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The randomly bond-dilute two-dimensional nearest-neighbor Ising model on the square lattice is studied by
renormalization-group methods based on the Migdal-Kadanoff approximate recursion relations. Calculations

give both thermal and magnetic exponents associated with the percolative fixed point. DifFerential recursion
relations yield a phase diagram which is in quantitative agreement with all known results. Curves for the

specific heat, percolation probability, and magnetization are displayed. The critical region of the specific
heat becomes unobservably narrow well above the percolation threshold p, , This provides a possible

explanation for the apparent specific-heat rounding in certain experiments.

I. INTRODUCTION

Magnetic phase transitions in randomly dilute
(tluenched) magnetic materials exhibit competition
between percolative ("geometrically driven" ) and
thermodynamic ("thermally driven") processes.
Consider for specificity a model magnetic insula-
tor composed of an infinite lattice of magnetic ions
interacting via pairwise ferromagnetic exchange
forces of finite range. Suppose that a fraction
(1 —P) of the exchange bonds is removed at ran-
dom, leaving the remaining fraction p unchanged. '
There is a finite fractional concentration p =p,
("critical bond concentration" or "bond percolation
threshold"') below which any given magnetic ion
finds itself with probability unity a part of a finite
magnetic cluster, uncoupled from the rest of the
magnetic lattice. Because such a finite system
cannot support long-range order, the lattice as a
whole is nonmagnetic at all temperatures. ' For
P)p, each magnetic ion may still be part of a fi-
nite cluster; however, there is a nonzero prob-
ability P(p) ("bond percolation probability" ) that
it will be part of an infinite cluster (P(P, ) =O, P(1)
= 1]. This infinite cluster can develop long-range
order, so the zero-field magnetization per site
M(P, T, H= 0) is nonzero for temperatures T less
than some critical temperature T,(p). The criti-
cal temperature T,(p) is a continuous monotoni-
cally increasing function, w'hich for Ising models'
joins T,(P,) =0 and T,(1)= T, (pure system). It
is generally (but not universally') believed that
critical behavior in the "dilute" region p, &p &1
is normal, i.e., characterized by critical expo-
nents, etc. , arising from the single infinite cluster
and modified only by Griffiths singularities' due

to the additional presence of arbitrarily large fi-
nite clusters. ' The form (universality class) of
pure and dilute critical behavior may or may not
differ, according to whether the pure-system
specific-heat exponent n(pure) ) 0 or cs(pure) & 0,
respectively. ' " In the former case, the region
p =1, T= T, (p =1) is characterized by crossover
between pure and dilute critical behavior. At 7
-0, model properties as functions of p are related
to purely percolative phenomena. '" For example,
the infinite cluster orders at 7.'= 0, while finite
clusters do not; hence, M(P, T- O, H=O) is pre-
cisely P(P) except for overall normalization. The
region of the "percolation point, "

P =p„T=0, ex-
hibits its own distinct critical behavior. " For p
=p„T=0 there is crossover behavior between
percolative and dilute regimes. Various forms of
crossover scaling have been proposed. ""

The purpose of this paper is to develop a method
for calculating the properties of the bond-dilute
Ising model for all concentrations (0 &P &1) and
temperatures (0 & T & ~) and in particular to study
critical behavior over the full range P, &P (1. The
method is based on a generalization of the Migdal-
Kadanoff approximate recursion relations" "to
inhomogeneous systems. "'" In order to simplify
the calculation in the dilute regime, p, =P &1, the
additional approximation is made of reducing the
bond probability distribution 6'(K) to a two-5-func-
tion form at each iterative stage of the calcula-
tion. "'"" The phase diagram, the critical and
percolation exponents, and thermodynamic func-
tions are determined in two dimensions (4= 2).
Crossover phenomena between percolation and
critical properties are studied. In our approach
the phase diagram in the P-T plane is described
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in terms of two fixed points (pure system critical
and percolation) and the high- and low-tempera-
ture sinks. (The approximation does not yield an
additional dilute critical fixed point, which is con-
sistent' "with the fact that ii gives o. & 0.) In the
limit in which the recursion relations preserve
the duality symmetry of the model" (scale para-
meter b-1), not only is T,(P) exact at both ends

[p, = —,', T,(1) = (T,)o„„„,] but also initial slopes
agree closely with exact results. The thermal and
magnetic eigenvalues associated with the critical
and percolation fixed points are calculated. The
magnetic exponent at percolation is new and in
good agreement with available data. Finally, ex-
plicit thermodynamic functions are obtained from
our recursion relations using the method of Nauen-
berg and Nienhuis, "suitably generalized for the
randomly dilute magnet. Specific-heat curves,
displayed for a range of concentrations p both
above and below percolation, are smooth for p &p, ,
but for p &p, have cusped critical behavior near
T= T,(p). What is perhaps at first unexpected is
that already for p s 0.8 the critical region is so
narrow that the specific heat aPPears entirely
smooth to graphical accuracy. For p s 0.85 the
specific heat exhibits a maximum at a tempera-
ture above 7',(p), which corresponds to the de-
velopment of significant sho~t- range order. Evi-
dence for this behavior is also cited from Monte
Carlo results" and experiment. " Finally, re-
normalization-group calculations of the percola-
tion probability J)(P) and the magnetization are
displayed.

Section II defines the model and develops the
method. Section GI presents our main results.
In the remainder of Sec. I previous work on

randomly dilute Ising systems is briefly reviewed.
Both the purely geometric (T= 0) percolation

problem and the quenched random dilution problem
have received much attention. Series" and Monte
Carlo"'" methods allow numerical estimation of
transition parameters such as p„T,(p), expo-
nents, etc. Recently renormalization-group meth-
ods have proved very fruitful. The majority of
such treatments rest on the equivalence proved by
Kasteleyn and Fortuin" between the percolation
problem and the s 1 limit of the s-state Ashkin-
Teller-Potts (ATP) model. The ATP model can
be treated via e expansion" "around the critical
dimensionality 4*=6 or by position-space meth-
ods." A few authors' '"' have studied percola-
tion directly by position-space methods.

Similarly, the dilution problem may be attacked
via c expansion"'"'" about d*=4 (using the n-0
limit" ) or in position space. "'""'" While c ex-
pansion results are enormously useful in elucida-
ting systematics, they require extrapolation from

d* do,vn ':..o physical diin nsionalities. Al.so their
application has been mainly confined to exponent
estimates, since it is difficult to make contact
with nonuniversal properties of specific lattice
models Poikil 1&6 8 ~ cAC .. Yv).Fthods wkllle llv, .'. .'.ted
by recursion r; latio.:&s containing gd hog approxi-
mations, do apply directly to physical dimension-
alities and can be used to extract both universal
and nonuniversa| i'nformation. Harris and I uben-
sky" first showed how to use position-space re-
cursion relations to study random systems. Kirk-
patrick" applied the. Migdal-Kadanoff approximate
recursion relations to the dilution problem at H
=0 and calculated p, and v~ for d=. 2, 3 bond-dilute
Ising models. Our work extends Kirkpatrick's"
to H g0, the full 7',(P), and the explicit calculation
of va.rious thermodynamic functions. " %e are
aware of no previous explicit renormalization-
group calculations of thermodynamic functions be-
longing to the randomly dilute magnet.

II. RECURSION RELATIONS, EXPONENTS, AND

THERMODYNAMIC FUNCTIONS

A. Model

Consider a nearest-neighbor s =-,' Ising system
on a square lattice and subject to randomly in-
homogeneous pair couplings and local magnetic
fields. The appropriate Hamiltonian (in reduced
units) is

-P&~=P h, p, + g K, ,p, p.„p,=+1, (1)
(1 j&

)

where N is the number of lattice sites, the sub-
scripts i,j run over the lattice, and the second
sum is over distinct nearest-neighbor pair s
(i,j). The dimensionless couplings h and K are re-
lated to local magnetic fields and exchange ener-
gies by b =ggsH(k~T and EY=J(ksT. The variables
K, , and h,- are independently random with proba-
bility distributions P, (K, ,) and P, (k,.), respectively.
In calculation below we shall specialize to

P, (K, ,) =P b(K, , - K) + (1-P)b(K, ,), K& 0,

P, (b,.)=b(I,. —h), I o-0,

i.e. , each bond either has the value K (with prob-
ability p) or is absent (with probability 1-p), while
the magnetic field is homogeneous.

It is useful to introduce the notation

[x]-= f IIddd;, d', (tc, , ) II b,.Pd, ( )1
xK(PC, ,), 9,,1) (."

I

for the average value of any function of the set
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f = lim —1n Tr„e ~M)'
av

(4)

For the distributions (2),f=f (P, K, b) and appro-
priately averaged thermodynamic quantities can
be determined by differentiation. For example,
the average magnetization is

of variables (K„.), (b,.]. In particular the average
free energy per site of the infinite randomly dilute
system is

Z,= Z„ tanhrY =
'

tanhZ, (9a)

tanh 'V~=g tanh 'T~, (9b)

When the system is homogeneous, "the recur-
sion relation for the coupling along the direction
of initial contraction (x) is

or, in terms of the convenient variable v =tanhK,
which is finite at both T-~ and T-O,

Q(P, K, a)=[&I,.)],„= '
the average susceptibility is

sM(P, K, b)

(5)

(6)

~'(~) =tanh[b"-'tanh-'(~')],

while the coupling along the direction of final con-
traction (y) transforms as

r'(v) = [tanh(b 'tanh 'r)] .

and the average specific heat per site at h = 0 is

—.( g=~K ""
Py 8 A@2 (7)

M(p, K=, b) =P(p) sgn(a)+ P q„tanh(nb),
g=1

where q„ is the probability that a site chosen at
random is part of an n-cluster. It follows that

(6)

IM(P, K=, 0) I=P(P); x(P, ",0)= g
n=1

(9)

X(p, ~, 0) is, therefore, the mean size density of
finite clusters at a site, which is identical to the"
"mean cluster size" S(p) for p &b„but equal to
[1—P(p)] S(p) for p &p,. Near p„P(p) vanishes
as (P -P,) ~, while S(P) diverges as Ip -p, I-~p.

These expressions define the "percolation expo-
nents" P~ and y~.

B. Recursion relations at h=O

Migdal-Kadanoff recursion relations"'" were
first applied to randomly inhomogeneous systems
in the spin-glass context" and thereafter used by
Kirkpatrick" for the dilution problem. " The pro-
cedure consists in successive contractions by a
scale factor b along each of the d Cartesian di-
i ections, resulting in a volume contraction by an
overall factor 5". Each contraction involves a
bond-shifting perpendicular to the contraction and
a decimation along the contraction, schematical-
ly 19

In the strong-coupling limit K- ~ (e.g. , T -0
with Z and H/T fixed) various thermodynamic prop-
erties of the dilute magnet are related to the func-
tions describing percolative phenomena. '" For
example, the infinite cluster orders, while each
finite n-cluster (cluster of n coupled spine) has a
magnetic moment of ntanh(nb). Thus,

%'e shall refer to these as xy and yx recursion
relations, respectively. They have quite different
fixed-point couplings for integer 5 & 1. However,
it is easy to interpret 5 as a continuous variable
(the "natural" analytic continuation in b) and to
take the limit b —= 1+dl, dl-0 (dl is an infinitesi-
mal). In this b - 1 limit, the xy and yx recursion
relations become identical and yield for dK=- K'
—II

dl
= (d —1)K+ —,'(sinh2K) lntanhK. (12)

p'=1 —(I-p')" (13

The 5 1 limit yields for dp —=.p'-p the recursion
relation

—=p Inp —(d-1)(l —p) ln(1-p) .dp (14)

This equation exhibits for d=2 the exact bond-

For 4 =2, Eq. (12) has a fixed point at K*=-,' ln(1
+ +2 ), which agrees with Onsager's~ exact K,.
This remarkable agreement, which arises b]e-
cause the 5 1 recursion relations preserve du-
ality, "does not unfortunately extend to exponents:
one finds a thermal exponent y =0.754 (exact yr
=1) and, correspondingly, a specific-heat expo-
nent n =2 —d/yr=-0. 654 [exact n =O(ln)]. This
strongly negative n seems to be a defect of all
Migdal-Kadanoff-type approximations for Ising
models.

There is a close analog to (12) for percolation,
which we note here for future use. The Kasteleyn-
Fortuin theorem" relates the bond-percolation
problem to the s 1 limit of the s-state ATP mod-
el. Kadanoff" and Stephen" have treated this mod-
el using the Migdal approach. From Eqs. (2.18) of
Ref. (17) one obtains (with p -=1 —e «) a recursion
relation for the bond-percolation probability (xy
asymmetric)
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percolation fixed point p ~ =-p, = 0.5. The associated
eigenvalue exponent y~ = 2(1 —ln2) corresponds to
a correlation length exponent for percolation p~

=y~
' = 1.629 (series" v~ = 1.34+ 0.02).

For the Ising model in the presence of bond
and/or field inhomogeneity the analogs of (10) and
(11) determine each new local coupling 7'

z in
terms of a set of original couplings {~,&]

. l.f each
~,.&

is independently distributed according to a
probability distribution 6'(~, ,), then the probability
distribution 6"(7' z) for the renormalized coupling
is given by"

6"(7,'~) =
i dr, , tP(~„)6(T.' 8

—7.„'s((~„.))) ~.

(15)

In general the same coupling ~„. may contribute to
several renormalized couplings, so that ~' 8's are
not independently distributed. It is a special prop-
erty of the usual ("asymmetric") interpretation" "
of the Migdal-Kadanoff approximation (9) that each
coupling contributes to a single T„'8, so such in-
tercoupling correlations are absent; however,
more "symmetric" interpretations (see below) can
introduct. such correlations. We shall make the
approximation of neglecting them whenever they
arise, i.e. , of assuming the validity of (15) at each
stage of iteration.

We specialize in what follows to the randomly
bond-dilute tzoo-dimensional nearest-neighbor
Ising model on the square lattice. (Within the
Migdal-Kadanoff framework, the generalization to
d&2 is straightforward. ) Although initially the
couplings are either present or absent (~,.~ = 0, 7),
corresponding to the two-peaked distribution (2),
they do not remain so under iteration: the initial
contraction along the g direction gives an inter-
mediate x coupling

6"(~„'s)=P'6(v'„s —r')+(1-P')6(7' s) . (19)

The parameters p' and 7' are chosen by fitting
first and second moments. Thus, (xy asymmetric)

p'(r')"=P p (b)[tanh(mtanh 'r~)]" .
m=0

(20)

Oi

07

I

I

I

5

i

I

I

09

Equation (20) with n=1 and I=2 determines recur-
sion relations, p'(p, v.), ~'(p, ~), from which fixed
points, exponents, etc. , can be extracted as usual.
Note that Eq. (19) represents the distribution (17)
exactly in two important limits. When p =1 (pure
system), thenp =0 for mob; hence, p'=1 and (20)
reduces to (10) with the fixed point K*—= K, = 0.6094.
Similarly, when" T= 0 and ~ =1 (percolation), Eq.
(17) implies ~,'8 =0 or 1 only; hence, (20) reduces
to (13) with the fixed pointp*=—p, =0.6180.

Considerable ambiguity exists in the develop-
ment of recursion relations within the Migdal-
Kadanoff context. If we had focused on the y cou-
pling instead of the x coupling in (16), then for
b = 2 we would have found in place of (20) (yx asym-

with probability p'
T„=tanhE„=

0, with probability 1-p .
(16)

When 5 of these intermediate couplings are added
together in the succeding y contraction, the new
coupling K'

~ =tanh '~'
8 is an integral multiple of

tan '(~'),

IO

EC„', = mtanh '(~'), 0 &m &b,

with cor responding probability

(17)
l2 l4

(18)

To render calculations tractable we make the
additional approximation at each iteration of forc-
ing the full distribution (17) back to a two-peak
form [cf. (2)],

FIG. 1. Sites and bonds for Migdal-Kadanoff recur-
sion relations. (a) The usual (asymmetric) bond-moving
procedure combines the movable bond (2, 5) ~ith o~e of
the adjacent fixed bonds, e.g. , (1,4). A more symmetri-
cal procedure is to split (2, 5), asigning half to (1,4) and
half to (3, 6). (b) See discussion in Secs. IIC and IID.
Circled sites remain after x and y decimations have
been performed.
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metric)
2~2 )

P '(i')" = 4P'(1-P )'~'"+ 4P '(1-P)
1

) 2n

+&' l„.,l
(21)

[cf. (11)]. Furthermore, for even 5 this usual
treatment of the bond-shifting is rather asymme-
trical. For b =2, for example, one moves the en-
tire intermediate bond in one direction [see Fig.
1(a)] rather than splitting it symmetrically be-
tween the two adjacent unshifted bonds. " The xy
decimation with the symmeA"ical bond-shifting
gives for b =2 (xy symmetric),

improved phase-boundary parameters and (b) re-
solve the ambiguity between different Migdal-Ka-
danoff approximations. We can make no statement
on (b), because we have been able to find a useful
analytic continuation only for the xy asymmetric
case (20). - Expectation (a) turns out to be true,
as we shall now show. Continuation of (10) and (11)
is trivial, since b appears parametrically. The
difficulty with (20) is that 5 is also a summation
limit. We wish, therefore, to cast (17) into a form
which allows the sum to be performed. Let x
= e '"= (1 —~ )/(1+ ~') ~ 1. Then

1 x
tanh(mtanh 'i') =

1+x

P '(T')" =P '(tanh2z)" + 2p'(1 —p') (tanh-,'z)"

+0'(1-0')(»~)"+ 2P '(1-P')'(tanh —,'g)",

(22)

=(1-x")g(-1) ~™.
r=O

The sum over m is a binomial expansion, so

(23)

where v'-=—tanhz. It is easy to derive a similar
recursion relation for the b =2 yx symmetric case.

Each of these four recursion relations (xy and

yx, asymmetric and symmetric) has two interesting
fixed points: one on the p =1 axis corresponds to
pure-system critical behavior; the other on the
T=O (7 =1) axis represents percolation. The po-
sitions of these fixed points and their associated
eigenvalue exponents are shown for b =2 in Table
I. Note that K* and p* are in rather poor agree-
ment with the exact values, ' K, =0.4407. . . ,p,
= —,', and vary widely between different approxima-
tions. Eigenvalue exponents are somewhat more
consistent but still only accurate to +25%.

One is tempted (by analogy to the pure system)
to hope that taking the 5- 1 limit will (a) give

p'7' = Q (-1)"[(1-p'+p'x")' —(1-p'+P'x"")'].
g =0

(24)

The corresponding expression for p'7" is only
slightly more complicated. Now b can be inter-
preted as a continuous variable and the analytic
continuation is achieved. There is no general in-
finitesimal form comparable in simplicity to (12)
and (14); however, there is no numerical difficulty
in taking the b 1 limit. In the important special
cases p = 1 (pure system) and 7= 1 (percolation),
Eq. (22) reduces in the 5 -1 limit to Eqs. (12) and
(14), respectively, and yields the exact critical
parameters p, and K„as noted above.

Fixed-point parameters and eigenvalue expo-

TABLE I. Fixed points and eigenvalue exponents for various h= 0 recursion relations.

/

Pure-system fixejl. point
(p*= 1) Correct results

XP,

asymmetric
lEq. (20)]

gX
asymmetric

Eq. (»)]

Xg
symmetric

I.Eq. (22)]

b=2
3)X

symmetric
XP

asymmetric
[Eq. (24)l

0.4407
(exact) ~

1
(exact) ~

0.6094

0.747

—0.264

'0.3047

0.747

—0.264

0.6094

0.747

—0.740

0.3047

0.747

—0.740

0.4407

0.754

-0.128

Percolation fixed point
(X*)-'=I,Z'*l~= 0

1/2
(exact)

0.75+ 0.02
(series) '

0.6180

0.611
0.611

0.3820

0.611
0.611

0.3894

0.750

0.3717

0.980

0.5000

0.614
0.614

~Reference 41. ~Reference '42. 'Reference 43.
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TABLE II. Critical exponents from xy asymmetric recursion relations.

Exponent Quantity Exact or series

Pure system
~=&fear

G. = 2/y~

P= (2 —yg)/yg
&= 2 ~yI —1)/y r
q= 4 —2yI,

Percolation

p = 1/yg
u =2/y

9'p

op= && -ya)/yp
Vp

= 2 (yII —1)/yp

correlation length
free energy
"correction"
magnetization
susceptibility
critical correlation

correlation length
mean number

of clusters
crass-over
percolation probability
mean cluster size
effective cluster
dimensionality

1.339
2.678
0.353
0.170
2.3'37

0.254

1.637
3.273

1
0.193
2.888
1.764

1.326
2.654
0.170

1.629
3.259

0.125 ~

1.75
0.25

1.34+ 0.02 "
2.68 ~ 0.04 b

0.15 +0.03 "
2.38+ 0.02 b

1.78 y 0.04"

~Reference 41.
"Reference 43.

nents of the various recursion relations are sum-
marized in Table I. The corresponding (Greek
alphabet) critical exponents for the xy asymmetric
recursion relations (5 = 2 and t-lI) are given in
Table II. The accuracy of the nonmagnetic ex-
ponents is limited. Section II C discusses the
magnetic exponents.

C. Recursion relations at h 40

There is considerable arbitrariness in the Mig-
dal-Kadanoff approach when developing recursion
relations with magnetic fields: the fraction of the
field at each site that is moved with the bond is
arbitrary. One possibility" is to divide the field
at each site symmetrically between the four bonds
at that site and then to move bonds (with attached
fields) as before (Sec. IIB). This possibility is
workable and gives reasonable exponents; ' how-

ever, it has an annoying conceptual problem:"
when interactions vanish, R„.= 0, renormalization
(of the decimation type) should leave the magnetic
fields at undecimated sites unaltered. Any non-
vanishing fields which move with bonds will violate
this requirement. We therefore adopt the following
procedure. Consider the xy asymmetric case and
refer to Fig. 1(b). In the initial contraction the

y bonds are moved without fields and the x decima-
tion is performed. The renormalized fieM on site
13 is A/3 Qg3+ ~g3y with

&h»-f(K13t14t K14t15t 1114}+f(K12,13t K11,12t I112) t

where

(14 e2x+ 2tt+2z) (e22 ~ e2x+2z)
f(x,y, z) =-,' ln

je +e ~~e +e

Vfhen in the succeeding y contraction the x bonds
are moved, we allow them to,carry the change in
field Ah generated by the previous x decimation. "
At this stage the new field on site 13 is h»=h»
+ 4h, . Finally, we decimate along the y direction
and obtain the renormalized fieMs h'.

Even if one starts with the uniform initia). field
distribution (2), the renormalized I:,', ";*t.'I!.e'
(i) inhomogeneous and (ii} correlated among them-
selves and with the K'&'s. As in Sec. HB we neg-
lect all correlation. Furthermore, rather than
keeping the full 5 distribution, we make the ap-
proxima(. ion of replacing it by a 6 function in anal-
ogy to (19},

6 (I '„) = V(I „'-I.') .
Because the order parameter in our problem is
Rand Il is the corresponding conjugate field [see
(5)], we hope that this neglect of all moments of
6'(i'2} higher than the first is a reasonable first
approximation. " The averaging (19) over t((K„.])
can now be done easily. To linear order in 5 the
magnetic-field recursion relation for b = 2 is

i'2' = I2(l +p
' tanh4K+ 4p '(1 —p).tanh3K

+ [6P'(1-p)'+Op']tanh2K

+ [4p(I-p)'+4p(1 -p)]tanh@. (28)

Magnetic critical exponents are obtained as usual.
We find for the pure system y„= 1.873 (exact~ y„
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n=0

y-(n+ I.)

dg (n) (p (n) ~(n) g ~(n) 29
&i.j)

= 1.875) and at the percolation threshold y„=1.882
(series43 y„= 1.89+ 0.02). The corresponding mag-
netic exponents are shown in Table II. The Mig-
dal-Kadanoff approximation is very satisfactory
for y» in marked contrast to the situation for y ~.

2

D. Calculation of thermodynamic functions

phase boundaries and thermodynamic data a,re
given in Sec. III. The recursion relations (20),
(21), (22), and (24) suffice to produce the former.
Thermodynamic computations on the other hand
are based on Eqs. (5)-(7) and require evaluation
of the average free energy per site f', which is
calculated by summing the incremental integrated
free energy generated at each iteration stage, '"'"

b- (2]+1)(]R(P (n) K(n))
n=O

(32)

We calculate the average specific heat per site
by carrying out the differentiation (7) numerically.

To compute thermodynamic properties in the b

-1 limit, it is necessary to find R(p, K) for arbi-
trary integer b & 1 and then to carry out the ap-
propriate analytic continuation. We have been
able to do this only for the R„part of (31). There-
fore, in order to proceed, we are forced to make
the additional simplifying approximation that the
x and y contractions contribute roughly equal
amounts to the incremental free energy, i.e.,

R(p, R) =- f II («;-;p(R;;))8(«;;))
&i j)

=R„(p, K)+R,(P, K), (31)

and the full free energy (29) follows from summa-
tion,

R (P, K) = 2R„(P,K) . (33)
The superscript (n) indicates the nth iterate and
the function $((K,,]) is the inhomogeneous incre-
mental free energy per site. (R((K,~]) is the spin-
independent term that occurs in the renormaliza-
tion-group transformation, i.e., the relevant field
belonging to the identity operator. There is some
latitude in defining (A. within the Migdal-Kadanoff
approach. We consider the xy asymmetric case
(20) and adopt the following procedure: during the
initial x contraction they bonds IK4 „K, ,4, K, „
and K, » in Fig. 1(b)] are moved, the x decimation
is performed, and an incremental free energy is
obtained. This increment is associated with the
site to the 1c'-.'t of the new bond. For example,
summing over spin 4 in Fig. 1(b) yields a term

t(K]3 142 K14 15) ln2+ n InLcosh(K13 14 K14 15)

x cosh(K(3 14 K]4 ]5)]

which is associated with site 4. Now, the inter-
mediate x bonds are moved and the y decimation
is performed. This yields an additive free-energy
increment at site 1 which consists of two parts
which depend only on x and y bonds, respectively,

where

~ 2P ]n(] ~ n) 2(1 —P)]n]I, (34)

where c = cosh2K. In computing the 5 -1 limit
numerically from (34), we used a linear extrpola-
tion based on 5=1.1 and 5=1.01. The linear de-
pendence of the specific heat on 5 was checked
carefully for severa, l points.

Within the assumption of Sec. II C, it is easy to
find an expression for the zero-field magnetiza-
tion. Based on (5),

sf sf (1) sh (1)

~(P»0)=eh „,=' 'sh sh
(35)

where Pg'") is the average magnetic field after n
iterations andf '"' is the average free energy per
site at p '"', K'"', h '"'. Repeating this, we find that,
when the initial point (p, K) flows to the zero-
temperature fixed point (p =1,K= ~), the sponta-
neous magnetization is given by the infinite pro-
duct, "

We have checked at b =2 (see Sec. III B) that the
qualitative features of the specific-heat curves are
unaltered by the replacement of (31) by (33). Using
the approximation (33), one finds

c- 1I"
R(P, (0 =2IP']n ]-

c+ 1)

and

+tt A (K13,142 14,15) A (K8, 9t 9,10) (30)
](t(P, rC, O) ]I (2-',„,„„(=(36)

+3 8(K3, 8 K4, 9t 8,13 K9, 14) '

The averaged quenched-free-energy increment is
now obtained by use of (19),

Note that sh'"'(sh'" "-b' as (p, K)-(1,~), ensur-
ing the convergence of the infinite product. The
T= 0 magnetization is just the percolation proba-
bility (9). Equation (36) simplifies in this case to
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(37)

which we use in Sec. III C.

III. RESULTS

A. Phase boundaries
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FIG. 2. Phase boundaries derived from the xy asym-
metric recursion relations. Scale factors b= 2 (P*
= 0.618) and b —1 (/*=2) are shown. Note the large
region over which T~ is a linear function of impurity
concentration. Dashed curves show some represent-
ative trajectories. Arrows give direction of flow.

Phase boundaries and a few representative glo-
bal flows are shown in Fig. 2 for the 5 = 2 and 0
-1 versions of the xy asymmetric recursion rela-
tions [Eqs. (20) and (24)]. The behavior of other
recursion relations is qualitatively identical.
Points of the ordered phase T& T,(p) flow to the
ferromagnetic sink at p = 1, T = 0 (7 = 1), while those
of the disordered phase flow to the paramagnetic
sink at p =0, T=~ (T=0). The phase-boundary
points flow from the percolation fixed point to the
pure-system fixed point. This implies that the
critical behavior for p &p, belongs to the univer-
sality class of the pure system (i.e. , exhibits pure-
system exponents, etc.). This result, although
presumably false, is consistent with the Harris
criterion, ' "in that the Migdal approximation
yields a negative value for the pure-system spe-
cific-heat exponent o.. The actual critical prop-
erties of the dilute two-dimensional Ising model
are unknown. Because the pure-system specific
heat diverges logarithmically, the Harris criterion
is inconclusive. It is quite possible, however,
that there is crossover to a distinct, nondivergent,
dilute critical behavior at p & 1. The behavior
shown by our Migdal-Kadanoff approximation is

appropriate only for a system with a(pure) &0;
however, it may not be a gross misrepresentation
for n(pure) a0, provided the crossover is in some
sense 'Weak, " a point we shall return to in Sec.
III B.

The 5 -1 phase boundary was determined from
Eq. (22) using a sequence of nonintegral b's ap-
proaching unity from above. It is probably an ex-
cellent representation of the true phase boundary.
Not only are K,(pure) and p, given exactly (Sec.
II B), but also the exact initial slope 9 T,(p)/&p I~,
is known from a calculation of Harris, ' who finds
3.016. Our calculated value is 3.108, a discrepan-
cy of only 3%%uo. The initial slope at percolation
(in terms of proper low-temperature variables)
has been calculated, "de '«~~'/dp (~ ~,&, =2ln2
=1.386. Our calculated value is 1.33+ 0.01, a
discrepancy of 4/o.

Note finally the qualitative form of the global
flows": trajectories that start near but not on the
phase boundary diverge from it rapidly. Indeed,
any trajectory passing through a nominal critical
region, 1-p & 10 ', t =

~
[T- T,(p) J/T, (p) I & 10 ',

near the pure-system fixed point was practically
indistinguishable from the phase boundary for p
&0.9. For example, if one follows the 5 =2 xy
asymmetric trajectory starting at p = 0.66 and
ka[T —T,(p)]/J = 10 ', one finds that by the time
p =0.99, t has grown by more than four orders of
magnitude. Since it is the contributions to f [Eq.
(32)] from the neighborhood of the pure-system
fixed point which give rise to critical behavior, "
it is clear that for p &0.9 the region T- T,(p) of
observable critical behavior in the thermodynamic
functions will be exceedingly narrow. We shall
see this explicitly in Sec. III 8. Analysis in the
linear region near the pure-system fixed point is
easy: at each step of iteration t increases by a
factor of 5'~, while the irrelevant field, which
measures distance along the phase boundary, de-
creases by a factor b "& Hence, t.-(1-p) ' ~,
where y = ~y~ I/yr (see Table II).

B. Specific heat

Figures 3-7 show a variety of specific-heat
curves. Figures 3-5 refer to the 5=2 xy asym-
metric recursion relations (17) and are based on
the "correct" R„+R, free-energy expression (31).
Figure 6 refers to the b = 2 xy symmetric recur-
sion relation (22) with the R + R, free energy, and
emphasizes the fact that the different 5 =2 recur-
sion relations discussed in Sec. II B produce qual-
itatively similar curves. We emphasize the b
=2 curves despite the rather poor phase bounda-
ries to which they correspond, because their qual-
itative behavior appears general and can easily
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FIG. 7. Specific heat in the b 1 xy asymmetric
Migdal-Kadanoff approximation (24) using the 2R„ free
energy (33). T, (pure) agrees with the Onsager value
as b 1. The percolation threshold p, =& is also ex-
act. Note, however, that the shape of the specific-
heat curves remains similar: the critical cusp dis-
appears rapidly as impurity concentration is increased.
The linear region for p=p, also persists (see text).

be studied in a context which is computationally
simple and free of ambiguity. A calculation of
specific-heat curves with the b =2 xy asymmetric
recursion relations (1V) based on the "incorrect"
but analytically continuable 2R„ free-energy ex-
pression (33) yields curves with shapes similar
to those of Fig. 3. (The specific heats are ap-
proximately 20$ larger and the visible cusps dis-
appear slightly more slowly as impurity concen-
tration is increased. ) This serves to make plau-
sible the assertion that the R„+R, free energy
may be replaced by the 2R„ free energy. Figure
7 displays the results obtained by using the b-1
recursion relations (24) with the (continued) 2R„
free energy. These curves are our best estimates
for the b-1 Migdal-Kadanoff specific heat and go
with the "good" b 1 phase boundary of Fig. 2.

Focus now on Figs. 3, 6, and 7, each of which dia-
plays a family of specific-heat curves. Although
phase-boundary data differs between approxima-
tions, the behavior of the families are similar:
at p =1 there is a bold, A. -like peak. The size of
this peak decreases rapidly mith increasing im-
purity concentration, until by p =0.8 (0.8»p, ) the

specific-heat maximum occurs at a temperature
well above the transition and there is hardly any
detectable anomaly at T,(P). Below p =0.8 all
curves appear smooth to graphical accuracy. As
long as p &p„ there is, of course, sharp singular
behavior; it occurs, however, on an unobservably
small scale, as illustrated in Fig. 4. This dra-
matic disappearance of observable critical be-
havior occurs as a consequence of the critical-
region narrowing discussed in Sec. III A (not be-
cause of any pronounced decrease in the critical
specific-heat amplitude). " This narrowing, as
we have seen, is controlled by the correction ex-
ponent p (Table II).

Is the rapid disappearance of observable critical
behavior well above p, an artifact of our approxi-
mations or is it real? We cannot answer with
certainty, but there are two pieces of evidence that
suggest the latter. Monte Carlo calculations of
the specific heat of the d = 2 site -dilute Ising mod-
el by Ching and Huber" show this effect. On the
experimental side there are relatively few critical
experiments with cont~oIled random dilution. Al-
gra et a/. "have taken specific-heat data which
look very similar to our curves on
Co, „Zn„(C,H,NO), (C10,)„asite-dilute" s = 1/2 XI'
antiferromagnet. How common such behavior is
and for precisely what systems it occurs are
questions that deserve investigation. Note that, if
this effect is present, it is important to distinguish
in the analysis of data between T,(p) and the con-
siderably higher temperature of the rounded spe-
cific-heat maximum.

Our overall conclusion is that for the dilute sys-
tem normal, sharp critical behavior, although
technically present, may well be invisible not only
near the percolation threshold but throughout much
of the dilute region p, &p &1. If true, how should
this be interpreted?. The progressive freezing out
of local disorder (both in finite clusters and in lo-
cal regions of the infinite cluster) takes place
smoothly over the range A~T= J-2J. It appears
that the additional entropy associated with the
development of long-range order in the infinite
cluster for T= T,(p) is quite negligible except
close top =1.

We mention two additional and apparently gen-
eral characteristics of the specific-heat curves:
(i) a striking decrease with p in the specific heat
on the l~w-temperature side of the transition very
near p = 1 (0.9 &p & 1.0) and (ii) a peculiar linear
region on the low-temperature side of the spe-
cific-heat maximum near and at p =p„visible par-
ticularly clearly in Fig. 5 but present also in
Figs. 3, 6, and V. We have no physical interpreta-
tion of these phenomena. " We comment further
on point (ii): it is easy to show that any cluster of
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C. Magnetization and percolation probabihty

Figure 8 shows the spontaneous magnetization
R(p, T), as calculated using the b =2 xy asym-
metric recursion relations and Ec(s. (36) and (37}.
Note via (9) that R(p, 0) =P(p). The intersection
37(P, T}= 0 reproduces the 5 = 2 phase diagram of
Fig. 2. Although the percolation threshold is
given poorly for b =2 (p, =0.618), the'qualitative
trends shown by the curves are all reasonable.

IV. SUMMARY

0.0 0.5 1.0 1.5

TEMPERATURE (k gT/J)

2.O

FIG. 8. Spontaneous magnetization of the randomly
bond-dilute Ising model, calculated using the b= 2 xy
asymmetric recursion relations. Note that, although
the critical exponent P is the same at all concentrations
p, the magnetization drops off more abruptly with tem-
perature for p= p, than for p= 1.

coupled Ising spins (finite or infinite) avhich con
tains no closed loops contributes to the specific
heat a term proportional to (K/ coshK}', which
peaks at T-0.83 J/k~. Small branched chains of
this type may be expected to dominate the specific
heat for low p, and the shape of the specific-heat
curve at p =0.2 (Fig. 5) bears out this expectation.
On the other hand, for p, &p s 0.8 the temperature
of the rounded maximum is well above 0.83J/ks
and decreases only weakly with p. Thus, the
shape of the curve at p =p, suggests a superposi-
tion of two rather distinct contributions. Whether
this is connected to recent speculations about
dominant cluster configurations near percola-
tion" "'"remains obscure.

The randomly bond-dilute, two-dimensional,
nearest-neighbor Ising model on the square lattice
was studied by renormalization-group methods,
based on the Migdal-Kadanoff approximate recur-
sion relations. The value of the approach is that
it provides a simple method for the estimation of
the phase diagram, critical exponents, and thermo-
dynamic functions. The approximation does not
generally give correct quantitative information
(except, e.g. , for the phase diagram in the limit
b - 1), but it does seem to describe correctly some
of the essential features of phase transitions in
randomly dilute magnetic systems.
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