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For a Landau-Ginzburg-Wilson Hamiltonian of any given symmetry we show how one can find a group

Gr of orthogonal transformations in parameter space, which commute with renormalization-group

transformations. Then a renormalization-group transformation may be expanded into covariants of 6&. We

also present a systematic procedure for finding fixed points; they are most likely to decouple the

Hamiltonian or to increase its symmetry. The merit of the conclusions obtained is illustrated using an

example of a system with C4 symmetry. Agreement with the results of e-expansion calculations has been

found.

I. INTRODUCTION

Since its appearance, the renormalization group
(RG) has proved to be a very useful tool in the
modern theory of critical phenomena as well as
in other areas of theoretical physics. ' ' Since
Kadanoff's~ and Wilson's' pioneer work, our
understanding of RG theory has broadened in a
qualitative as wel. l. as formal way. There is a
large amount of literature on tpe RG theory. '
Particularly, there have already been several
papers concerned with the study of classes of equi-
valent Hamiltonians (with respect to universality).
Also several papers concerning classes of equi-
valent RGtransformations have appeared. Jona-
Lasinio' has been interested in studying such RG
transformations, especially those related by dif-
feomorphisms, for which he has established
some theorems. Wegener' and Green' have estab-
lished several similar theor erne (called invariance
theorems) for RGtransformations generated by a
flow vector.

It is interesting to study the connection between
classes of equivalent Hamiltonians and classes of

~
'V

RQ transforxnations. Korzhenevskii" has studied
the example of a two-component field of cubic
symmetry. He studied the connection between
the properties of. the RG transformation and

,'symmetry .of the Hamiltonian.
We have been motivated by the many results of

RG analysis for multicomponent order param-
eters" "to investigate apparent symmetry in HG

equations, its origin and its consequences. We
have found that there is a group of symmetry oper-
ations in parameter space under which RG trans-
formations remain invariant. We determine the

,
'relationship of this group of symmetry trans-
formations to the symmetry group of the Hamilton-
ian. We also show the relation of this group to
the structure of RG equations. We formulate a

systematic procedure for obtaining fized points
of RG transformations, based on the symmetry
properties of the Hamiltonian.

II. SYMMETRY OPERATIONS IN THE PARAMETER SPACE

We wil. l. be concentrating on the systems des-
cribed by the Landau-Ginzburg-Wilson (LGW)
Hamiltonians of the general form:

0[4']= =2f %, ikd'g —P uJ r, s'g,
2 i~1 Ja P

where g» —= g» (x), i = 1,. . . , l, is an l -component
fieM (order parameter) which spans physically ir-
reducible (i.e. , irreducible over the field of
reals) representation & of the symmetry group of
the system;d"x is the volume element in the d-
dimensional configuration space; I,=Z»., g» is
the only D-invariant homogeneous polynomial
quadratic in g; I~, j =1, . . ., m, are all quartic
in g linearly independent D-invariant polynomials
(we denoteI', byI, ); u~, j=0, . . . , m are real
parameters, analytic functions of thermodynamic
variables. These parameters form an (m+ 1)-
dimensional parameter space II for the system (1):

II= u; ucR ", lim u&l& =+, 2
&o +

where R is a real line. We denote by u a point
(u„u„. . . , u„). Definition (2) represents a nor-
malizability condition of the probability distribu-
tion e~~~~: the partition function Z is defined as a
functional integral,

g Q eH)$)

Thepartitionfunction is a function of the point u in
the space II.

In the space II, we also define RG transforma-
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tions: an BG transformation Nis defined as a
(nonlinear) transformation in Il,

which connects two systems that are otherwise
identical except for a scale change. Immediate
consequences of the definition of Rare (a) 9l

must satisfy

9t, 9t, =9I„, for all s and t from [1,~],
where we used subscripts s, t, st to denote cor-
responding scale change factors; (b)wcannot
decrease the symmetry of the Hamiitonian; (c)
an infinite number of RG transformations may
increase the symmetry of the Hamiltonian; (d) Q
cannot produce couplings in the, originally, de-
coupled Hamiltonian; (e) an infinite number of RG
transformations may eliminate some of the
coupl. ings, originally present in the Hamiltonian.
Any RG transformation %must satisfy conditions
(a)-(e).

It is of particular interest to find fixed points
u*of g,

Ru*= u*

critical exponents for the system are given by
eigenvalues of the linearized from N of M near
the fixed point. A matrix R" is defined as

(6)

. We restrict T to linear nonsingular transforma-
tions on II. Then, Eq. (8) expresses arbitrariness
in the choice of the basic invariants I» j = 1, .. . ,
m. It is apparent from Eq. (8) that symmetry
properties of pare determined by these T's
which commute with g. Such T's form a group,
which we call G~

G„=(T;Nr =K} .
Before we analyze the consequences of Eq. (9),

we will shown how G~ can be determined if we
know the quartic part of the Hamiltonian (1).

First we note that the partition function (3) is in-
variant under a, cha.nge of "gauge"

Hence, although definition of %is not unique,
in order for different%'s to describe the same
physics, it is sufficient that corresponding R*s
have the same (relevant) eigenvalues. "' Such
5's we call equivalent.

It was shown by Jona-Lasinio' that every dif-
feomorphism T, in II, can produce BG transforma
tion 5 equivalent to the transformation N

S~=T '5 T

(10)

where V is an orthogonal I && l matrix: VE O(l).
However, under the action of V the Hamiltonian
will be, in general, taken outside of II. Therefore,
we restrict our attention to those V's which trans-
form II into II. I, remains invariant under all V

and we need only consider those V's that trans-
form invariantsI, , j =1, . . . , m into linear com-
binations of themselves. Call the group of such
V's G:

G =(V V~O(l) VII' II}. (11)

Therefore, by definition, every V(= G~ will induce
a linear transformation on II. We prove in the
Appendix that all linear transformations induced in
such a way commute with the R and thus they belong to
a group G~. G~ is, in effect, a linear representation
of G . Particularly, subgroup D of G is rep-
resented by the identity in G~. We can always
choose invariantsI&, j = 1.. .rn, in such a way
to have G~ orthogonal and reduced.

The simplest way to obtain groups G and G~
is by the "brute force" method. Take a general
V(8„.. . ) L O(l), which is suitably parametrized
(parameters: &„.. .). The condition

will then give a system of equations for param-
eters ~„.. . . By solving this system we auto-
matically determine G~ as well as G~. A set of
the solutions is not empty: there will always be
solutions that correspond to G =D.

Let us denote by D a maximal group that leaves
each I &, j = 1, . . . , nz, invariant. D roust be a
normal subgroup of G~. Therefore, we can also
obtain a group G as a normalizer of D in O(l)

G~=$ V; Vc 0(l), V iDV=D} .
A group G~ is then obtained from the irreducible
representations of G which appear in the reduc-
tion of the fourth symmetrized power of G, . Only
these irreducible representations which subduce
identity representation of D are relevant. In t;his

way a group G~ may be obtained in its reduced
fol m.

In the similar fashion one may construct a group
G (and Gr) by reduction (and subduction) of the
fourth symmetrized power of the entire group O(l).

The aforementioned methods for obtaining a
group G~ will be illustrated in Sec. IV of this
paper.

Now that we assume the group G~ is determined,
we return to its definition (9). Consequences of
this definition are very strong: the Ro trans-
formation Su must be covariant under G~,
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RTu= &Ru, for all TcG~..

As a result, a flow line diagram generated in II
by the action of'%must have symmetry G~. In
particular: (i) a set of fixed points must be in-
variant under Gr; (ii) two fixed points related
by G~ must have the same stability properties.
Furthermore we can expand 9tu as"

9lu= g f„(&(u))c„(u), (15)

where 8(u) is a set of all algebraically independent
invariants (i.e. , integrity basis") of Gr, c„(u) are
all linearly independent (modulo invariant) co-
variant functions of Gr; f„are arbitrary functions
of their arguments. In the cases that are most
likely to occur (e.g. , Gr is a point group), there
is a finite set of covariants c„(u)."

In the special case where we are interested in
the small u region, for example in the & expans-
ion,"'"we expand 9lu inthepowersofu. Thus~3lu
will be determined by several constants. Then
by Eg. (15) we can reduce the number of these
constants to those coming from expansions of
functions f„. Further elimination of constants is
imposed by the general conditions (a) to (e) of this
section. Therefore we will be left with only a few
constants to be determined. This means, in the
~ expansion, that we need calculate fewer Feyn-
man diagrams.

III. FIXED POHVTS

=II —U oD, , (16)

which correspond to possible symmetries of the
Hamiltonian

E(I)z O(I) z. . .zD'z. . .D2). (17)

For a given RG transformation'N, it is impor-
tant to find the set of all fixed points, and to de-
termine their stability. The problem of finding
all fixed points usually reduces to the solution of
a system of m+1 nonlinear equations for param-
eters u&, j=0, . . . , m. In general, it is difficult
to analytically find the set of solutions of
these equations. We propose here a systematic
procedure for finding the fixed points. By this
procedure we reduce the number of independent
parameters among u's. In some cases the number
of independent parameters is reduced to only one.

The first step in the determination of the fixed
points is to use condition (b) of the previous sec-
tion. This means that we have to make a sequence
of subspaces o of II,

os*={0)&os ——{(u„u„o,. . .))
o+&c:. . . ( o&, ,c.. . c:o~

In other words, symmetry of the Hamiltonianis
&' whenever uc o'~,. Therefore, for each D' and
each finite scale change g:

(18)

We have isolated subspace o~,

c*,= {o),
which corresponds to the symmetry E(l), which
is a semidirect product of O(l} and full translation
group T(l) in l-dimensional space" [t.e. E(I) is
a l-dimensional Euclidian group]

E(l)=O(l) e T(I). (2o)

Subspace o~ we call the Gaussian fixed point.
We have also isolated subspace o~,

c„={(u„u„O,. . .)) -o*, , (21)

We can immediately determine a subspace o~
of o~ which decouples the Hamiltonian into a
system of noninteracting harmonic oscilators

ac={(u„o,. . .)). (23)

Tgis subspace we call the Gaussian subspace.
aur conjecture is that most of the fixed points

will be either points that decouple the Hamiltonian,
or points related to these by the group G &. Note
that decoupled Hamiltonian may be related to the
coupled one by the group &~.

At the present, we cannot say much about the
stability of fixed points. If we assume that a stable
fixed point corresponds to the infinite correlation
length (excluding possibility of zero correlation
length' ), then fixed points that correspond to the
decoupled Hamiltonians, or Hamiltonians related
by Gr to decoupled ones, must be unstable in the
directions which involve couplings. Therefore,
most of the fixed points should be unstable.

In the special case where the parameters of the
Hamiltonian belong to the Gaussian subspace, the
partition function (3) as well as the RG transfor-
mation may be obtained exactly. " There is only

which exists for every LGW Hamiltonian (1): in-
variants I, and f, are both invariant under O(l),
moreover, they are the only possible invariants
(up to fourth degree in g) of O(l}. Therefore, sub-
space os corresponds to the symmetry O(l). This
subspace we call the Heisenberg subspace and the
corresponding fixed points we call the Heisenberg
fixed points.

The second step is to use condition (d) of Sec. II.
Thus we find all subspaces cc, , oD„. . . C v~„which
decouple the Hamiltonians corresponding to each
symmetry D'. Therefore for each D' and each p,

= 1,2, . . . and each finite scale change%we have

(22)
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one fized point in this case, the Gaussian fixed
point u*= 0, which is unstable. This fixed point
must also be unstable in all other directions and
in particular in the u, direction. Therefore, if
there is only one Heisenberg fixed point, we con-
clude that it must be stable in the u, direction.

It is important to note that there is a possibility
of finding a line of fixed points whenever the group
G~ turns out be be a continuous group. For ex-
ample, we find this to be the case in See. IV and
in the case of four-dimensional B-point represen-
tation of the 0'„' symmetry group. " In both cases
the representations used are direct sums of a
complex conjugate representations. We believe
that, in general, appearance of marginal eigenop-
erators (i.e., lines of fixed points) maybe attributed
to the existance of the continuous symmetry group
G~.

In the following section we will illustrate appli-
cation of the conclusions presented here. We will
also make comparison with the &-expansion re-
sults.

IV. EXAMPLE: SYSTEM VfITH C4 SYMMETRY

As an example we will discuss a system wich C4

symmetry, desribed by a two-component field

(24)

We take these fields to span a physically irreducible
representation D,

100 0

010 0

001 0
(29)

000 -1
of G~. On the other hand, invariants I, and I3
transform under V, (8) as

V, (8)I, = cos(48)I, —sin(48)I, ,

V, (8)I,= sin(48)I, + cos(48)I, .
(30)

Therefore, for any VEO(2) invariantsI, andI,
are transformed into linear combinations of them-
selves. Thus, the group G is the entire group
O(2):

G, =O(2). (31)

From Egs. (29) and (30) we see that elements of the
group G& are

1 0 0

V-(8) = V.(8), 8 c [0, 2w) .ff 0) (28)
i,o -zj

It is immediately clear that a gauge transformation

0)
(0

is an element of G and that it induces transforma-
tion

I,=-,' X2P ' (X'+ Z4),

I2=X1'(X2 —F') .
(26)

(25)

of the group C,. & and E* are complex conjugate,
one-dimensional, irreducible representations of
C„as given in Ref. 20.

The representation D has three linearly indepen-
dent quartic invar iants":

I2 (X2+ F2)2

T,(8) =

0 0 cos(48} sin(48)

0 0 -sin(48) cos(48)

0 0 0

T (8) = T,(8).
001 0

0 0 0 -1

(32)

(33)

We have chosen this particular set of invariants
such that we obta, in a group G~ in orthogonal, re-
duced form. Included here as a special case (when
u2= 0 in the Hamiltonian} is the example of Ref.
10.

In order to obtain a group G~ we will first apply
a "brute-force" method. A general gauge trans-
formation, Vc O(2), is either

v (e)= ~'" ""
t 8~[o, 2~), (2v)

(—sin& cos8)

Thus, we find from Egs. (32) and (33) that Gr is
given as

G =2S, S S, (34)

where Z', is the identity representation of O(2) and
Z' is a two-dimensional irreducible representa-
tion of O(2) as given in Ref. 22.

We note that we could find a group G2 = O(2) by
the second procedure described in the text.
Namely, invariants Ip I2 I3 form the integrity basis
of the group C4, and therefore C, is a maximal
group which leaves a11I's invariant. On the
other hand, C4 is a normal subgroup of O(2).
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Therefore, we conclude &, =O(2).
The group G~ is continuous. When restri. cted to

the subspace spanned by u, and u„G~ is identical
to O(2). As a consequence the RG transformation
must have axial symmetry (axis: u, =u, = 0).

Now that we know a group G~, we can further
analyze symmetry properties of the RQ trans-
formation. The Gaussian and Heisenberg sub-
spaces where discussed in the previous section,
giving Gaussian and Heisenberg fixed points

u~o = (0, 0, 0, 0) .

Mp= (Qo, Qg 0 0) .H H
(35)

The reminder of II,

oD= II —oH —oG, (36)

u= s [M, +P(l —s )u,'+y(1 —s )(u,'+u,')],
u= s'fu, + [P+(—", )'y](1 —s )N,u,),
u=s {u,+ [P+(—")'y](1—s )u,u,),

(38)

where o. , p, y are functions of e (i.e. , of the con-
figurationspacedimensionality d=4 —e) only; s is
the scale-change factor. We have also assumed
that u, does not couple to u, , i = 1,2, 3, enabling us
to extract the i=1, 2, 3 part of i}t. From Eq. (38),
it is apparent that only three constants need to be
obtained by the ~ expansion. It suffices to con-
sider contributions shown in Fig. 2. Contribution
from the first diagram of Fig. 2 is one obtained

is the last important subspace in the chain (16).
o'~ contains a subspace o~,

og = f(QO, Q~ ——Q~, 0)), (37)

in which the Hamiltonian is decoupled into two "4"'
Hamiltonians. This subspace we call an Ising
subspace and corresponding fixed points Ising fixed
points. Clearly, by the action of G~, these fixed
points will produce lines (circles) of fixed points.
Therefore, each such fixed point will possess a mar-
ginal eigenoperator. The fact that the Gaussian fixed
point i.s unstable and the assumption that there is only
one Ising fixed point, leads to the conclusion that the
Ising fixed point is stable along the line given by (37).
On the basis of conclusions of Sec. III it is unstable
in other directions. Thus, if we assume that there
is a crossover line from the Ising to the Heisen-
berg behavior, we conclude that the Heisenberg
fixed point must be stable. Our conclusions are
summarized in Fig. 1.

These conclusions we have just presented can be
compared with the &-expansion results.

The most general form for quaChatic g which
satisfies the symmetry condition (15) and (a) to
(e) of Sec. II is

FIG. 1. HG flow diagram for the two-dimensional rep-
resentation of the C4 symmetry; the parameter space

is the interior of the shaded cone; only the flow lines
in the N~-N2 and m&~3 planes are shown; N2=g3 —-0 is
the symmetry axis; 6 and H are the Gaussian and
Heisenberg fixed points, respectively; I is the line of
the Ising fixed points; 0.

& is the Ising line [Eq. (37)] and

0 z is the cone generated from 0 z by G z.

P = —40(Z,«),
y = -( —;,)(&.«),

(40)

where &, is the area of a three dimensional unit
sphere. The fixed points are obtained in the sub-
spaces o~, oH, and oz by solving corresponding
quadratic equations for one unknown. These
fixed points and their stability, as calculated in

Refs. 11 and 17, correspond to those of Fig. 1,
which we have obtained on the basis of our analysis.

+ + + ~ e o

Ui Ui u, u, U2 u2

FIG. 2. Feynman diagrams needed to determine n,
P, and y of Eq. (38); only the contributions shown
explicitly need to be considered; for example, contri-
bution g 3N 3 need not be considered.

from a simple scale change argument, giving n to
the lowest order in ~

(39)

Because of the axial symmetry in II, it is suf-
ficient to analyze the u, = 0 plane. Then we com-
pare Eg. (38) with the c-expansion calculation of
Refs. 11 and 17. Their calculation is i.n agree-
ment with (38) yielding
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V. DISCUSSION

In the previous sections, we have discussed the
symmetry properties of RG transformations. We
have also proposed a systematic procedure which

,allows us to find most of the fixed points. We
concluded that most of the fixed points must be un-
stable. This agrees with present ~-expansion cal-
culations which show that very few stable fixed
points exist. This is particularly apparent in the
case when the number of components of the field
exceeds 3 (i.e. , I &3)."" & expansion has also
shown that the components of u~ happen to be ra-
tional. "" This is an interesting observation,
which we believe, will be understood on the basis
of symmetry arguments.

We have constructed a group G~ as an orthogonal
group which arises from the orthogonal transfor-
mations on [C). However, for systems with high

symmetry, the group G~ obtained may just be the
identity transformation. In such cases (e.g. ,
cubic symmetry I= 3)" one has to look for more
general group G~.

A question remains as to what happens with the
symmetry yroperties of the RG transformation
if we include higher -order invar iants in the Ham-
iltonian (1). First we note that II can be separated
into subspaces which correspond to the degrees
of the invariants. Such subspaces are not mixed

by the group t"~. Therefore, the group G~ re-
stricted to the original subspace is unchanged. In
added subspace, it may occur, if D=D, that the
corresponding group G~ will remain the same.
However, if D& D, we may find that the new G

is the group D itself. Then, again, we have to
look for a group Gz more general then one dis-
cussed in this paper. Such a group may arise
from transformations on g more complicated than
simple orthogonal transformations.
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APPENDIX

In order to px'ove that transformations T, gen-
erated by gauge transformations V [E(I. (12)] be-
long to a group G~, we have to show

(»)[t'] =»I, ~c& s~",I e (k) =E4g (sk)

where g&& is a field component which depends on
such k that ~k ~&& s 'k„k, being the cutoff wave
number; s is a scale change factor and ( is the
field-scale change factor. Therefore, from (A3)
and (A2) we find

(IIIVH) [y'] = ln
~

&y&
e"'"'~,, (-„).,„(,-„) .

(A4)

After a change of variables (fan- V '[r), taking into
account detV = 1, the left-hand side of E(I. (A4}
becomes

Q &t) ~i[)~ I (A5)

If we use E(I. (A3) again, (A5) becomes

(A6)

where the last e(luality follows from definition
(A2). Comparison of (A4) with (A6) concludes the
proof.

The definition of the~which is closely related
to the original Kadanoff's definition of block spins
can be written as':

I

(tRH)[i)')=)n Iti) il ()' f i))
e"'~i

0
(A7)

where 0, is a small volume around a point c. This
definition of the configuration space HG transfor-
mation is particularly useful in case when the field
is defined on the discrete lattice. " We prove (A1)
using the definition (A7) as well.

From (A7) and (A2) we find

(A8)

where we have changed variables [C)- V"'[C), taking
into account 6(V 'P) = ~detV

~
6(P) and ~detV

~

= 1.
By comparison with definition (A7), the left-hand
side of (A8} becomes

(A 9)

(A2)

First we consider the case of Wilson's approach
of integrating out short-wavelength degrees of
freedom. '"'" The field g is defined in k space
(Fourier transform), andetis defined as

(&VII)[$]= (V»)[t/], for all Vc 6
where we define

(A1)
where the last equality follows from the definition
(A2). Therefore, we have also proved (Al) for the

3I defined by (A7).
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