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Critical dynamics of isotropic antiferromagnets

using renormalization-group methods: T & T~ *
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We analyze a simple model appropriate for the description of the critical dynamics of isotropic
antiferromagnets in the ordered phase. We use renormalization-group methods and mode-coupling ideas to
analyze the various correlation functions of interest below the Neel temperature. The transverse correlation
functions are dominated by spin waves in agreement with the predictions of hydrodynamics in the appropriate

qg&1 limit . We find that the positions of the spin-wave peaks for the transverse magnetization and

staggered magnetization correlation function diAer significantly as q$ increases. The spin-wave peaks persist

as qt' is increased in the transverse staggered magnetization, but become quickly overdamped as qt'

increases for the transverse magnetization correlation function. These results are consistent with our previous

calculations at T = T~ where we found damped spin waves in the staggered magnetization correlation

function, but not in the magnetization correlation function. Our most interesting result is that as a result of
strong coupling of transverse spin waves into the longitudinal modes, hydrodynamics breaks down in treating

the longitudinal magnetization correlation functions. This breakdown, first discovered by Villain using a
mode-coupling approach, is manifested in the wave-number-dependent spin-diffusion coefIIicient going as

q
" in three dimension for small q. The treatment of the longitudinal order-parameter correlation function

is diRicult within an e expansion. We discuss these difficulties.

I. INTRODUCTION

In previous papers" we discussed a simple
model which, we believe, describes the critical
dynamics of isotropic antiferromagnets. We ana-
lyzed this model for temperatures greater than or
equal to the Neel temperature, T„, using dynamic
renormalization-group methods. In this paper, we
carry out the analysis of the dynamics in the or-
dered phase (T (T„).

There has been a great deal of recent activity in
the area of dynamic critical phenomena. ' Almost
all of this work has been focused on the disordered
phase. For the most part, the systems that have
been studied have a near-Lorentzian spectrum in
the disordered phase. The key problems therefore
have been to calculate the dynamic critical index
z and evaluate the width characterizing the Lorent-
zian spectrum. In our previous work, "we showed
that the order-parameter correlation-function
spectrum for the antiferromagnet shows a rather
strong non-Lorentzian shape for qg a 1 (q is the
wave number and $ the correlation length) that is
important for interpreting experiments. This cal-
culation is in agreement with previous mode-cou-
pling calculations, ' experiments, ' and subsequent
renormalization-group calculations. "A key point
one has to bear in mind in both the work for T «T ~
and the work discussed here is that the more
structure one finds in a correlation function the
more difficult it is to approximate using an e ex-
pansion and the more one must supplement an e

expansion with other types of information. ' We

will see that the correlation functions below T„
show considerably more structure than those above
and therefore one must work harder to interpret
the results. The rewards, however, are that there
is a great deal of new qualitative physics.

There have, to our knowledge, been only two
previous renormalization-group calculations in the
ordered phase for systems governed by equations
of motions with mode-. coupling terms. Ma 2nd
Mazenko'" studied the dynamics of isotropic fer-
romagnets near six dimensions and found that the
coupling of the transverse to longitudinal modes
led to a breakdown of hydrodynamic;. - -"~, i. lie longi. -
tudinal mode. In that case, however, the extrapol-
ation to 3-dimensional systems is less clear since
the special dimension for the dynamics (d =-6) is
different from that for the static:".. (d =-4).

Recently Slggla, and Hohenberg, Halpei ln and
Siggia" have investigated the symmetric planar
spin model for the A. transition in liquid helium for
T& T,. For P« 'I', the planar spin model is very
similar to the model we study here. Below 7"„,

however there are significant differences. In the
antiferromagnet it is possible for the magnetiza-
tion to couple into the product of the two different
transverse components of the staggered magnetiza-
tion. In the planar model there is only one trans-
verse component. Thus one does not have the
breakdown of hydrodynamics (see below) in the
planar model found in the model studied here.

The new qualitative elements in the ordered
phase mentioned above arise from the development
of a spontaneous staggered magnetization below
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T~. Since the order parameter picks out a special
direction, the response to perturbations parallel
and transverse to the order parameter is very dif-
ferent. The transverse modes are dominated by
spin waves while the longitudinal modes are relax-
ational in nature. Halper'in and Hohenberg, ' using
hydrodynamickl arguments, proposed forms for
the various correlation functions for the isotropic
antiferromagnet for T & T„. Our calculations sup-
port their results for the spectrum of the trans-
verse modes in the hydrodynamical limit q)«1.
We supplement their results with explicit calcula-
tions of the spin-wave velocity and damping cor-
rect to O(e). We also show that the residues of the
hydrodynamical poles are more complicated than
in the simple hydrodynamical theory.

The longitudinal modes are far more complicated
than one would suspect from hydrodynamic argu-
ments. " The complications arise due to a strong
coupling between the longitudinal and transverse
modes. It is well known" that this coupling causes
the longitudinal static susceptibility y„(q) to di-
verge as q

' for small wave number q. We find
that these same types of couplings cause drastic
qualitative changes in the dynamic structure factor
for the longitudinal modes. In particular, we find
that hydrodynamics breaks down in treating the
longitudinal magnetization (a noncritical conserved
variable) dynamic autocorrelation function. We have
calculated the dynamic-shape function for the longitu-
dinal magnetization in the hydrodynamical regime
q («1 and find that the shape is Lorentzian but
that the characteristic frequency co, is proportional
to q' '~2 rather than q' as predicted by hydrody-
namics. Iv the hydrodynamical theory (d, =D~ q'
as q-0 where D~ is the longitudinal-spin diffu-
sion constant. For T& T„we find that DI, -q
for small q and does not exist for q -0. This
result is consistent with that of Villain" who fo~nd
that (d, is Proportional to q't' in three dimensions
using a mode-coupling approach.

The effects of transverse modes on the longitu-
dinal-order parameter correlation function are
very complicated within an e-expansion approach.
We will discuss these complications and eventually
conclude that the spectrum is essentially Lorentz-
ian.

In Sec. II, we set up the problem, and discuss
the equations of motions we study. We also sum-
marize the known results for the static correla-
tions for our system. We then show, in Sec. III,
that the results for the various correlation func-
tions are nontrivial even to zeroth order in e. In
Sec. IV, we discuss the method we used to calcu-
late the dynamic correlation functions to O(e) in
the ordered phase. This section also points out
how one can extract the spin-wave frequencies in

terms of the exact static correlation functions. We
use the results of Sec. IV in Sec. V to calculate
the transverse correlation functions correct to
O(e) in the hydrodynamical regime. In Secs. VI
and VII, we analyze the longitudinal-magnetization
correlation function and the longitudinal-order
parameter correlation function with emphasis on
the coupling to the transverse modes. We conclude
in Sec. VIII with a discussion of our results and
their experimental implications.

N
~t

= XN x H„-I'„H„+g (2.1a)

and

&M

Bg
=XNxH~+I'~V H~+q~, (2.1b)

where A. is a mode-coupling parameter, I'~ is a
bare kinetic coefficient associated with the noncon-
served order parameter N(x, t), I'„ is a bare trans-
port coefficient associated with the conserved var-
iable M(x, t), and q (x, t) is a random Gaussiandis-
tributed noise source satisfying

(q„'(x, t)) =0, (2.2a)

(q' (x, t)q,'(x', t'))

= 25,,5.,r„5(x—x') 5(t —t')
I

for u =I or N and i=x, y, z, where

r. = O.„r„-O.„r„V'.

(2.2b)

(2.3)

In Eq. (2.1) H„(x, t) is an effective local field de-
fined by

H„= (5E/5$„), (2.4)

where 4 =5 ~M+5 ~N, and I' is the Ginzburg-
Landau-Wilson free-ener gy functional

+(M, M)=
2 f d x(r, i*+(~)'+-,'u(R')'+rM'],

(2.5)

where r, = a'(T —T„'), a', r, and u are positive con-
stants and T„ is the mean-field transition temper-
ature. When working in momentum space, all
wavenumbers are restricted to be less than a cut-

II. FORMULATION OF PROBLEM FOR T & T~

A. Equation of motion

The equations of motion we study are the same
as those Freedman and Mazenko (FM)" and Hal-
perin, Hohenberg, and Siggia" studied for T~ T„.
In the scaling region the staggered magnetization
density N(x, t) and the magnetization density M(x, t)
satisfy the coupled equations
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off A. Ma and Mazenko" have shown that the equi-
librium correlation functions generated by equa-
tions of motion of the type (2.1) are the same as
those generated by the static distribution function
e . This insures that the equilibrium properties
calculated from (2.1) will agree with the usual"
static e-expansion results.

A.'A ' Ef= = —+O(c'),
K4

(2.6a)

a = = —+O(~),F„r (2.6b)

where lf, = (8m') '. It will turn out, when working
with T & T„, that in order to obtain numerical re-
sults valid to order e we must have a to O(c) while
u and f must be known to O(e'). We have used Wil-
son's" matching technique and the memory-func-
tion formalism of Sec. IV to determine a and f to
the next order in e. The parameter u may be de-

8. Summary of results for T ~~ T&

FM performed a renormalization-group analysis
of Eq. (2.1) correct to O(e). It was shown that
these equations have a stable dynamical fixed
point. The stable fixed-point values of the dyna-
mical parameters can be written in terms of the
dimensionless variables f and a which are given by

termined from the statics independently. " While
we discuss the details of these calculations else-
where, we present here the necessary numerical
results. (See also Table I):

a = —,'(1+ca,), a, =0.8068, (2.7a)

(1+of,), f, = —0.258, (2.71)

(1+au, ), u, =0.5702.
4-g

(2.7c)

R =, = —", [I —e(0.0219)] .
uA ' (2.8)

Freedman and Mazenko used the O(e) values of the
coupling parameters for 7 & T„ to calculate the
correlation functions

C "5(q, &o) = (e,„(q, a&)@,s(-q, -~)) (2.9)

in the scaling region to O(e). It was shown that the
correlation functions could be written in the dyna-
mical scaling form'

Our result for f, agrees with that obtained previ-
ously by Halperin et al." However, our result for
a does not agree with theirs. In our notation their
result is a, =1.034. The reason for this discrep-
ancy is not understood. A dimensionless combina-
tion of these variables we will encounter often is

TABLE I. Parameters calculated at lowest order and next order in q.

Quantity Def. eq. Lowest order
I

Next order

8 n'2 [1 q (0.258)]
K4 6

Na=

bs

S

go

SC

r ~-(A()«

DS
r„(A()'/2

DS
c kx

r@~= r~q (A,$}' (1 —gag~)

re = -(rare)T = S/2

g'0
20 b

gi=6 2b

E'

11@4

11
3

4
3

0.4200

0.3863

0.0622

~'Jr(r'r)"'

-'A(h)'"

[1+~ (0.5702)]
1UC4 6

~(0.0219)]

+[1+e(0.0345)]

34 [1+e(0 0682)]

[1+q (0.0337)]
4

~33

qo m@2(~3) ~ [1—e(0.0513)]

&
~J&(&) [1+a(0.0169)]
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C'„'8(q, (()) = 5;,.5„gy „(q)f,( v)/(u(q, $), (2.10)

where y„(q) is the static susceptibility for the var-
iable + =M or N, &v(q, $) is the characteristic fre-
quency, f„"(v) is the shape function, x=q( and v

=(d/(d(q, $). The characteristic frequency has the
dynamical scaling form

(2.11)

where the dynamical scaling index is ~ =—,'d. FM
calculated the scaling function Q(x) (see Fig. 7 of
Ref. 2 for a plot of this function) and found the
same qualitative behavior as that calculated pre-
viously by Joukoff-Piette and Repibois" and Huber
and Krueger. " This form for the scaling function
compares favorably with the neutron scattering
data of Nathans22 and Lau et al." Analytical ex-
pressions were obtained by FM for the shape func-
tions f,"(v) correct to O(e) for all values of x and
v. Here, we briefly summarize these results for
a= 1. The shape function f„"(v) for the magnetiza-
tion is essentially Lorentzian for all values x
showing the characteristic hydrodynamic pole at
v=0 for x-0. This behavior is in qualitative
agreement with the neutron scattering experiment
of Tucciarone et al. '4 The shape function f,"(v) for
the order parameter has the following behavior:

(i) In the relaxational regime, x« 1,f,"(v) is a
Lorentzian centered about v=0.

(ii) As x increases and the critical regime x» 1

is approached, two fluctuation-induced peaks ap-
pear in the spectrum displaced symmetrically
about the origin. For c =1 these two peaks first
appear for x -2.

(iii) The position of the peaks moves continuously
outward from the origin unti1 x-10 where the posi-
tion of the peaks attains a limiting value v~ = +0.65.
The non-Lorentzian shape function f,"(v) found by
FM is similar to that observed in the isotropic an-
tiferromagnet RbMnF, by inelastic neutron scat-
tering. ' Similar peaks in f"„(v) were found pre-
viously by Wegner4 at T = T„(i.e. , x =~) by numer-
ically solving a set of coupled equations similar to
Eqs. (2.1). Wegner derived these equations using
a mode-coupling approach. Recent calculations by
Janson' for a generalized isotropic spin model con-
firmed our earlier calculations.

(
Qp

5N (x)
=0 (2.13)

in a perturbation series expansion we obtain the
equation of state (in zero external field) relating
the spontaneous magnetization to the temperature.
To lowest order in e one obtains

ro+uN = 0. (2.14)

One easily sees that since u -e that N-e ' '. This
makes the perturbation theory considerably more
complicated than for T ~ T„. We find going to first
order in e that the spontaneous staggered magne-
tization is related to the temperature by

P2 2~N2 1/2 8

2 A
(2.15)

where

(8 = a (1 ——,', e),

7 —= fro —r,'f -a'f 7' —T„f,

(2.16)

(2.17)

and r,'=-SeA'/22 is the critical value of r, . If we
define the correlation length as

$
' =A'(uN'/A') 8i' (2.18)

then we obtain the usual relation between tempera-
ture and correlation length

7 = —'A22) )'»(gA)-& )" (2.19)

since to O(e), p/v=1+ —,e. Using these definitions
one can show that the longitudinal and transverse
static correlation functions are given, correct to
O(e),"by

In our model, the static properties of the mag-
netization and the staggered magnetization are un-
coupled. Therefore, the statics of the magnetiza-
tion field remain Gaussian as above T„. The spon-
taneous staggered magnetization, however, leads
to qualitative changes in the statics for the order
parameter. The calculation of the static order-
parameter properties for T = T~ has been dis-
cussed within the context of the e expansion by
Brezin et al. ,

"Nelson, "and by Mazenko. " We
summarize the results here. By expanding the
quantity

C. Static results for T & T& I»', (»)I '=2( *(f,(»)+ 9 2 . ), (2.20)

The major new feature for T T„ is that some
component of the staggered magnetization has a
finite equilibrium average in zero external conju-
gate field. That is, we can write

(N, (x, t)) =N, (2.12)
where N is the spontaneous staggered magnetiza-
tion.

where we use (only in this section) the convention
x = q$ /M2 and,

18m (x'+4)")"f (») =»*—
ii i ~ i»-.'[(»'»4)'i'-»]),

(2.21)

while
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[X'(q)] ' = q'f (x),

where

(2.22) (ss-Q Js (Kj~ (3.8)

fr(x) = 1 + 1 + (1 +x 2)(x 2 ln(l +x 2) —1)11

(2.23)

where i = x, y, z and s = 0, +, —.The transformation
coefficients are given explicitly by

In the small x limit we find

f (x(=x'((+ ) +0(x')

while

fr(0) =1+e/11.

(2.24)

(2.25)

1
t = ~ (6,„—t6,„),

(6, —6 ).

(3.9)

The main points we wish to make about X~ and X~
is that both diverge as q-0. y~~ -q ' which is the
expected Nambu-Goldstone mode. The divergence
of the longitudinal susceptibility. )t((((q)

- q ', is
related to the so-called coexistence curve singu-
larities discussed by Brezin et al."and is dis-
cussed in some detail in Ref. 27. The divergence
of these static quantities will have important con-
sequences in treating the dynamics for T& T„.

III. ZEROTH-ORDER SOLUTION

Even to zeroth order in e, we obtain interesting
results for the dynamics of our model. Remem-
bering that N-e ' ' we can easily show that to
zeroth order in e the equations of motion become,

&t
&N (q, t) —r„[@'(q)] '(q)6N (q-, t) =q„'(q, t), (3.1)

Mi(q t) ——I'~q'&Mi(q t) =nAq t)
8

(3.2)

(3.10a)

and

(3.10b)

After applying this transformation we can write
the zeroth-order equation of motion as a vector
equation for y =4 —(q):

y'„'(q, t) — I( )q[y "(q)] 'q('„'(q, t)

where

+is ANr „(q)y'„(q, t) =q'„(q, t), (3.11)

[y'„'0(q)] '=& „r+6„„[q'+r,+uN'(1+26, ,)]
(3.12)

It is easy to demonstrate that these transformation
coefficients satisfy the completeness relations

a
N, (q, t) —I'„—q 'N, (q, t)

—ANr~X Mr(q, t) =q~r(q t) (3.3)

M r(q, t) —I'(((q 'rM r(q, t)

-»q'~x N.(q t) =nQq, t) (3.4)

and

[X .(q)] '=6. ~q'+5. .~~= ~ .(q),

& (q) =&,~q'+~, ~&,

q'(q, t) = P t„q'„(q, t) .

(3.13a)

(3.13b)

(3.14)

where we have

6N~(q, t) =- N,(q t) -(N, (q t)),

[y+0(q)] '=q'+2uN'
(3.5)

(3.6)

+af P t4s+s(s~ (3.'7)

and N& and M~ are transverse to the z component
of N. We note that the various spin and "isospin"
components are coupled in the transverse direc-
tions. %e can obtain an equation which is diagonal
in the spin indices by making a unitary transfor-
mation. That is we introduce the standard "helic-
ity" basis by writing

The zeroth-order correlation functions C'„'8'0(q, &u)

are defined by

(y'„'(q, ur)y 8'(q', &o')) = (2n)"'6'+(q+q')

x 6(~+ a)') C s8'o(q, (g)

(3.15)
and can be easily calculated by Fourier transform-
ing the '.;quation of motion over time, solving the
resulting set of two coupled linear equations giving

in terms of q and then using the statistical
properties of the noise.

The zeroth-order correlation functions may be
summarized as follows. The longitudinal correla-
tion functions are given by the simple Lorentzians
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C 0020(q
NN( Pl ) 2 + (F 2vq 2)2 (3.16) 3.0—

2 I'g
NN ( i ) ~2 + (F [XL,0(q)] -lj2 (3.1 I)

2.5

2.0
which, if we replace [X,„'(q)] ' by [X„'(q)] ', »e
identical to the zeroth-order correlation functions
for T» T„. We further note that

T,O

1.5

C ' (q (g) = C (q (u) =0 (3.18) I.O

C'„8'(q, ro) = C„a'(q, (o) = C')o(q, (u) = 0. (3.19)

The remaining nonzero correlation functions are
those between transverse fields, C'„&'(q, &u)

= C„a'(-q, -&u). These correlation functions can
be written in the dynamical scaling form

(3.20)

0.5
~ ~ ~

0.4 0.8 l.2 l.6 2.0 2.4 2.8

FIQ. 2. Zero order in q transverse magnetization
shape functions, f ~~~~ (x, v) as a function of v for x= 1
(solid line), x= 2 (dashed line) and x= 3 (dotted line).

(q, (g) = C+ ' (q, )

(xN(q)xN(q)' '
~T.o(, x)NN

(3.21)

(3.22)

~To()2x3(33v +x+11)
&(x v)

T,o 2x 3 |i2 (11"2+3x +33
33 11 D,(x, v)

where e, = &p is the characteristic frequency,
=BI.~( ' is the spin-wave velocity squared eval-

uated to zeroth order in e, uN2 = $ ', x =q$ and
v= &u/ar, . We then find that

&0 8 XV
~AfN( ) 3 D ( )

where

O.(v, v)=v +2v ('" —i)+(|+*') .

(3.25)

(3.26)

I

I

(

I

(

1

)

I

J

3.0— We have plotted the results for these f's for vari-
ous values of x in Figs. 1-3. The zeros of D,(x, v)
occur at

2.5 &/2 3 x/2 2&&
(3.2V)

2.0

T,O

1.5

I.O

0.5

Then for small x the spin-wave poles are at v0
=+1 (or &u=+&,q) with a damping proportional to x.
As x increases the damping increases and the ef-
fective spin-wave velocity decreases until x' =33
where the real part of the pole vanishes and the
mode becomes diffusive.

It is a simple matter to compute the spin-wave
peak positions as a function of x from fNTNo and
fT„'. In the case of fNTNo we obtain

I i I 1 I i I I l

0.4 0.8 l.2 I.6 2.0 2.4 2.8 ~peak + I + +1- (3.28)

FIG. 1. Zero order in g transverse order-parameter
shape function, f~~ {x,v) as a function of v for x=1
(solid line) and x= 3 (dashed line).

while for fNTNo we obtain

Ppeak = —3 — + 1 +4 -+ f (3.29)



18 CRITICAL DYNAMICS OF ISOTROPIC ANTIFERRQ MAGNETS. . . 2287

I

I

I

I

I

I

I

I

I

I

I

I

I

5.0— I I I I I

2.5
I2-—

2.0

f '
(max)

1.0 ,0

N

0.5 I

6 8 IO 12

0.4 0.8 1.2 1.6 2.0 2.4 2.8 F/G. 5. Maximum value of the zero-order transverse
change functions fMtM and fN~z as a function of x.

FIG. 3. Zero order in q transverse off-diagonal
shape function, fM1NO(x, v) as a function of v for g=l
(solid line) and x=3 (dashed line).

I I I

'
I

'
I

I.2—

I.O

0.8

eak06

04

0.2—

I I I I I I

0 8 l 0 12 l4

Flo. 4. Spin-wave location, p~,, as a function of x
for the zero-order transverse shape functions f ~' 0 and

Ti0
MM

fNN'

Vile have plotted v ~,k and the height of the spin-
wave peak for fr) jn Figs. 4 and 5. It is particu-
larly interesting that the position of the spin-wave
first moves out from its hydrodynamical value for
x~ 5 and then moves rapidly to small values as x
increases with the peak disappearing at x-12.85.
The spin-wave peaks persist to a higher value of
x than one would obtain from an analysis of the
zeros of Do(x, v). The peak height for f~rg is a
rapidly decreasing function of z. The spin-wave
position for the transverse magnetization is plotted
in Fig. 4. Unlike v~,k, it is a monatomically de-

creasing function of x, with the mode disappearing
at g =2.92. VFe see that the g where the real part
of zero of Do(x, v) disappears (x= ~) is roughly
midway between where the spin waves in the mag-
netization and in the staggered magnetization dis-
appear. This analysis shows us the importance
of finite z corrections to hydrodynamical results
even when the "hydrodynamical" mode is relatively
well defined.

IV. MEMORY-FUNCTION APPROACH TO PERTURBATION

THEORY

A. Motivation

We are now prepared to investigate the O(e)
corrections to the correlation functions for T & T„.
In principle, this involves a straightforward per-
turbation theory expansion in X. -O(e ' '), and
N-O(e) remembering that N-O(e '~'). Ma and
Mazenko carried out this calculation for the ferro-
magnetic case using a direct expansion of the re-
sponse function. Hohenberg et al."have used the
Martin et u$.' technique for treating the planar
ferromagnet for T &T,. In both cases the calcu-
lations were extremely complicated and cumber-
some. There are several reasons why these meth-
ods are inconvenient for calculating with T &T .
The major complication is the proliferation of
indices. For the antiferromagnet there are two
independent correlation functions for T ~ T~ while
there are five nontrivial correlation functions for
T &T„(see Sec. III). This comes about because
the spontaneous staggered magnetization picks out
a special direction. The difficulties arising from
the large number r. -". indices is particularly acute
in the ca;-.'e of the ': "'i.n, Siggia, and Rose forma-
lism where additi. ', elds are introduced. %'e



2288 MAZENKO, NOLAN, AND FREEDMAN 18

8

gt fdc„(t)—= G„(t)+-G„( t)- (4.1)

[Eq. (2.45) in Ref. 10] relating the correlation and
response function continues to be correct for
7 & T„ the Fourier transform G,&(~) is not gen-
erally symmetric under interchange of i and j and

~ —-~. In particular for the anitferromagnet the
spontaneous staggered magnetization, via the
mode coupling terms, breaks this symmetry which
is valid for T~ T„. The fluctuation-dissipation
theorem becomes in this more general case

C„.(~) = —ImG,~.'(~) ——ReG~+(~),
2 g 2 g (4.2)

where G and Q" are the symmetric and anti-
symmetric parts of G under interchange of i —j
and ~ —-~. The above form for the fluctuation
dissipation theorem can complicate matters con-
siderably for T &T~.

(3) We know that a convenient representation
for the response function in the disordered phase
(suppressing indices) is:

attempted to carry out the Ma and Mazenko type
calculation for the antiferromagnet and found that
the complexity was increased by an order of mag-
nitude over the ferromagnetic calculation which
was itself extremely involved. We were able to
isolate three main reasons for the technical dif-
ficulties below T,.

(1) The simultaneous determinations of the dy-
namics and statics leads to unnecessary complica-
tion. The dynamic correlation functions depend,
in a rough sense, on two main ingredients, the
static susceptibility y(q) and the generalized fre-
quency and wave number dependent transport
coefficients I'(q, &u). The response-function cal-
culation mixes these together. Since we know y(q)
from independent calculations it seems unnecessary
to recalculate it from the equation of motion.

(2) The fluctuation-dissipation theorem takes
on a more complicated form for T & T, than for
T ~ T,. While the result

c ((u) = i- dte" 'c(t), (4.5)

where ~ is assumed to have a small positive imag-
inary piece. It is easy to show using the fluctua-
tion-dissipation theorem that in the disordered
phase C(co) is related to the memory function r(~),
as defined by (4.3), by

c((u) =
(u+ir(a))g ' ' (4.6)

Note that the exact static susceptibility enters
naturally. By working with Q we can develop meth-
ods for calculating r(&) directly. This will also
allow us to circumvent the entire question of a
fluctuation-dissipation theorem.

B. Memory-function formulation

We now want to outline a method for calculating
r(~) directly using ideas that have evolved in the
treatment of the dynamics of fluids. " We intend
to publish the details of the method elsewhere.
Here, we will present a few ideas behind the meth-
od and the results relevant to the antiferromagnet.

Ma and Mazenko' have shown that the correla-
tion function for a rather large class of dynamical
models (including the isotropic antiferromagnet)
can be written in the form

'c„(t)=fz& eeee'ee, w (4.7)

for t ~ 0. In (4.7), cp, represents the set of slowly
varying fields: 5', = y, —( y, ),

=g +o Sye +e (4.8)

is the static distribution function, and D~ is the
generalized Fokker-Planck operator

We can circumvent these difficulties by working
with that dynamical quantity for which r(~) is
essentially the self-energy. The appropriate quan-
tity is the Laplace transform of the correlation
function

G '((o) =-i(o/r((u)+)t ' (4.3)

(4 4)G (&u) =-i(o/r+()P) —I'((o).

Unlike r(~), the self-energy p(~) has no direct
physical interpretation and several intermediate
steps are required to relate .. '~:) to r(+)." For
T &7;, the determinatio]:I c.' ":,; i.rom "&~.) be-
comes quite complicated.

where r(+) is the "physical-transport coefficient"
or memory function and y is the full static sus-
ceptibility. A direct diagrammatic expa, nsion gives
6 ' most conveniently in terms of the one-body
irreducible self-energy Z(&u):

(4.9)

where V, is the streaming term and I., is a gen-
eralized transport coefficient. The above form for
the correlation function is very similar to that
for the usual correlation functions studied in the
theory of classical fluids if we identify -iD with
I. the Liouville operator. The mapping is not com-
plete because ia„ is not Hermitian. Instead we
ha, ve

X}CAN DVBq = Xq Bq DvAq, 4.10
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where

V, -L, — + . (4.11)Sy«ey«ey,
This lack of symmetry is not really a problem.
W'e can develop the memory function methods for
this case in almost complete analogy to the fluid
case. We first introduce the Laplace transform

M;', '.,(q)= ix-e, „8„, ~X,'(-q)

iL-(q)x,'(q)&i/, () (4.17)

If we ignore M"' then the e(enation for C,i t)(q, u&)

is given by

[~+iL (q)x, '(q)]c„,.((q, ~)

+i' E«„X,
~

q C,) g q, (d =X«q &«~5 ~.

(4.18)
In the disordered phase N=O and

@ g+ e f(~ -«D +)t g+ ~
0

rp5 p, ((~ —iD~) '5yiW„=-((p, ; (pi)

(4.12)

(4.19)

This is the zeroth-order result except for the X,'s
which are the exact static susceptibilities. In the
ordered phase the term proportional to X generates
spin-wave modes with speed

The memory function M(~) is defined in this gen-
eral case by

C, = lim —mb-i[X r(q)] i]ii2 (4.20)

(@CD&(w) g M&&(+)Ca&(((()) Xig (4.13)

where X,J = C, ~(0} is the full static susceptibility.
The essence of the method is to use operator iden-
tities like

(co -iD„) ' = (o '+ (o 'iD„((o iD, ) '— (4.14)

to obtain an expression for M(u&) in terms of multi-
field correlation functions. In particular we find
that M is a sum of two pieces:

(4.15)

where M,'.&' is a static or or-independent term given
quite generally as

M«g = iD„y« ~V'I Xjg,

«I + Xag-~ (4.18)

where the Qz are essentially the poisson brackets
between the variables i and j and we have used
Eq. (2.12} in Ma and Mazenko. " The second term
in M', -if «X,&, is clearly just the usually zeroth-
order damping term but with (Xoii)

' replaced by the
full X,&. For the antiferromagnet case where the
index i has a spin label, an isospin label as well as
a coordinate label, we arrive at the form

Si [('p] =ivy —iL,sFI/sq)i,

Sii [('p] =i V)+ iL(BFi/s(p, .
(4.22a)

(4.22b)

Here and in the rest of this section we use the
convention that one sums over repeated indices.
We have also introduced the notation

(A; ii&„= (&A((d —iD„) '58) (4.23)

with A and B arbitrary functions of the field vari-
ables. I'I is the "interaction" part of a Landau-
Ginzburg free energy. Note that M"' depends only
on the nonlinear terms in the equation of motion.

If we now assume canonical forms for mode-
coupling and free-energy interactions, E(l. (4.21)
takes the form.

This is the exact result one would construct using
hydrodynamical arguments. " To the extent we
replace X„and X„with their zeroth order in &

limits (4.19) reproduces the zeroth-order corre-
lation functions discussed in Sec. III.

We turn now to the dynamical part of the mem-
ory function M"'. It can be shown thatM"' is
given by

M"'(&)x i= -&8si[q]; &s', [q']&„+&s,[q];&q, &„

x C,t, (u&)(6(p, ; Si[('p])„, (4.21)

where

Mi, "( )X, =V,.„V G„( ) V'„,L, G„„„() —Lp„„V,„„G„,,„„((d)-L;L „„,G „, „((d) (4.24)

where V«„which represents the mode-couplingterms is symmetric in l and s, and u«», is completely sym-
metric. The 6's in this equation are the higher-order correlation functions defined by:

G „„„((o)= (q), q', . . .; p„q)„.(. .&„-(('pi('p, . . .; F,&„C„~((d)(rpi„(p„('p„.. .&„. (4.25)
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If we are working in the disordered phase then the
first term in Eq. (4.24) is of O(e) and gives the
usual mode-coupling contributions, the terms pro-
portional to V and u are of O(a'~'), and the term
proportional to u' give 0(«') corrections. The u'
term give the leading dynamical contributions in
the time-dependent Ginzburg-Landau models
(TDGL)." This equation for M"' can be used to
develop a perturbation theory expansion for I in
powers of X and u.~ The details will be presented
elsewhere.

&[V) +3L)N„u~„„) . (4.26)

C. Calculation of N ~~.
~ to 0(e) fol' & & &~

Our main concern in this paper is the analysis of
M', &' for T &T~. FM, who worked above and at
T„, needed to keep only the V' term in the expres-
sion for M"'. For T& T„we must be more care-
ful. The reason is that the 5 and 6 point functions

6„, 6„,„„possess disconnected pieces corre-
sponding to y =N or what we will call, in analogy
to the case of helium, condensate insertions.
Since each condensate insertion is of O(e '~2) we
can obtain overall contributions of O(t).

After taking into account these condensate in-
sertions and the symmetries of the various cor-
relation functions we can write correct to O(e):

To complete our analysis we must evaluate
G„„„(e)to zeroth order in c. We outline here
two'methods for carrying out this analysis. The
first approach is to consider the correlation func-
tions G„(t) in real time. Since we need only
consider results of zero order in a, the average
is Gaussian, and the four-point correlations may
be evaluated pairwise. The result for the memory
function is:

Mi«'(~)l'«g =2(V~r. —3LiN~" ~r.~)

der, d~, C,„(a&,)C,„(&u,)

(4.27)

where C,„(v) is the Fourier transform of the
zeroth order correlation functions. This expres-
sion is a standard looking mode-coupling result.
%e introduce it since we will need it in Sec. VI.

The second method is more general and also
more convenient from a calculational point of view.
This approach is a simple extension of the analy-
sis of C,.&

itself. Using the operator identity (4.14)
G„„„(&o)may be expressed in terms of a static
correlation function plus higher-order five- and
six-point correlation functions. After taking into
account the condensate insertions and neglecting
those terms which are of order c'~2 or higher, we
arrive at the closed matrix equation for G„„„(to):

'I

[(a+i(L)+L))]G,.~ «)((u) —i (6,«6), + 6) 6)«)2V.« „N G„(«(o) (+&)«6),+ 6) &)«)iL«u« „3N N„G «, ((o) =G))

(4.26)
where

(4.29)

and G,», is the static counterpart of G,
& «, (&o). For simplicity we work in a basis where g is diagonal.

R is now a straightforward although tedious matter to invert the matrix equations and then utilize Eq.
(4.26) to obtain an explicit representation for the memory functions. We summarize the results The la. -
bels, e, 0', s, s' denote spin components in the helicity basis while all other Greek letters represent iso-
spin indices. Then to O(c), M"' is given by"

r; .(k,k„~)= g ~&„&.,(k,k„~)q'„,'.(k,),
P«8

r;;,'(k,k„M) = 2I;-«'(k„q q, )D,l;.(q,q, )&&P ~N„.(q,q, )
~

&'P'&C'„(q )C'(q, )I g:„'„' ' '(k, , q„q,), --
where

t

15~(k1 qiq. ) = [&;21V5 N(k, q, )+ 3L6(k, )~~«,B~., N ~«, Nk.,0] ~(k, ql —q2), -
I =-I*,
&„,.= 6,,,is 6, ;+i&(6,,,6.,..—6,~g, ,),

is a, ,„transformed into the helicity basis,

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)
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~aes = assets'h6ss, y [Xs (q qx}] 6n, -e [Xa(q&}]

+Nay ~asQ~gs ~+ ~asN~gsy 7

(4.s6)

(4.s7)

D 2 2(q, q2) =AsssA"osA'ss, ~ A"cs & —s'B(q, )(A"zA" &+A" sA" s) —s"B(q,)(A"&A"' &+A"' &A" s)
+ [s'B(q, ) -s"B(q,)]', (4.38)

& P~N...(q,q, )
~

P &=6...6„.[A-.',A '„A-.', '—B(q,)A".',
s"B-(q,}A",zj+ b~6 ~ ~, 6Isq, [ A"-' zA"' &+s'B(q, ) —s"B(q,)]

+Chub~„, b ~ z, [—A" ~A" ~+s"B(q,) —s'B(q, )]+6. ~, 6 ~ s, b C~(A'" ~+A" s) s

(4.se)
A = [(o+ fI'(q, )+if'(q, )],
b. = -shr .(q, )N,

= -s'hr (q, )N,

(4.40)

(4.41)

(4.42)

s'B(q, )=b b =s'h'r (q, )r„(q,)N',

I'(q) =1.(q) ([x'.(q)] '+ 6., ~'(I+ »...)] .

(4.43)

(4.44)

Note that D is independent of the isospin indices.
We can then easily find any component of M' by
doing the internal sums over o,', P, s, and s' in
Eq. (4.Sl}.

The rather complex nature of these results
emphasizes the difficulties one might encounter
if a more conventional approach were used.

V. TRANSVERSE CORRELATION FUNCTIONS

'The general structure of the transverse part of
the dynamic memory function is given by Eq.
(4.31). The transverse memory functions are re
lated to the transverse correlation functions, us-
ing Eq. (4.13), by the matrix equation:

rs i (&+—'fX» F»»)X»
C»»(q, »= (5.Sa)

I'»»(qs &o) = —(I » I'»)' 'qx«a»», a» ——0.0622

(5.2b)

I „»(qs (o) = I'„(I~&)' '(1 —«a»»), a»» = 0.3863

(5.2c)

$ is the correlation length, A a wave-number cut-
off, while x=qg.

Utilizing these expressions for the memory func-
tion, it is a simple matter to invert the matrix
equation (5.1}and calculate the transverse corre
lation function in the hydrodynamic limit:

Q(4»eg -hN[Xs(q)] '5, g+fI'g(q, ~)
8

x[x'(q)]-'j c,'„(q, ~) = x.(q)6... (5.1)

where Eq. (4.17) has been utilized for the static
or ~-independent part of the memory function.
We furthermore have

C»»(qs M) = C»»(qs R) = .

D

—
z

—z A. N+ 1"

D q~(0

( )
[ +'(x') 'I' jx

»» qs D(q +) s

D(q, ~) = [~+i(X') 'I'»»l[~+ fX»'I'»»]

X» (X») (h N+ F»») ~

(5.3b)

(5.3c)

(5.M)

I".~(q, ~) = I'.(q)6.~+ fI".~(q, ~), (5.2)

where X' indicates the bare transport coefficient
and I' z(q, e) is the u-dependent part of the
memory function given by Eq. (4.31).

We have evaluated the function I' ~(q, &u) in the
hydrodynamic limit of small q, and ~=0. After
performing certain elementary exponentiations,
we have in this limit:

I'„„(q,&u) = I'„q'(I1$)'~'(I —«a ), a„=0.4200

(5.2a)

From the roots of D(q, ur) we extract the spin-
wave velocity and spin-wave damping coefficient
valid to order E:

D(q 4)) = (QJ —(0 }((0—(0 ),
(0, = + c,q ——,'(tq'D, ) s

(5.4a)

(5.4b)

1/2
c', =Ri'»$ '(A$)' 1+ —,', «(I+ sx') —2 — x'«a»

(5.4c)

D, = I'»(A$)' '(1+a+ —,', « —«a»» —«a»„) . (5.4d)
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lim c,= I'„( '(A$)' ~'b,
x ~0

(5.5a)

Note that c,' is valid to order x', while D, is valid
to zero order in x'.

It will be useful to characterize the spin-wave
velocity and spin-wave attenuation coefficient by
the dimensionless parameters b, and d, defined as:

lim —
' =DD,q~

~ocgx (5.9)

The spin-wave frequency and spin-wave attenua-
tion both have the dimensions of a frequency.
Consequently, we may form the universal dimen-
sionless ratio:

limD, = I' N(A$)'~'d, .
x ~0

(5.5 )
D= [1—a(~f, ——,'a, —~, —4', + ,'a~„+—',a„„)—]&33

From Egs. (5.4), we have for 5, and d„
b, = W(1+ —,',~) (5.6)

= 1+a+ —6 —ca~~ —&a~~ ~ (5.7)

Using our results given in Sec. II for a, f, and u
to the necessary order in e, we have for b„and
d„valid to O(e)

5 =W(l+ —(f +a, —u, + —,', )) =L98) (d=3)

=0.720 (for d= 3). (5.10)

While this ratio is experimentally determinable
we have found no such measurements reported in
the literature.

We now discuss the order E results for the shape
functions. In order to extract the shape functions,
we define the characteristic frequency ~, =pc, .
Furthermore the Fourier transform of the cor-
relation function C(q, ~) is related to the Laplace
transform C(q, e}by the simple relation

(5.8a)
C(q, &u) = -2 ImC(q, &u). (5.11)

d, =
—,
' [1+-', e (a, + —,', —a» —a„„)]= 1.424 (d = 3) .

(5.8b)
Using the dynamical scaling form of Eqs. (3.20}
(3.22) we have:

P

f„„(x,v)= 2xa&g ' —(1+—,',e Ea»)+1 —e(—,'+a ) [D(x, p)]-' (5.12a)

f T (x P) 2xP(1 + ~)vg-1. 1 + NN NN [D(x p)] g
22 1+a 1+a 1+a

1fs~(x) v) = 2xQ~B v j, ———&a + — —g —[D(x p)]-).

(1+s}' 1+—x~Q
~ E 1 —a 2&aNN 2&a»

NN il 1+a 1+a 1+a

~n us) + 1.f
2'

(5.12b)

(5.12c)

(5.12d)

Again, in order to explicitly evaluate these func-
tions, the results of Egs. (2.7) must be utilized.
Figures 6-8 summarize the order c results for
the transverse correlation functions in the range
x s 1 where our calculations are valid. Qualita-
tively, the order E results have the same feature
as the zero order results. There is a sharply
peaked spin-wave excitation, centered roughly
about v=1. However, a more detailed compari-
son does reveal some differences. In Figs. 9
and 10,we compare thepeakpositions for Eqs. (5.12)
with the zero-order correlation functions. In the
case of f~r„, qualitative differences appear. For

fear„'

the peak position decreases monatomically
with increasing x and eventually disappears. How-
ever, for Eg. (5.12c), the peak position increases
with increasing x. Qf course, our results are no

longer valid for x&1, but we can interpolate be-
tween our hydrodynamic equation and the known
properties of f„„,as calculated by FM at T„, who
found no evidence of any spin-wave remnants. Con-
sequently, we expect the spin-wave position for
f„„to increase with increasing x, reach some
maximum position and then decrease with increas-
ing x, eventually disappearing altogether. The
disappearance of the spin-wave peak in fear„ for
finite x is also predicted by the zero-order results.
This suggests that order E corrections are qual-
itatively important in determining the location of
the spin-wave peak in

fear~

for small x, but do not
qualitatively affect the persistence of the peaks.

A comparison of peak height between zero-order
and order-e results for fsr„ in Fig. 11 shows a
substantial increase in peak height when E cor-
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FIG. 6. Order e, staggered-magnetization transverse
shape functionf&N (x, v), as a function of v for x= 0.1
(solid line) and x = 0.75 (dashed line).

FIG. 8. Order q, magnetization transverse shape
functionf zz(x, v) as a function of p for x=0.1 (solid
line) and x= 0.75 (dashed line).
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FIG. 7. Order q, off-diagonal transverse shape func-
tion, fez (x, v), as a function of v for x= 0.1 (solid line)
and x= 0.75 (dashed line).

FIG. 9. Spin-wave location v~ of the order-para-
meter transverse shape function is compared for the
zero-order f~z, and order &, fzz, results in the hy-
drodynamic region x & 1.
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tions are considered for small x. This enhance-
ment is, of course, not unexpected and is consis-
tent with the persistence of the peaks at T„as
calculated by FM.

We have not included any quantitative compari-
son between first- and zero-order c results for
the off-diagonal correlation function f ~r„si ncethis
does not seem to be an experimentally accessible
quantity. However, we do expect the peaks to exist
for all x as long as T&T,. As x becomes larger
the spectrum will become flatter, eventually going
to zero everywhere as T-T„. For T & T~, thi, s
correlation function will then remain zero.

In conclusion then, the order-e transverse cor-
relation functions reproduce for the most part the
same qualitative features of the zero-order cor-
relation function for x & 1. We expect, however,
order-a corrections to play an important role in
two ways: They determine the spin-wave peak
location in f~r„, and control the persistence of the
spin wave peaks jn f~r~ for large x. In particular,
the determination of f~r„ to order t for all x would
be a very interesting calculation. This function
would presumably demonstrate explicitly the cross-

FIG. 10. Spin-wave location v~~ of the magnetiza-
tion transverse shape functions is compared for the
zero order, f~~~~ and order g, f@~~, results in the hydro-
dynamic region x&1.

1

l

I

rections are considered. While quantitative pre-
dictions are not possible, this enhancement sug-
gests that the spin-wave peaks in f~r~ will persist
for higher x values than is predicted by the zero-
order results.

For f ~b th othe order e and zero-order results
demonstrate a positive shift in peak position for in-
creasing x (see Fig. 9}. However, in the case of
the order-& correlation function, this shift is en-
hanced. If we again interpolate between order-&
hydrodynamic results and the FM results at TN,
we would expect the peak position to eventually de-
crease with increasing x but never disappear en-
tirely as long as T S T„. This should be compared
to the zero order in c result fNrg where the peaks
shift positively for x ~ 5.5. For x greater than
this, the shift is negative and for x=12.8, the
peaks disappear entirely. This suggests that for
f~r„ the 0(c}results are relatively unimportant
for determining peak location but are very import-
ant in determining the persistence of the peaks as
a function of x.

A comparison of peak height between zero order
and order e results for f~r„ in Fig. 12 shows a sub-
stantial increase in peak height when & correc-

f„„(max) 20—

I I I

0.4 0.6 0.8 l.0

FIG. &&. Maximum value fz~& {max) of the magne-
tization transverse shape function is compared for the
zero-order, f ~~ {solid line) and order-e, f~~ {dashed
line) results in the hydrodynamic region x & l.
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study is that of fixed frequency and q-0:
(6.2a)

I' (q, (o) = —,I'„(q, (o), (6.2b)

f~N (lIlGX j

where I"~(q, &o) is the full generalized transport
coefficient

f'„(q, (o) = I'„q'+ iI'~~(q, (o) . (6.2c)

The real part of I"~(0, &o) has a direct physical in-
terpretation. We can see this by noting the identity

Rel'~(0, w) = lim —,Cs~(q, m),
q~p q

(6.3)

where C~(q, ~) is the Fourier transform of Cs~(q, f)
and is related to the Laplace transform by

10— C~~(q, &o) =-2 ImC~~(q, &u).

Using the continuity equation

BM
et

'+V J =0j

(6.4)

(6.6)

I I I I I

0.2 0.4 0.6 0.8 1.0

FIG. 12. Maximum value fz~~ (max) of the staggered-
magnetization transverse shape function is compared
for the zero-order, f +&~~ (solid line) and order-c, fz~z

(dashed line) results in the hydrodynamic region x & 3..

where J is the spin-current density, we see using
Eq. (6.3) that Rel'~(0, &u) is just the Fourier trans-
form of the spin-current autocorrelation function.
We can calculate, correct to first order in E, in
the limit of small ~

I'~(0, ~) = I'„+ " '
—,
' ln(A ))' — ln( —iv/2)

2 ' 2(1+a

over behavior from a pure spin-wave spectrum to
the "sloppy" spin-wave spectrum calculated by
FM at T„.

VI. LONGITUDINAL MAGNETIZATION CORRELATION

FUNCTION

+
1

in(a/R') + —,
' lna

+
&

ln ( ) . (6.6)

The second case of interest is fixed q and ~-0.
Then, for small q,

We obtain the memory function associated with
the longitudinal magnetization correlation function
correct to O(e) by taking the a = o' =0, 6 =O' =M
component of I'6~ given by Eq. (4.32) and doing
the internal sums. We obtain the relatively simple
result (I'~~ = I'~'~),

I'~(q, 0) =I'„(A$)'"(1-—'e 1 '+eE)
where

Z = —,',(-—', lnl1 ——,
' ln3 ——,

' + 3 ln2)

= -0.135

(6.V)

(6.8)

I'„(q, &o)

d4k f[xo~(k —q)] ' —[X„'(k)] '}'2X'„(k)X'„(k—q)I (2v)' D.,(k, k —q)

x [A,
"4" A" —B(k)A"„-B(k—q)A. '„' ],

(6.1}
where the A' s, B, and D„are defined by Eqs.
(4.40), (4.43), and (4.38). We have, thus far,
evaluated I'~~(q, ur) explicitly only in certain lim-
iting, but interesting cases. The first case we

and we have exponentiated a ln(A)) term in a man-
ner compatible with scaling. The key point here is
that for all temperatures below T„there are log-
arithms that blow up as q and + both go to zero.
These divergent processes are representative of a
whole class of processes that occur below T„and
for which the e expansion and renormalization
group cannot give you the physics without supple-
mental information. The difficulty can be summar-
ized as follows. The renormalization group can
tell us that I'~(q, 0)y.„' is of the form
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(6.9)

and in this case z = 2d. What the renormalization
group cannot tell us is the functional dependence of
Q~ on x. In our present case we can rewrite our
result for I'~»(q, 0) as

1.(q, o)X-„'= (A&)"fl:(x), (6.10)

Q„(x)= (l.eK "Inx) . (6.11)

f'», »(q, ~) dk, g

x C» „(k, t)C„„(q—k, f), (6.12)

where we assume the transverse order-parameter
correlation functions have the hydrodynamical
form

We do not know how to treat the lnx term —should
it be exponentiated and if so how~ There are sev-
eral possible ways of proceeding at this point. One
can follow the Brezin et al."treatment of the longitu-
dinal order parameter correlation function and go
to O(e') and assume there is a single power-law
divergence. One can then unambiguously exponen-
tiate the logarithm terms. One can also carry out
a 1/n expansion calculation where one does not ex-
pand in c. This gives one the correct qualitative
behavior in the case of X~ and we will discuss this
approach in the next section w'hen we treat the lon-
gitudinal fluctuations of the order -parameter. In
our situation here it is relatively clear that a sec-
ond order in E calculation would be extremely dif-
ficult and we do not want to tackle the problem of
solving the infinite component generalization of our
model. " We do have one technique available for
treating these new singularities. This technique
is a sort of generalized mode-coupling approach.
This method involves three basic assumptions: (i)
We evaluate the interals in the memory function
expression Eq. (6, 1) in d dimensions (as opposed
to evaluating integrals in four dimensions). (ii)
We assume that we can replace the correlation
functions in the integrand with their hydrodynam-
ical forms. Since we are focussing on divergences
appearing for small q and m this assumption should
give the correct small q and &u dependence. (iii)
We use &-expansion techniques to evaluate the var-
ious ratios appearing in the calculation. A similar
approach has been taken by Hohenberg, et al." in
treating the X transition in helium. We will discuss
the reliability of these a,pproximations as we pro-
ceed. These assumptions, together with Eq. (4.27),
allow us to write:

C„„(q,i) =y„(q) cos(c, qt)e ~ "'i' (6.13)

and c, and D, are the spin-wave velocity and damp-
ing. We can use the expressions for c, and D, de-
termined in the last section to O(e). The hydro-
dynamical expression for C„gives the frequency
spectrum correctly for small q and &= c~. For
finite q and for frequencies away from &=c,q' there
will be errors. We find, for example, if we re-
place c, and D, with their zeroth order in e expres-
sions and Fourier transform over time we obtain

(6.14)

where D =d, /b„D, (x, v) is given by Eq. (3.26) and
C„„'(q, &u) is the O(l) expression given by Eq. (3.20).
We see that for small x and v-1 the difference be-
tween the two vanishes. In general

C„,„(q, ~) 1+v'+(Dx)'
C»'»(qi ~) ~2+2~ + 2~2x

(6.15)

C„'.„(0,0)
C»»(o o) (6.16)

(D,Q' —i )'+2c,'Q'
[(D q2 i~)2 + 2C2q2]2 4c 4[Q4 (k, ~q)2] t

(6.17)

where we have used g»r(q) = p, /q' and Q' =p'+~q'.
Consider first the limit

1»»(0, &d) =lim 1»»(q, K) .

It is a straightforward calculation to show for
small co and d=4 that

I'~» „(0,u)) = 1'„1+ 4 ln ', (6.18)
Bd, 4b', -sv

This result serves as a check on the accuracy of
the use of the hydrodynamical forms for the cor-
relation function C~ in I'». We can compare the
above result with the corresponding e-expansion
result where the correct, to O(e), C» were used.
Prom Eq. (6.6) we easily find, keeping only log-

Thus we see that there will be numerical differ-
ences between the use of C~ „' and C„~ when we do
integrals over q and ~. For now let us concentrate
on I"„H. After inserting C„» doing the time in-
tegral and making some rearrangements (includ-
ing letting k- k+ 2j) we obtain

1».»(q~ ~)

d'0 (k q)'
—2A. p (2 )g Q4 (k ~)2 (Dgq — (d)
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i'n (o, te)=l'„Il. e/3, ln(A()'
S

—8--- ln — +Q 1 (6.20)

Inserting d, =-3+O(e), a = —', +O(e), p, =1+O(e), we
find that the coefficient of ln(A))3 in I'i z js,—', corn
pared to 4 in the e expansion and the coefficient of
ln(-iv/2) for I'i „is+, compared to —,', in the e-ex-
pansion. Note that differences of 50%%u&& are occur-
ring.

Our main reason for looking at P„„is that we
can work in dimensions less than four. We obtain
in that case,

I'„„(0,&) = I' p' "(A ~) /'
S

arithmic terms, that

I
I'~(0, (d) = I'„1+fK» —ln(AE, )'—

4 4(l +a) ln(-»v/2

(6.19)
which we are to compare with

In three dimensions we see that Z(t)-t '/' and, us-
ing lowest order in e expressions for fK&, d„and
p„we find that

(6.23)

' 20~(5 d /2)'/' ' (6.24b)

6 2b,
(6.24c)

We see that the coupling of the longitudinal modes
into the long-lived transverse modes leads to a
long time tail. If hydrodynamics were valid we
could use the Green-Kubo relation' between the
time integral of the current correlation function
and the spin diffusion coefficient. The breakdown
of hydrodynamics is indicated by the nonintegrabil-
ity of Z(t).

We next turn to the case of q fixed and ~ -0.
The integrals in this case are more difficult so
we limit the analysis to d=3. We obtain in this
case, for small q, the result

I'~, s(q»= I"v(A&)'"g.(& '"+g.»
where

where
(6.21a)

%'e can evaluate g, to lowest order in z

g = —'11(—')' '(—')' »+O(»)=1 112+0(q) (6 24d)

5, = [sin»(31d)] '+i[sins —,'(d -2)] '

5, =[sin(d -2)»w] '

v = (u/&o,

(6.21b)

(6.21c)

Z(e)=Rsn„' f e ' 'rs„(te)

(v, = I'„$ 3(A ()' /3 .
The most interesting feature of this result is that
I'i31s(&u) diverges for small &i1 as (i) '/'. Remem-
bering that the real part of I'1„((»)) is related to the
spin-current autocorrelation function J(t) via Eq.
(6.3) we obtain

while

g, =-', (l)'/'( —;,)'/'+ o(.) = o.492+ o(.) . (6.24e)

I'„(q, 0) = I'~ (A f)' /'g, (x ' /'+ g, ),
then in an g expansion we have

(6.25)

The first order in & corrections for go and g, are
g, =0.2638+0(»3) and g, =0.500+0(e3). The cor-
rection for g, is substantial. We see, as expected,
that the physical transport coefficient diverges as
q-0 and with the power law q

' ' in 3 dimensions.
We can use this result to interpret our previous
z-expansion result for I'„(q)0) given by Eq. (6.7).
If we assume that I'vi(q, o) is of the form

B 1-g /2-lie 0 (A])1-3» /2+» /4 0 (6 22 )
p

rsvp(q, 0) = I'„(Ag)'/'g0 1+g, ——lux+ O(~3) .

We see from Eq. (6.V) that to O(e)

(6.26)

where

~, =(r„A3)-' (6.22b)

g0(1+g, ) =1+M,
g, = 3+ O(~) .

(6.2Va)

(6.2Vb)

B0 =p', — ' (d, )'/'I'(1 —e/2)
I S

'X cos67l'/4 slnE11/4
+

sin[(d —3)e/4] sined/4 ) ' (6.22c)

Since we only know go to zero order in & we also
h@ve

g, =-,' +O(») . (6.28)

We know g (1+g,) to O(a). In Table II we compare
the mode-coupling expressions for g0, g, and g, (l



2298 MAZENKO, NOLAN, AND FREEDMAN 18

Direct
e expansion Mode coupling

TABLE II. Comparison of parameters calculated in
the q expansion and by mode coupling.

(6.35a)

where

where co, = c,q and the shape function is given by

)
. 2A Wxl

(v A—,v xI")'+ (A,&xP)'

Co

So(~+a)
xc

o.375+ o(&)
1.667+ 0(&)
O.S65+ O(q)
0.36 +O(q)

~.a~2+ O(~)
0.492+ O(q)
1.659+ O(~)
4.13&+O(e)

O.263S+ O(&2)

o.5oo + o(~')
0.396 +O(e~)
4.oo + o(&')

(8v'+ 3)(o' —o) —4v(o+ o')

,, ),I 3'
I
(o'+o)(82+3-4v)

+g,) with the direct a-expansion results. The
value of g, is particularly important since it de-
termines the regime in x where the x ' term pre-
dominates. We define a cross-over value of x

(8v + 3)(o' —(7) —4v(o+ o')
1 (6 35d)

I ( )
3W2

(o' —o')(8 v'+ 3 —4v)
3v 2

x,=x2 ~ (6.29) and

I'i (q, &o) = F„(Ag)'I' ' I(v), (6.30a)

where

I(v) = [(8v'+ 3)(o —o')+ 4 v(o+ a')] (1+i)"
3 2

(6.30b)

a=[2(v-I)]'", o'=H(v+1)]'". (6.30c)

The quantity that enters conveniently into the cor-
relation function is

We see from the table that there is a huge dif-
ference between the x, from the &-expansion and
from mode coupling, and that in general the agree-
ment between the parameters calculated is poor.

There is another limit in which we can evaluate
I'~ „(q, &o). This is in the limit v=c,qv where

q -0 and v is fixed. We find in this case that

(I —
v)

'i*

We can then work out the limiting case

2

A x

(6.35f)

(6.36)

I

'
I

~

I

In Fig. 13, we show numerical results for f~(x, v)
as a function of x. An expanded scale of this graph
would show there is a definite cusp at v=1 for
x-1 reflecting the beating of two spin-wave modes.
This cusp may be an artifact of our approximation
and, in any event, appears unobservable. As we
go to small values of x the cusp is suppressed and
a central Lorentzian peak sharpens up. This
cross-over occurs for x&x, (remembering how-

)X" =~i A, i( ), v
CO

(6.31)

where

ag, af
b, 20mb, (b,d, /2)' i (6.32)

To lowest order in &

6
P 11 (33)~ I4

—0,194+ O(E) ~ (6.33) 20-

Again, due to the large shift in f, O(c) corrections
lead to a substantial change in Ao in three dimen-
sions,

A, = 0.0833+ O(a') .
The correlation function is then given by

I

0.2 0.4 0.6 O.S I.O I.2

C~(, ) =X"f~ (x, v),
C

(6.34)
FIG. 13. Longitudinal magnetization correlation func-

tionf ~~(x, v) is graphed as a function of v for x=o.l
(solid line) and x= 0.5 (dashed line).
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I20 ~

I
i

(
(6.39)f„(x,v) = 2f„~(x, v)+f»~(x, v) .

We have plotted f„(x, v) in Fig. 14 for various
values of x. We have used Eq. (6.3V) for f„and
the zeroth in e result for f»r. The main point is
that for small x the central and spin-wave peaks
are sharp and well separated.

40--

0.2 0.4 0.6 0.8 t.0 l.2 l.4

FIQ. 14. Total magnetization correlation function
f&{pc,y) is graphed as a function of w for x=0.05(solid
line) and x= 0.5 (dashed line).

RAO x
f»(x} ")=v2+g ~)2 ~ (6.3V)

for x«1. In the final asymptotic hydrodynamic
region (x«1) the total magnetization function is
of the form

C„(q, . (d) =" f„(x,v), - (6.38)

where the shape function is

ever that our equation is valid only for small x).
For very small x all of the weight in f„(x, v) will
be near v=0 so we can replace I' and I" with their
v=0 values and

VII. LONGITUDINAL-ORDER-PARAMETER'CORRELATION

FUNCTION

Study of the longitudinal-order-parameter cor-
relation function leads to a number of difficulties
in the hydrodynamical regime. This is because
of the appearance of a new class of diagrams in
our analysis. On the one hand we could kg»re
these difficulties since the longitudinal correlation
function is probably not observable in the hydro-
dynamical region due to strong transverse fluctu-
ations which will mask the longitudinal mode. ' Qn
the other hand these new graphs indicate (i) new
difficulties in interpreting the & expansion, and
(ii) a complete breakdown in the mode-coupling
approach. Since our approach has been based on
the &-expansion and we used mode-coupling ideas
in the last section we will investigate some of
the reasons for (i) and (ii) above. The difficulties
are associated with the appearance of strong q and
&o divergences in I'~» for small q and (d to 0(e).
We can see the difficulty by looking back to our
general expression for I' given by Eq. (4.31). We
have, after doing various spin sums,

I'»»(q ~)=Q I'». ~(q ~) (V 1)
4 j.

where

4 g) k k (A»'»Au»-~'fi'&[7j»'(k)-y»(q-k))),
k C„(k)C„(q-k)A»„

(V.2)

, (q, ((})= 8X'riuN'I „
I'~N, (q, ~}= -4 (wN }'}'„J

1"», (q, (o) = -18(uN)'I'»

where

d'k C»(k)
(2 ) D (k k)[ A"»A" +&(q --k) -&(k))

A" [A"A" —2B(k))(2v)4 D (k q
k)»»»»»N

d'k C»(k)C»(q —k)
(2v)' A'„'»

(V.3)

(V.4)

(V 6)

Dr(k q -k) =A»»A»»A»'»A»» &(k)(A»'»A»-'»+A»'»A»») -&(q k)&»'»A»'»+A-»'»A»»)+[&(k) fi(q -k))'-
(V.6)

Things are particularly simple in the q = 0 limit where, introducing the dimensionless frequency v= &o('/
I'»(uN'= g '), we obtain

2
dy(v+ 2iay)(v+ 2iy)

[v+ i(l+ a)y)[(v+2iay)(v+ 2iy) —4'] ' (V.V)
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I „,(0, a)) = -4ifaI'„K,

I'„,(0, v) = -2ur„K,

I'„,(0, (u) = —9r„uK,

dy(v+ 2iay)
[v+ i(a+ l)y][(v+ 2iay)(v+ 2iy) —4Ry] '

dy [(v+ i(1+a)y) (v+ 2iay) —2Ry]
y [v+ i(l+ a )y]([v+ i(l+ a)y](v+ 2iay) —4Ryj '

(&g)
dy y

(y+ 2)'[v+ 2i(y+ 2)]
'

(v.8)

(7.9)

(v. lo)

'Then for small v, we have

I „,(0, 0) = -i ' ln[(A()'u/f]
aK, r~

I '„,(O, O) = i-', r„uK,

(v. 11)

(7.12)

set q=0 in I'„,. If we set (d=0 and evaluate
I'„,(q, 0) for small x =q$ we obtain

r„,(q, o)= — " ' (lnx+const).
22' NuK

(V. 14)

and these terms give us no problem. %e note how-
ever that for small v

i'„,(0, +)= iifaI'„K, -— - B niu+c nots) .
(1+Ba)
4 1+a

(7.18)

Therefoie, r~, (0, ~) blows up logarithmically
and appears similar in structure to I"„(0,ur).
ri, (0, &u) is more complicated. Note that the
I'~~, term, which comes fx om a self-energy-like
diagram with two four-point vertices and two
"condensate" insertions is infinite due to the bare
1/y term in the integrand in Eq. (7.9). We cannot

Thus, this term diverges as (lnx)/x for small x
and its interpretation within an E expansion is am-
biguous without further information about the phy-
si.cs iq. this situation. It is clear from the above
analysis that the trouble comes from TDGL-type
contributions rather than from mode coupling terms
so, in order to see what is going on, we will, for
the moment, restrict our analysis to a 'TDGL model
with a nonconserved order parameter. 'This cor-
responds to simply setting X= 0 in our model. This
has the effect of eliminating the transverse spin-
wave modes. In this case, the contribution to
I"„(q,&o) corresponding to r~, above is just

(2
)„-&'„(k)&„'(q—k)(-i) dt e+f~t e-rNtl:8+(a-&)Q (7.15a)

d "P 1
(2&)' k (k —q)' (a+il"„[k'+ (k q)'] ' (7.15b)

I'„r(q, 0) = iI'„(4 ln2)uK, /x',

while in three dimensions,

(7.18)

where we have written the integral in d dimensions.
If we restrict ourselves to ~ = 0 we find in four
dimensions,

treating I'„. We can see this by generalizing our
TDGL model to n-components" and calculating
r~~ to lowest order in a 1/n expansion. This cal-
culation and the general results for the correla-
tion function are discussed in the Appendix. The
result for I"z, is

(7.17) N, tl q7 N

Note that the divervence for d =4 for the 'TDGL
model is stronger (x ' compared to x 'lnx)thanfor
the model with spin waves. If one stops here one
v;ould conclude that for TDGL models the physical
kinetic coefficient for the longitudinal-order-pa-
rarneter correlation function diverges as q

""'
for small q. For reasons, which we now discuss,
we believe this conclusion to be false and indica-
tive of the problems of using the z expansion in

&& [1+u(n —1)Il(q, 0)] '

m]

x [I+u(n —1)II(q, v)] ' (V.18)

where If(q, v) is defined by Eq. (A2) in the Appen-
dix. r~ r(q, co) is the same as in Eq. (V. 15a) above.
We see that for n= 3 and to lowest order in u- &

we regain the O(c) results discussed above,
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I'~ r(q, u)) = I'„+ii ~
r(q, (a)+ O(e') . (7.19)

In the 1/n expansion one sums up a string of
bubbles like that contributing to I'~, . 'The import-
ant point here is that for un/q» 1 and &a = 0 we ob-
tain for d = 3 the result

(7.20)

where x = nq/16N' -=q $. We see that as x - 0
I'„r(q, 0) not only does not diverge, but goes to
zero. We conclude from this that it is essential
to sum up the string of bubbles with transverse
propagators if one is to obtain sensible results.
This is, of course, equally true for the longitudin-
al static susceptibility where one must sum the
static bubbles in order to obtain the q

' result for
small q. We have not yet attempted to carry out
a calculation for X finite where we sum the bubbles.
This would be a very tedious calculation and we
expect that the result will be somewhat similar
to that for the TDGL model except that 1"N~ will be
proportional to (A$)'~' rather than (A$) " as in the
TDGL model. The analysis of the TDGL model in
the large n limit shows that the shape function de-
viates from a Lorentzian in the hydrodynamic
limit, but does not show any pronounced structure.

VIII. DISCUSSION

We have found that the critical dynamics of
antiferromagnets in the ordered phase are rich,
in features and effects not found above T„. The
transverse correlation functj. ons are dominated
by spin waves and the associated pole structure
is in agreement with the predictions of hydrody-
namics in the appropriate limit. As x =q( in-
creases and one leaves the hydrodynamical region
we find that the positions of the spin-wave peaks
for the transverse magnetization and staggered-
magnetization correlation functions differ sig-
nificantly. The main feature is that the spin-wave
peaks in the staggered magnetization are persist-
ing to much larger values of x than for the mag-
netization. This is in agreement with our pre-
vious calculation as T = T„where we found highly
damped spin wave modes in the staggered mag-
netization correlation function. The most inter-
esting result from our treatment of the longitud-
inal magnetization correlation function is that
hydrodynamics breaks down in the hydrodynami-
cal region. This is manifested in the wavenumber
dependent spin-diffusion coefficient going as q

'
for small q. The longitudinal-order-parameter
correlation function is very difficult to treat with-
in an E expansion. Qur best "guess" is that if we
performed a calculation resumming certain bub-
ble diagrams, as discussed in the last section,

we would find that the mode is relaxational in
nature.

The most striking qualitative feature below T„,
besides the spin waves, is the coupling of the
transverse modes into the longitudinal modes.
The first theoretical manifestation of these strong
couplings was the prediction that the static lon-
gitudinal-order-parameter correlation function
will diverge as q

' for small q. Unfortunately,
this divergence has not yet been directly observed. "
It is difficult to measure }t„(q)directly because
one normally measures the total correlation func-
tion =2}t„(q)+}t„(q)and since }t„(q)diverges more
strongly than y~(q) for small q it is very difficult
to extract X~(q) for small q. It is for essentially
the same reason that one can probably not measure
the dynamical longitudinal-order-parameter cor-
relation function and we therefore chose not to
carry out a more elaborate calculation of C„.
From an experimental point of view the most
promising way of seeing the coupling of the Nam-
bu-Goldstone modes into the longitudinal modes
is via an inelastic neutron-scattering measurement
of the magnetization correlation functions. In this
case, the longitudinal and transverse correlation
functions will come in with equal weighting (Xsr

=}t~= constant as q-0) and one can hope to resolve
the longitudinal correlation function. Thus one
could hope to see the predicted strong coupling
of transverse and longitudinal modes. Indeed
after our work on the longitudinal magnetization
was completed on inelastic neutron-scattering ex-
periment was undertaken at 9rookhaven" to mea-
sure C~~. Preliminary results are consistent with
our predictions that hydrodynamics does not hold
and the width goes as q' '.

Another possible "experiment" is a computer
molecular dynamics experiment in the ordered
phase and a direct calculation of the spin-current
autocorrelation function. This should show the
long time t +' ~ behavior directly.

While we have been able to draw a number of
conclusions from our calculations which seem
believable it should also be clear that we have
been neither exhaustive nor, in some cases, are
our calculations completely reliable. There are
several further calculations one could carry out
within the 0(e) approximations discussed here.
In particular we have not investigated the shape
functions for intermediate values of x =q$ except
to zeroth order in &. Thus we have not addressed
the interesting question of the transition from spin-
waves for x«1 to the fluctuationsinduced peaks
at T =T„. A more pressing question however
surrounds the & expansion. The expansion conver-
ges very slowly with respect to the matching
values of a and f. An even more difficult problem
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arises due to the q
' type singularities. The inter-

pretation of the & expansion in these cases requires
considerable care. It would be most useful to de-
velop some method complementary to the & expan-
sion for calculating the critical dynamics of iso-
tropic antiferromagnets. A real-space renormal-
ization-group approach for example would be
most welcome.
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which leads directly to Eq. (7.18) above. If we
restrict the analysis to three dimensions we find
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APPENDIX: CALCULATION OF C~ (q, u)
IN THE 1/n EXPANSION

Starting with the TDGL ~-vector model, the
O(1) contribution to the longitudinal propagator
is given by"

II(q, 0) = —.
8q'

We then obtain for u(n —1)/q» 1

(A7a)

(A7b)

(A8)

[x~(q)l =q (1+1/x), (A9)

d '& X„'(u —q)X;(t')[L„(u) +L„(~—q)]
(2v)~ (u+ z[L„(k)+L„(0—q)]

(A2)

LN«) =I"~q' ~

We want to use G~ to calculate the memory func-
tion I'~~(q, &u) which is defined by

(AS)

where the full longitudinal static susceptibility is
given by

where x =nq/16N'. Since h(v) = iv/2-+ v+ O(v2)
we easily obtain in the small-v limit

fI( 0) N (A10)

while in the small-x limit

(A11)

(A12)

where ~,(q) =I'zq' and we have the two limits of
interest

The correlation function can then be written in the
scaling form

X-,'(q) = q'+ 2uX'[1+ u(n —1)II(q,o)]-', (A4) f„(~,v) = 2(l+ v') '

and

(A13)

x'(&- q)x;(~).(2v ' (A6) f„(0,v) = —Reh(v). (A14)

We find immediately that I'„ is given to O(1/n) by A plot of f~(0, v) looks quite Lorentzian in shape.
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