
PHYSICAL REVIE% B VOLUME 18, N UMBER 1 1 JULY 1978

Effect of a parallel magnetic field on interband transitions in two-dimensional systems
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In the presence of a parallel magnetic field the interband transition connected with electrons trapped at a
helium-vacuum interface shows interesting structure. We show how the shape of this interband absorption
line, in the absence of collisions with gas atoms or surface ripplons, may be directly related to the Fourier
transform of the velocity autocorrelation function,

I. INTRODUCTION

For electrons trapped on a liquid-helium sur-
face, the one-electron energy spectrum consists
of several discrete quantum levels for motion
perpendicular to a surface of which only the lowest
level is occupied, and a free-electron-like con-
tinuum for motion in the plane of the surface. ''
In a typical high-frequency experiment, one ob-
serves interband electronic dipole transitions,
involving the promotion. of an electron from the
ground-state quantum level to an excited level for
perpendicular motion (see Fig, 1). When a mag-
netic field & is applied parallel. to the surface,
the motion of the electron in the plane is coupled,
by virtue of the v && B force, to this interband
transition. This coupling can induce a rather com-
plicated and interesting broadening and/or struc-
ture into the shape of the absorption line. '

In a recent experiment' Zipfel et al. observed
such effects by applying fields of the order of
I kG parallel to the surface of liquid He. They
investigated, at temperatures near I "K, the width
of the interband transition as a function of electron
density and magnetic field. From these measure-
ments they extracted a so-cal. l.ed velocity auto-.

correlation time.
In this paper we would like to show how the shape

of the interband absorption line, in the absence
of collisions with gas atoms or surface ripp'"ons,
may be directly related to the Fourier transform
of the velocity autocorrelation function. We will
show that it is possible (by varying the magnetic-
field strength) to extract detailed information
about this velocity autocorrelation function. These
experiments correspond in many respects to
Mossbauer studies of vacancy diffusion' and to
incoher ent- neutron- scattering experiments where
the momentum transfer is analogous to the strength
of the dc magnetic field. ' Since the system of
interest, electrons on helium, can be strongly

correlated, the behavior of this correlation func-
tion is of great interest. For exampl. e, these
experiments can be used to study changes in the
electron self-diffusion constant as one passes
from a correlated el.ectron liquid to a two-di-
mensional %'igner crystal. '

II. FORMULATION

The essential aspect of our problem is that the
perpendicular energy levels have a large separa-
tion compared to the characteristic energies for
electronic motion in the plane. In this "Born-
Qppenheimer", limit the electron undergoing the
transition is identifiabl. e and the absorption proba-
bility is proportional to'

FIG. 1. Energy-level picture for electrons on the
surface of liquid helium. The potential V(z), the wave
functions g, &, and the energy levels are shown sche-

maticallyy.
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Here M„ is the one-electron interband dipol. e
matrix element,

y,*(z)zy, (z) dz,

where Q, and Qo are the one-electron ground state
and first excited states for perpendicular motion,
while Xp and X,„are the eigenfunctions of the
many-body Hamiltonians Hp and H, for the in-plane
motion, with zero or one excited electron, re-
spectively, and the remaining electrons in the
ground state for perpendicular motion. The sum-
mation in (1) is over all the possible final states
&,„, while the angular brackets denote a thermal
average over the initial states Xp . We use the
vector x; to denote the coordinates (x;, yi) of the
ith electron within the plane, and the integration
in (1) is over the set (x;j giving the positions of
the N electrons. The quantities E;„and Ep are
the energies of the wave functions X,„and I, .
We have set 8=1. In deriving (1) we have assumed
that the perpendicular potential is sufficiently
strong so that it is valid to ignore the dependence
of the matrix elements M~, on the coordinates
xi (so-called Condon approximation'),

Equation (1) may be written

lot(o)} =
~ Mtto( G(io},

where

G(~}= e*"G(t}df

G (t} (ei Hr t e-i Hot)

The Hamiltonians H, and H, (in the absence of
coupli. ng to external seatterers) are given by

) =~, ((z). —(z) ),
p (s}=e' o'p e- o'

(9)

and 7.
' denotes the appropriate time-ordering

operation.
Equation (8) may be compared with the form

factor for incoherent neutron scattering at mo-
mentum and energy transfer (k, co), which is
given by'

S,.„,(k, &d) = ttut
(

tk r(t) -ik r (o))df

f(et r(t)e t ~ r(o)) -T exp tk/ttt ~

(12)

ponent of momentum for the single electron which
has been promoted to the excited state. ' We have
assumed that the magnetic field B lies in the y
direction, and we have chosen a gauge with vector
potential A parallel to x and proportional to z.
The term V(xi) is the potential of the uniform
positive background from the charges on the posi-
tive plate necessary to obtain a uniform electron
density. In writing down (6} and (7) we have again
assumed that the localizytion in the z direction is
small compared to the interparticle spacing, so
that we may neglect the dependence of the elec-
tron-electron interaction on thy z coordinates of
the el.ectrons, and we have neglected energy shifts
of order rd', /o)„.

We shall choose the origin of z such at (z), =0;
thus, Hp is identical. to the el.ectronic Hamiltonian
in the absence of the magnetic fiel.d. Note how-
ever that the second term in (7), which changes
suddenly when the tagged electron is promoted,
couples the z transition to the in plane motion.

Using standard techniques, ' and taking the center
of the line as the origin in frequency space, the
function G(t) may be written in the form

t
G(o= (r exp(iz t, (sids)),

0

+to, (z),gp„+ V(xt)+F„, (8)
The equivalence between (8) and (12) is evident
if we set km '=u„to, ((z)t —(z)g.

H, =H, + rd, ((z), —(z),)p, + rd„,
where io, =e&/mc is the cyclotron frequency and

(z), and (z), a'"e the expectation values of z in the
states Q, and Q„respectively. The energy ado,

Epg +„is the one —electron 1evel splitting in
the absence of the magnetic field, P& is the x
component of the two-dimensional momentum p&

for the ith electron, while P„denotes the x com-

III. APPROXIMATE FORMULAS AND LIMITING CASES

In general we cannot evaluate Eq. (8) exactly.
However, it is possible to look in more detail at
the behavior of G(t) in a number of interesting
physical cases, Bel.ow we shall write down some
approximate expressions which are probably quite
accurate for a wide range of systems, and we
shall then use these expressions to examine l.ine
shapes in a variety of cases. We shall l.imit our-
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selves primarily to the classical case, where
ksT/itis large compared to the characteristic
frequencies of motion in the plane, since this con-
dition is applicable to current experiments on
el.ectrons on helium. The quantum case will. be
mentioned where the results are applicable.

In the classical case, we may neglect the time
ordering operation in (6); i. e. ,

T = —,'z(o) . (22)

The time 7 is not simply related to any of the
short-time properties of the system. In fact, as
we shall see, 7 vanishes for a perfect two-di-
mensional solid, while the short-time behavior
is characterized by the zone-boundary longitudinal
plasmon frequency. At large times, when (18)
applies, we have

G(t) = G(- t) = (e'""").

v(s) ds

(13)
G(t) =e ',

where

I =Q'y=-'g'm'g), .

(23 a)

(23b)

is the displacement of the excited electron rel. ative
to its position at t =0, and v(s} is the x component
of the velocity at time s.

A. Short-time behavior of G(t)

Suppose that u is some characteristic frequency
for collisions or oscillations in the plane. Then
for u&t «1, we have v(t) = v(0), and hence x(t)
=tv(0). Since v(0) has a Gaussian distribution
with

(24a)

A(t) =— ds ds'Z(s —s')
0 0

(24b)

C. General-time Gaussian approximation

Since x(t) has a Gaussian distribution for small
and large time, it is natural to make a Gaussian
approximation for all. times. In that case for all
systems both quantum mechanical and classical
we have

(u'(0)) =a, r/m -=~,2„, (15) d(d Z((d)
(1 —cos~t) .

2"rT CO
(24c)

i&~Pt)y (+&2/2) &x~) Pt2/2!
The frequency

n = ~(u, Tm)'/'.

(16)

(17)

B. Long-time behavior of G(t)

For' sufficiently long times, we again expect
x(t) to have a Gaussian distribution. This time,
however,

(x') =a.t, (16)

where D„ is the Nelf-diffusion coefficient for the
tagged electron. If we define the velocity auto-
correlation function

z(t) = (v(t) v(0))/v&')„

Ds 2VthT
~ (20)

where T is the "velocity autocorrelation time"'

Z(t) dt. (21)

We note that if Z(co) is the Fourier transform of
Z(t), then

In this short-time limit the line-shape function
G(t) is independent of the interactions among the
particles, i.e. , we can think of the system as a set
of free particl. es.

Thus, in the Gaussian approximation, the line
shape G(a) is completely determined, for all
values of the field strength &, by the velocity auto-
correlation function Z(t) or its Fourier transform
Z(ar). The limiting forms (16) and (23} are special
cases of (24).

E. Weak magnetic fields

When the magnetic field is sufficiently weak, the
function G(t) does not deviate greatly from unity
until very long times, at which point G(t) decreases
exponentially according to Eq. (23), provided that
D, is not equal. to zero for the system of interest.
Inserting (23) into (4), we find a "motionally nar-

rowedd"

Lor entz ian line shape,

G(w) = 2I'/(co'+ I'), (26}

D. Strong magnetic fields

When 0 is much greater than , we expect that
G(t) will be negligibly small except for t «2-'.
Thus, for magnetic fields large enough so that
0/co» 1, we can use Eq. (16} in (4) to obtain a
Gaussian line shape'.

G((u) = (2x)'/'0-' exp( —u)'/2Q') . (25}

Equation (25) is one of the limiting cases described
by Zipfel et al. and is, also the free-electron re-
sult,
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approximate Z(t) by

Z(t) =e ", (28)

where I', given by (23b), is proportional to the
square of the magnetic field B. This form, which
was also given by Zipfel et al. ' is valid in the
limit B-O, for frequencies ~ of the order of I",
or for any other sufficiently l.ow frequency pro-
vided that the self-diffusion constant D, does not
vanish for the system of interest. As we shall
see below, however, if one looks at a fixed fre-
quency in the tail. of the line, one finds

G((u) = (0'/2(u')Z(&u), (27)

which will reflect structure present in Z(+) at
the given frequency. In particular, if one has suf-
ficient experimental sensitivity to investigate
G(co) in the appropriate region of ~ and &, one can
study the vibrational density of states of the sys-
tem (see Fig. 2).

It should also be remarked that for a solid or
very viscous liquid, where the velocity autocor-
relation time 7 may be very small compared to
the characteristic vibrational frequency ~-', the
conditions for a Lorentzian line shape will be very
restricted. The behavior of G(a&) in the relatively
complicated intermediate regime will be dis-
cussed below, with the aid of the general-time
Gaussian approximation given by Eq. (24).

There has been some numerical and theoretical
work on the behavior of Z(t) for three dimensional
systems" but no published work on two-dimensio-
nal plasmas. " Because of this we will apply some
of the general considerations above to. a qualitative
discussion of several specific cases.

IV. APPLICATIONS

A. Dilute electron gas

Let us first consider a dilute two-dimensional
electron gas, for which the thermal kinetic energy
is large compared to the Coulomb energy of the
electrons (ksT&e'n'~'ii't'). In this case we may

~ba

FIG. 2. Schematic of the interband absorption line for
a strongly correlated liquid when 0 /cu ~ = 1. Here u~
is approximately given by the zone-boundary plasmon
in the solid and D= (ksT/m) ~, ((z)& —(z), ),

where y is the collision frequency for loss of mo-
mentum by the tagged electron, due to collisions
with other electrons. In this case, Z(~) is a
Lorentzian with width y, and the autocorrelation
time ~ is given by

(29)

It follows from (24) that the line shape G(&u) is a
Gaussian with width 0, for fields such that A~
» I, that G(u&) is a Lorentzian of width O'T, when
07 « I, and that G(cu) has a relatively featureless
intermediate form when 0& is of the order of 1.

B. Two-dimensional harmonic solid

When the electron density is sufficiently large
(I', = e'n' '—ii'~'/ksT & 1DO) we expect the electrons
to form a two-dimensional Wigner solid, with a
triangular lattice. At sufficiently high densities,
the crystal is far from the melting point, and we
may neglect the possibility of interchange of
electrons between different lattice sites or of mi-
gration through vacancies or dislocations. " In
this case, no diffusion is possible and D, =O. The
correlation function Z(t) becomes negative before
approaching zero at long times, and the velocity
autocorrelation time T, defined by the integral in
Eq. (21), is zero. The velocity autocorrelation
function in this case may be appioximated by that
of an ideal two-dimensional harmonic solid.

It is straightforward to demonstrate that for a
d-dimensional classical harmonic solid (ksT
&kis ) with one type of atom

Z(~) = (I/2&) p(l~ I), (3O)

1
p(~) d~ =d.

2r (31)

Some general characteristics of p(cu) are well
known. The phonon density p will at.ways vanish
for larger than some maximum frequency
and p(e) will generally have one or more maxima
at frequencies somewhat lower than ~ . In the
limit ~ «u contributions to p come from long-
wavelength acoustical phonons, whose linear spec-
trum gives, for the d-dimensional crystal,

p() ''/" .

In the special case of the two-dimensional Coulomb
crystal, the longitudinal phonon velocity diverges'
at long wavelengths (co-k'~') and the correspond-
ing density of states vanishes as ~~, for small ~.
Nevertheless, the transverse phonon velocity is

where p is the phonon density of states, normalized
so that
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finite, so that Eq. (32) applies.
The behavior of G(oa) for v-0 is determined by

the long-time behavior of the functionA(t), defined
in Eq. (24b). For a three-dimensional solid, where
Z ~+', as e -0, the integral in Eq. (24b). is finite

- for I ~ ™)l.e.
~

A(~) =
'" d~ Z(~)

27} CO

Thus, the line-shape function G(v) contains a 5

functi. on at w =0,

G(u1) = 2me 1"5(e) + continuum.

Here e '~ is the Debye-Wailer factor with

W=n'A( ).

(34)

(35)

We may obta, in the continuous part of the spec-
trum by expanding G(t) —G(~) inpowersof 0', using

(24) and substituting in (4). The one-phonon con-
tribution to G(w), of order 0', may be written

G„((u) = e '~(Q'/(u')Z(cd). (36)

In the limit 0'-0, where e '~=1, this yields the
1'eslllt glve11 111 Eq. (27).

In two dimensions, the integral (24b) diverges as
t -~, and there is no 5-function contribution to
G((u). Let us write Eq. (32) in the form

Z(CO) = AI'd/(d (37)

for w«u, where a is a constant. For a two-di-
mensional Coulomb solid crystallized as a triang-
ular lattice with lattice constant 5 and density n.
—:(~43b') ', we have n = 32M&and,

tained by use of (37) in (27), for Id/ur small but
nonvanishing, when 0/&u is sufficiently sm. all.

4) n
=A(t) tr + ——ln((d t) + const

2v tb m

(43)

where the first term arises from electronic inter-
changes o~ other processes that lead to self-dif-
fusion, and the second term arises from thermal
fluctuations of the long-wavelength transverse
acoustical phonons. Note that these stochastic pro-
cesses are independent of each other, and are both
Gaussian at long times, so that Eq. (24a) is exact
at large t. For the function Z(&u), we find, using
(22), (37), (43), ar.d (24b) that

Z((0) = 2r~ for' (d & 2A (d 7
~ (44)

AV

Z((d) = Q(d/(d, for 2Q (d T&(d && 'I'd~.

For the line-shape function G(u), there are sev-
eral regimes. When

n&(u [in(u)„r)] "',

C. Two-dimensional solid near the melting point

For the electron solid near the melting density,
we may assume that there is a small but finite val-
ue of B„sothat the velocity autocorrelation time
v' defined by (21) is small compared to the value of

For a three-dimensional solid, the effect of
finite D, on the line shape G(Id) is simple. The 5

function appearing in (34) is broadened into a, Lor-
entzian of width I", given by (23b). '4 For the two-
dimensional ca,se the situation is somewhat more
complicated. At large times we now have

&u' = Be'/m. b'.

Then, for large times t, we have, from (24c),

A (t) = c, + (rr/~(u'„) ln((u t).

(38) we find

G(~) = 21'/((u'+ I'), for ~ &2rr '~' r, 46(a)

G(&u) = (Q'/(u')Z((u), for u) & I', 46 (b)

G((d) C(d /(d

where C is a constant and

(40)

Using (4) and (24a), we find that for ro «w, and

Q not too large, "
where I' = 0'r, as in (23b). Note that I' is less than
~ r, in this regime, so that the regions of validity
of (46a) and (46b) can overlap. For field strength
such that

+„,[in(&u„v')j '~' &0«&u

X = 0 tX/1tI'd

For sufficiently small values of 0, we have

(41)

(42)

we find

G((u) = ((u r), , for (u &2n 'Id' r,
co + I (48)

which insures that G(u) is equal to 2m6(co), in the
limit Q-O.

Thus, for a two-dimensional solid far from its
melting point, where self-diffusion can be neglec-
ted, and for weak magnetic fields, we expect a,

line shape G(e) that has the form (40), for e «e
and the form given in (27) for u of the order a„.
Note that (40) joins smoothly onto the result ob-

for v & 2n 'Id', „r, (49)
&0 Gdm

where the exponent x, given by (41), is small corn-
pared to unity. Note that the line shape in both
(46) and (48) may be described as a. Lorentzian
central peak with non-Lorentzian wings. In (46),
most of the weight is in the central peak, whereas
in (47) there may be substantial weight in the tails.
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Note that (46) agrees with (40), for 2o, '+'„r &&o

When the magnetic field is sufficiently
strong so that Q»(d, then the line shape has a
Gaussian form, with width 0, as given in (25).

Many features of the line shape for the anharmonic
solid may persist in the strongly correlated liquid,
close to the melting point. In particular, for weak
magnetic fields, we expect a Lorentzian central
peak, whose width I" may be small compared to
Q'~ ', if self-diffusion is strongly hindered by cor-
relations effects. . On the other hand, coupling to
long-wavelength transverse-momentum modes will
tend to increase I" in the strongly correlated elec-
tron liquid, if momentum transfer to the helium is
sufficiently slow. '" It should be emphasized once
again that the velocity autocorrelation time v is
not simply related to any positive moment of the
frequency distribution, in these circumstances.

It is expected that Z(&o) for the dense liquid will
have a vibrational structure, for e near (d, that
will be similar to that found in the solid. This
structure should be reflected in G{&u), for magnetic
fields such that 0-co .

V. CONCLUSION AND EXPERIMENTAL OUTLOOK

From the analysis presented it is clear that the
detailed shape of the interband absorption line has
a great deal of important information in it concern-
ing the strongly correlated motion (self-diffusion)
of the particle which has been promoted. This mo-
tion in turn mirrors many of the dynamical prop-
erties of the electron fluid or solid. Questions
concerning the existence Of long-wavelength trans-
verse modes, defect motion, and zone-boundary
phonons in the solid, and the effect of melting on
self-diffusion, all directly influence the line shape.

The experimental situation is in its earliest
stages and much work at low temperatures and

high magnetic fields remains to be done. The one
experiment' which has been done was carried
out at 1.2 K. Parallel fields from 200 G to 3 kG
were applied to the electrons with carrier concen-
trations ranging from 1.5 ~ 10' &v & 2.2 ~ 10'. For
this range of densities and temperatures the para-
meter I", (Sec. IVB), which measures the strength
of the Coulomb interactions, runs from a low of 9
to a high of 36 so that the electron fluid is strongly
interacting though not in the solid regime I', &95.'
In addition, the vapor density of helium atoms
above the liquid at 1.2'K is sufficiently large that
interaction of electrons with such centers is non-
negligible. " The absorption line in zero magnetic
field is a Lorentzian whose width varies linearly

with the number of helium atoms in the vapor. The
linewidth has been attributed to two mechanisms,
direct scattering of the electron from the helium
atoms and an inhomogeneous broadening connected
with the fluctuations in dielectric constant of the
gas above the surface. " This scattering com-
plicates an analysis of line shapes in terms of the
self diffusion constant as discussed here.

Despite such difficulties the experimental results
in Ref. 3 showed that the excess linewidth, in the
presence of a fieM depended quadratically on the
field. From these rough measurements of line-
width the authors extracted a velocity autocor-
relation time & which, over their limited range of
density, seemed to crudely correlate with & ' the
inverse of the zone-boundary plasmon frequency
for the solid.

While we do not know precisely the details of the
velocity autocorrelation function for this liquid we
point out again that it is incorrect to compare v'

with a zone-boundary short-time property of the
correlation function. Of course in this classical
problem the zone-boundary frequency

(u = 2 5(e'/m. )'~'n'~',

in some sense sets the time scale. For ex-
ample, if we assume weak scattering of electrons
from one another it is a simple matter to show,
taking the distance of closest approach r, = e'/ksT
as an effective cross section (in two dimensions)
for 90 scattering, that

(51)

Numerically, w„ is not too different from (d
' for

9 &I', & 36.
In order to eliminate complications from collis-

ions with the helium vapor and in order to reach
larger values of the parameter I'„ it is desirable
to perform the experiments at lower temperatures
(T 0.3 K). In addition, fields such that 0.1 &0'/
~' &1 are desirable to order to see the one-phonon
sidebands and to measure directly the function
Z(e) Jsee Eq. (27)]. For density n-2. 5&&10', we
have ~„-I&& 10"/sec, and 0= 10" for 8 = 1 kG at
T= 1'K. Thus, fields of 3-10 ko are of the cor-
rect size, to look for this effect. In order to study
the narrow central peak and to measure D, in the
solid phase, smaller fields should be used. "
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