=S„/m=0.3333k= sk. (14)

Since the size of the transfer matrix increases
as 0 x 0, analytic solutions soon becomes un-
feasible. For a lattice of 9 xri spins, there are
5776 matrix elements. We can, however, com-
puterize the generation of the matrix elements by
letting the computer select from the 2 possible
states only those 0 states satisfying the critical
field requirement. 0' comparisons are then made
to obtain the matrix elements. From here, the
S and (M)/mn calculations can be carried out in
a straightforward manner.

For each of the eight values of m = 2, 3, . . . , 9,
S and (M)/nm are evaluated for n= 2, 3, . . . , 15.

1

V. - RESULTS AND DISCUSSIONS

Table I7 contains the results of our calculations.
The column labeled Monte Carlo corresponds to
Monte Carlo (MC) calculations, '3 '7 performed
on lattices of size N& 3000. We observe that ex-
cept for the cubic entry the present calculations of
magnetization agree with the MC calculations to
well within five parts in 10'. It is to be emphas-
ized that since the Monte Ca.rlo magnetization re-
sults join smoothly to the finite temperature re
gion, the aforementioned agreement indicates
strongly that the entropy associated with the

TABLE IV. Summarized results for various antiferromagnetic Ising models. Ground state in the critical
magnetic field B, = z(J).

Lattice Transfer matrix Monte Carlo

One-dimensional (z = 2)
Square (z = 4)
Triangular (z = 6)
Simple cubic (z = 6)

0.4472
0.5470
0.6751
0.6208'

0.4475
0.5472
0.6753
0.5902

0.4812
0.4075
0.3333
0.3563

' Results have only been carried as far as 3 X 4 X (n ~ ~).
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ground-state degeneracy, which we calculated, is
the same as the limit as T 0' of the finite tem-
perature entropy. "'" The entropy calculations
clearly satisfy the inequalities discussed in Sec.
III. The triangular lattice, furthermore, gives
an entropy value of (0.3333... )k which leads one
to the conjecture that the exact value is 3k. We
can evidently extend this transfer matrix method
to three-dimensional models. The indexing of
states would be plane wise. The number of these
plane states (and hence the dimension of the trans-
fer matrix) increases so rapidly with the size of
the plane that it is at the moment not quite eco-
nomical to make extensive calculations on large

lattices. As an example, computations for a sim-
ple cubic 3 x 4 x n lattice have been carried out
and the magnetization is found to be 5/g higher
than the corresponding MC calculations. We ex-
pect, however, the rapid advance of computer
hardware will soon make it feasible to treat three-
dimensional systems.
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