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We present a classification of continuous order-disorder transitions of an adsorbed monolayer on substrates
with P2mm, C2mm, P4mm, and P6mm symmetries, assuming the validity of the I.andau-Lifshitz theory

(apart from the rule against third-order invariants). The transitions belong to the universality class of the
Ising, three- or four-state Potts model, and X- Y model with "cubic" anisotropy.

I. INTRODUCTION

The experimental study of physically and chem-
ically adsorbed systems has the potential to con-
tribute significantly to our understanding of criti-
cal phenomena in two dimensions. In order to help
realize this'potential, it seems important to un-
dertake an inclusive study to determine what sys-
tems can be expected to display interesting criti-
cal behavior. On the other hand, the improvement
of experimental resolution is essential to obtain
reliable estimates for the various critical expo-
nents. The experimental techniques used to inves-
tigate two-dimensional systems are rapidly im-
proving, and we anticipate that critical exponents
will be measured with increasing frequency with-
in the next few years. ' To encourage experiments
on systems of particular interest in critical phen-
omena, we present here a catalogue of the differ-
ent universality classes which can be observed in
one kind of transition that commonly occurs in ad-
sorbed systems, namely, structural order-disor-
der transitions.

Whenever adsorbed atoms or molecules are
found with overwhelming probability at adsorption
sites provided by the substrate, structural order-

sdisorder transitions are to be expected. At high
temperatures, the array of sites is randomly oc-
cupied while at low temperatures the sites may be
occupied in an ordered manner such that the adsor-
bate is found in a superlattice structure. The ex-
istence of this ordered structure can be ascer-
tained directly by low-energy-electron diffraction'
(LEED), neutron' or x-ray diffraction, ' or indi-
rectly by measurements of vapor-pressure iso-
therms, ' specific heat, ' or nuclear magnetic res-
onance. '

We emphasize that the number of different ad-
sorbate-substrate combinations that display such
ordered structures is very large. A useful cata-

logue of the reported LEED observations is pro-
vided by Somorjai. ' Most of these observations
are limited to verifying the existence of the super-
lattice structure and ascertaining its periodicity.
In this paper we point out that many of' the transi-
tions that this large number of systems will under-
go should fall into a small number of universality
classes, several of which are of particular inter-
est in critical phenomena. Thus, with the cata-
logue presented here, the choice of adsorbate-sub-
strate combinations can be made so that a particu-
lar class of interest can be studied.

In a previous paper" we considered square and
triangular arrays of adsorption sites, and super-
lattice structures which possessed the same rota-
tional symmetry as the array. These arrays are
denoted (a xa) R8 if the dimension of the unit cell
of the superlattice is larger by a factor a thari that
of the substrate cell and is rotated by e." In the
present paper we generalize our analysis and study
adsorption arrays with the symmetry of the four
most common Bravais lattices. " Furthermore our
analysis produces all possible superlattice struc-
tures on these arrays which can undergo a contin-
uous transition [not only those denoted (a &&a) R8],
Provided certain symmetry arguments in the phen-
omenological theory of Landau and Lifshitz are
valid. This theory is reviewed in Sec. II and ap-
plied in Sec. III. Our results are collected and
discussed in Sec IV. We show that the classes of
critical behavior that can be studied in such sys-
tems consist of the two-dimensional Ising, three-
and four-state Potts models, and the X-Y model
with cubic anisotropy. In two dimensions, the
three- and four-state Potts systems undergo con-
tinuous transitions, and the X-7 model with cubic
anisotropy is predicted tobe nonuniversal. ' '" This
rich variety of models leads us to believe that ex-
periments on adsorbed systems can yield informa-
tion on critical phenomena, which can hardly be
provided by other systems.
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II. METHOD OF ANALYSIS

In this section we present the model Hamiltoni-
ans for the adsorbed systems and review the phen-
omenological theory of Landau and Lifshitz which
we shall apply to it.

The model Hamiltonian which we employ, that of
a lattice gas, emerges naturally from the assump-
tion that the adsorbate is found with overwhelming
probability at adsorption sites. In the lattice gas
model, the atom can only be found at the sites.
Thus the occupation number n(r) takes only the val-
ue zero or one. The vector r denotes the position
of the site. By characterizing the adsorbate en-
tirely by its position, that is by n(r), we are as-
suming that there are no other variables associat-
ed with it, such as internal degrees of freedom.
This assumption excludes, for example, consider-
ation of a long molecule which, while occupying a
single site, can align itself along one of a few sym-
metry directions of the substrate. With this excep-
tion the use of alattice-gas description in no way
restricts our analysis. This is because the Lan-
dau-Lifshitz theory depends on considerations of
symmetry and the symmetry of both the disordered
and the commensurate ordered states of the ad-
sorbed system are the same as those of the lattice
gas.

The particular lattice-gas Hamiltonian which
contains only two-particle interactions,

lf pÃ= —Q v(r-r')n(r)n(r') —p, Qn(r),

(2.1)

where the prime on the sum indicates r t r' and p,

is the chemical potential, is often employed for
the calculation of phase diagrams. As this Hamil-
tonian does not contain the weak three-body forces
which are expected to be present in any real sys-
tem, it. possesses, for a particular value of p, , a
symmetry under the interchange of particles and
holes [t.e., n(r) 1 —n(r)] which the physical sys-
tem does not. 'This additional symmetry permits
such a model system to exhibit classes of critical
behavior which the physical system is not expected
to manifest. We do not restrict our analyses to the
particular lattice-gas Hamiltonian of Eq. (2.1) and
thus do not employ the additional particle-hole
symmetry. %e shall note in Sec. III, however,
where the use of this Hamiltonian would produce
unphysical classes of transitions.

The order-disorder transition can now be de.-
scribed in terms of the lattice-gas model. At high
temperatures, in the disordered state, the density
of the adsorbate p(F}=(n(r)) is the same at each
site. Therefore, the density is invariant under the
symmetry operations of the space group Go that

leaves the Hamiltonian (2.1) invariant. In the or-
dered phase, this symmetry is spontaneously bro-
ken and a state of lower symmetry G(:G, is ob-
served. The density is. no longer the same at each
site but can be written

p(r) = po(r) + &p(r),

where p, (r) has the symmetry Go and p(r) the sym-
metry G. Their difference can be expanded as a
linear combination of real functions which trans-
form according to the irreducible representations
of Go,

bp(r) = g' g c„4„.(r), (2.2)

where l enumerates the representations and i spec-
ifies the functions within a representation. The
prime on the l sum means that the unit representa-
tion is excluded as it already appears in the densi-
ty through p, (r)

We wish to know whether this order-disorder
transition can take place continuously. The theory
of Landau and Lifshitz answers this question by
stating that a transition can be continuous if certain
conditions are satisfied. These conditions are the
"Landau rules" which have been discussed in detail
by Mukamel and Krinsky, "who also provide rele-
vant references.

The symmetry group of the ordered phase G can
be determined experimentally using LEED. Thus
a classification of ordered structures based on
the various possible groups G is of experimental
relevance. Once G is known, the functions Q„ that
can appear in (2.2) are limited. The first Landau
rule states that a transition can be continuous only
if the order parameter belongs to a single irreduc-
ible representation, which we will eall the "lead-
ing" representation. This rule needs to be em-
ployed with care, since the occurence of a non-
zero-order parameter in the leading representation
may indirectly induce contributions to (2.2} from
other representations, due to higher order invari-
ants in the free energy. " In the instances where
more thari one representation is needed to con-
struct &p(r} with a given G, two possibilities can
occur. In the first case one can identify a single
"leading" representation, which causes other rep-
resentations to participate in the order. In the
second case, no such identification can be made,
and then the fi:rst Landau rule can be used to pre-
dict first;-order transitions to many experimentally
observed structures. "

Bather than considering, for the various sub-
strates (or G,), all the possible subgroups G, we
invest;igate all the irreducible representations that
can appear in (2.2). Let us denote by A,' the value
of l for the single representation that characteriz
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es &p (or the leading representation, when more
than one is needed), and denote its dimensionality
by m. Then we can define the m-component order
parameter

g„=Q Q„(r)n(r), i = 1, 2, . . . , m . (2.3)

The vectors k& are the n. independent vectors of
the star of k in the Brillouin zone. (By indepen-
dent, , we mean unrelated by a reciprocal lattice
vector. ) The star of k& is generated by applying to
any k& the elements of the point group which is an
invariant subgroup of Go.

Next, in order to determine the universality
class of the transition, we construct from the or-
der-parameter components tj„ the Landau-Ginz-
burg-Wilson (LGW) Hamiltonian. In practice this

In the disordered state (g~, ) =0.
There is an infinite number of irreducible rep-

resentations that lead to superlattice structures of
different symmetries. However, the second and
third rules state that. the representation cannot be
an arbitrary one but must satisfy certain condi-
tions. If we denote the representation by T, then
the second rule states" that the symmetric part
of T' must not contain the unit representation.
This is equivalent to stating that it must not be
possible to construct a third-order invariant from
the g~;. Although this rule appears to be valid in
three dimensions, it is violated in two dimensions
by the three- and four-state Potts models which
undergo continuous" transitions, even though one
can construct such third-order invariants. " 'Thus

a classification scheme based upon this rule is in-
correct in two dimensions' and we do not employ
this rule to limit the possible representations.

.The third rule, the so-called Lifshitz condi-
tion, "'"states that the antisymmetric part of 7.'
cannot contain the vector representation. Goshen
et al."have shown that this is not a necessary
condition for the transition to be continuous. How-
ever, if a continuous transition occurs for which
this condition is not satisfied then the symmetry
of the ordered state in general changes with tem-
perature. In a LEED experiment this would result
in the continuous change with temperature of the
position of the extra LEED spots due to the super-
lattice. A/l such cases axe excluded from our
classification scheme and we use the Lifshitz con-
dition to reduce the allowed representations to a.

very small number.
Having determined the allowed single or leading

representations, we construct for each one the in-
dependent densities p(r) from Eq. (2.2). For
the lattice gas the form of the functions P„, is

Q„(r) = cos k, r or P„(r)= sink, ~ r .

reduces to constructing all products of three or
four g„; which are invariant under the operations
of Go. Although there is no systematic way of do-
ing this, invariance under translations requires a
third-order in'variant to be of the forn;:;~)& &Pk p&

where k', +k2+k, equals a. reciprocal 1.3.t.iice vector.
A similar restriction holds for higher-order in-
variants too. This simplification permits such in-
variants to be obtained by inspection. We compare
the resulting LQW Hamiltonian with those describ-
ing known models (e.g. , Ising, q-state I?otts, etc. )
If the LGW Hamiltonian of the system of interest
is identical to that of one of these models, we
identify the universality class of the transition of
interest with that of the known model.

Finally, to determine what ordered structures
can be reached via the transition, we consider all
invariants that can be constructed from the repre-
sentation k and any other representation 0', and
that are Iineax in g~, . It is exactly this type of
coupling that can induce contributions to (2.2) from
other than the leading representation. Even when
such coupling term is absent, the ordered struc-
ture depends on the signs of the various anisotrop-
ic invariants. %e consider all cases up to fourth-
order terms in the LGW Hamiltonians.

Q7e proceed to apply this method to four space
groups which are of particular interest in adsorp-
tion experiments: P2mm, C2mm, P4mm, a,nd
P6mm.

Note that apart from the second rule (ex'eluding
representations with third-order invariants), our
analysis assumes the validity of the remainder of
the Landau-Lifshitz theory. Whereas none of the
other rules is at present known to be wrong in two
dimensions, each is based upon the same sort of
classical, phenomenological reasoning as the sec
ond rule. This, together with the fact that the
Landau theory disagrees with renormalization-
group analysis for some three-dimensional sys-
tems, "suggests that a classification scheme,
such as ours, which makes considerable use of ii
must be regarded as tentative and in need of addi-
tional theoretical and experimental confirmation.
If a model or experimental system exhibits a con-
tinuous transition in a case which we predict to be
first order, this is evidence for an additiona, l
breakdown of Landau theory.

III. APPLICATION

A. P2mm

This is the space group of a general rectangular
array of adsorption sites. The atoms in the (110)
face of an fcc crystal, for example, are in such an
array. 'This space group has three real one.-di-
mensional representations and an infinite number
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pp +A/ cos p r = p, +A~ cosnn

g = p, +A~ cos q r = po+A~ cosplr,

(3.1)

(3.2)

pl =p, +A; coss ~ r= p, +A;cos(n ~m)w (3.3)

In the above, A&, A~, Az are constants. Equation
(3. 1}shows that the density. is periodic with twice
the lattice constant in the a direction but does not
vary in the b direction (i.e., is periodic with the
lattice period in the b direction). Such a state is
denoted (1 &2) and is shown in Fig. 1(b). The or-
dered state with the density pt is similar, with the
directions a and b interchanged. The correspond-
ing pattern, shown in Fig. 1(c), is denoted (2 &&1).

Lastly, the density pi is shown in Fig. 1(d). This
pattern is denoted c(2 x 2). All three states have
a single-component order parameter and the LGW
Hamiltonian of each is that of the Ising model.
Therefore, transitions to any of these states can
be continuous and in the Ising class. Transitions
to all other states are predicted to be first order.
As to construction of an invariant linear in func-
tions that do not belong to the leading representa-
tion, the only such invariant is g~P;g;. Close to

of two- and four-dimensional representations. The
Lifshitz rule permits continuous transitions only
to states whose density transforms like one of the
three one-dimensional representations. We label
these representations by the vectors which gener-
ate them, p, q, and s, shown in the Brillouin zone
in Fig. 1(a). Let us denote the position of any ad-
sorption site by r =na+~b, where n and ~ are in-
tegers. Then the densities which transform ac-
cording to each of three representations can be
written

the transition, this invariant will not alter the or-
dered state.

B. C2mm

p, +A p cos k, r = po +A g cosrn (3.5)

This is the space group of the array af atoms in
the (110) plane of a bcc crystal. The Brillouin
zone is shown in Fig. 2(a.}. This group has a single
one-dimensional representation and an infinite
number of two- and four-dimensional representa-
tions. The Lifshitz rule permits continuous tran-
sitions only to states whose densities transform
according to the one-dimensional representation
generated by the vector q of Fig. 2(a) or to the
two-dimensional representation generated by the
vectors. k, and k,. The density associated with the
vector q is

p; = p, +A; cos q r =p, +A; cosv(n+m), (3.4)

where r=na+mb and A; is constant. This state is
shown in Fig. 2(b) and is denoted c(2 x 2). Con-
structing the LGW Hamiltonian, one finds that the
transition is in the Ising class. No invariant linear
in another representation can be constructed.

From the two vectors k, and k, we can construct
the two independent densities

~ '

~ ~
c(2 x 2)

(b)
(I x2)
(c)

(a)
(I x2)

(b)

~,

(2x I)
(d)

(2 x2)
(e)

e
(2x I)

(c)
c(2 x 2)

(d)

FIG. 1. Adsorption sites form a lattice with space
group P2nzm;. (a) the Brillouin zone and the vectors
p, q, s, that correspond to the structures of (b), (c), and

(d), respectively.

FIG. 2. (a) Brillouin zone of C2mm lattice: q corre-
sponds to the structure of (b); the structures of (c) and
(d) are generated by the two-dimensional representation
that belongs to kq and k2. The structure of (e) belongs to
two irreducible representations. In (e) the adsorbate
density need not, in general, be identical at all sites
denoted by the small dots. Rather the general pattern
is one which repeats itself after translations of two lat-
tice spacings along the principal symmetry directions.
The pattern can be described by four sublattices.
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and

~ = p, +Ay, cos k, r = p, +A~ cosvm . (3.6)

These states are denoted(2 x 1}and (1 x 2}, respec-
tively, :..nd are shown in Fig. 2(c) and 2(d). The
LGW Hamiltonians which can be constructed from
the two components of the order parameter gg, is' ~

V

+ua l + Vk '-. j

which is that of the X-F model with cubic anisotro-
py." The ordered state will have the structure of
Fig. 2(c) [or 2(d)] if the anisotropy term v is posi-
tive. For v, & 0, however, a state with a different
symmetry G, with both (g„-)«0, and (P„- ) «0, will
appear. In this case, however, we expect (g&) «0.
To see this, consider the LG% Hamiltonian which
can be constructed from the two components P,
and g~ of the leading representation as well as the
one-dimensional representation (-. It has the forme

~ e e

c(2 x 2)
{b)

e ~ 4 e

~ O e

(i xp)
(c)

~ ~

e e

(2x I)
(d)

0 e e

(p xp)
{e)

FIG. 3. Brillouin zone for P4mm (a); the structure
(b) corresponds to q; (c) and (d) to k& and k2, respective-
ly. (e) belongs to two representations. Hernarks in the
caption of Fig. 2 (e) apply to (e).

+SUE t/J~ Pj yg t/p' yQg, g g~
~

+ v~ Q $~
)

(3.3)

Teller model, and the Union Jack model" solved
by Qfu.

~hen v~(0, the nonvanishing value of (PP„,) acts
as an ordering field which couples to t/r;, causing it
to be nonvanishing. The resultant density

p„-", = p, ~A cosv(n + m) +8 cosign +8 cosvm,

(3.9)

repeats itself after two lattice spacings in each di-
rection and this gives rise to the same extra LEED
spots asdoesthe(2 x 2) structure of Fig. 2(e). Note
that the structures of Fig. 2(e) and Eq. (3.9) differ
in that the densities op three of the four sites in
the unit cell are equal in the former, whereas the,
need not be in the latter. However, they have the
same symmetry G. Thus, a state with the sym-
metry of the (2 x 2) structure can be reached via a
continuous transition. Transitions to all struc-
tures with symmetries that differ from those of
Figs. 2(b}-2(e) are predicted to be first order.

The transition of a system with the LGW Hamil-
tonian (3.7) has recently been predicted to be non-
universal. '"" This prediction is based on the
fact" that various models known to exhibit nonuni-
versal behavior have this LG% Hamiltonian.
These models include" the eight-vertex (Baxter)
model, the P =4 model treated by Jose et al. ,

'~

the antiferromagnetic model treated by van Leeu-
wen" and by Mukamel and Krinsky, " the Ashkin-

C. P4mm

This is the space group of a square array of
sites. The (100) faces of bcc and fcc crystals pro-
vide such an array. The Brillou'n zone is shown
in Fig. 3(a). In addition to the unit representation,
there is a one-dimensional representation generat-
ed by q, a single two-dimensional representation
generated by k, and k„and an infinite number of
four- and eight-dimensional representations. The
Lifshitz condition permits continuous transitions
only to states whose densities transform according
to the one-dimensional or two-dimensional repre-
sentation. The analysis of the states which corre-
spond to these representations is essentially iden-
tical to the 02m~ symmetry. In particular the
density associated with the vector q is shown in
Fig. 3(b) and is denoted c (2 x 2) or (v 2 x v 2 )845.
The transition to this state is in the Ising class.
The states constructed from the k, and k, are
shown in Figs. 3(c) and 3(d}and are denoted (2 x 1)
and (1 x 2). Transitions to these states are in the
class of the X-F model with cubic anisotropy. "

Again, depending on the sign of the cubic aniso-
tropy term, the ordered state may have the sym-
metry G of the (2 x 2) structure'0 of Fig. 3(e). Tran-
sitions to other structures are predicted to be first
order.
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{a)

~ ~ 0 ~

~ ~

~ o e
~ e e

( JX x M~ ) R ao
(b)

a=—r, p g,'+2 g (&g;)'+to(g', —3g, i(,')
(3.12)

+'ng($g+ p2)

which, for a general value of zv, is that of the
three-state Potts model.

For zo &0, the ordered state is characterized by
the three independent densities

p =p+A. cpsq 'r,
~ ~ ~ p, =p, —!A(cosq, ~ r+v 3sinq, ~ r), (3.13)

e

(2x 2)
{c)

0 4 0 ~

(2x t)
(d)

FIG. 4. (a) Brillouin zone for P6mm. {b) The structure
that belongs to the two-dimensional representation with

(c}and (d} belong to the three-dimensional repre-
sentation {with k~, k~, k3). Remarks in the caption of
Fig. 2 (e) apply to {c). The densities in {b) need not be
the same on sites denoted by the small dots but only con-
sistent with translations of v3 times the lattice constant
along directions 30' from the principal symmetry direc-
tions.

D. P6mm

q2= —qy ~ (3.10)

and the set of basis functions for the representa-
tion can be taken to be cos q, ~ ~r and sinq, ~ r, lead-
ing to a two-component order parameter

g, = P cos(q, r)n(r),

This is the space group of a triangular array of
sites. The atoms in the (111)face of either a bcc
or fcc crystal are in this array. The sites for
physisorption provided by the basal planes of
graphite are also in this array. The Brillouin zone
is shown in Fig. 4(a). In addition to the unit repre-
sentation there is a two-dimensional representa-
tion generated by q, and q„a three-dimensional
representation generated by k„k„and k„and an
infinite number of six- and twelve-dimensional
representations. The Lifshitz condition permits
continuous structural transitions only to the states
whose densities transform like the two- or three-
dimensional representation. We consider the
former first. The vectors qj and q, are related to
one another by

p, =p, ——,'A(cosy, r —v 3sinq, ~ r).
These densities are of the form shown in Fig. 4(b),
a pattern which is denoted (v 3 x W3)830. For ta
&0 the ordered state is characterized by the densi-
ties obtained from .(3.13) by interchanging cosq r
and sinq ~ r; for example,

p, = p, +A. Smq, r. (3.14)

The ordered state that corresponds to this struc-
ture has a lower symmetry G than P6mm; the
po int group i.s C,„, Thus the LEED diffractionpat-
tern from a, single domain of the structure (3.14)
will exhibit different intensities at q, and q, .
Alexander" was the first to note that the critical
behavior of this model should be the same as that
of the (v 3 x v 3)830 transition. If the particular
lattice-gas Hamiltonian of Eq. (2.1) is employed,
then for a particular value of the chemical poten-
tial corresponding to po = &, se will vanish due to the
particle-hole symmetry of the lattice-gas Hamil-
tonian. In this case, the LQW Hamiltonian is that
of the X-F model with a sixth-order anisotropy.
This model has also been discussed by Jose et al."
As a consequence of particle-hole symmetry, the
phase diagram of a lattice gas undergoing the(v3
x &3)830transition would show two surfaces of
three-state Potts transitions symmetric about p,
= —,

' and meeting there with a different critical be-
havior. This has been observed in Monte Carlo"
and renprmalizatipn- grpup calculations. Hpw-
ever, as noted earlier, the particle-hole symme-
try is broken in the physical system. Consequent-
ly, this behavior is npt expected in experimental
situations, and the transition remains in the three-
state Potts class.

We turn now to the three-dimensional represen-
tations. There are three independent density dif-
ferences,

(3.11) pi cosk. e r (3.15)

y, = Q sin(q, r)n(r) .

To determine the universality class of the transi-
tion we construct the LGV!f Hamiltonian

The densities of the physical states corresponding
to these 5p; vary along only one of the three sym-
metry directions. One of these states is shown in
Fig. 4(d); it is denoted (2 x 1). There is another
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highly symmetric set of density differences which
can be constructed from the three 6p; above. They
are

6p4= cos k, r+ cos k, ~ «r+ cos k, r,
6p, =cosk, r+cosk, ~ r —cosk, r,
6p, = cosk, ~ r —cosk, ~ r —cos k, r.

(3.16)

The states corresponding to these densities are
shown in Fig. 4(c) and are denoted(2x 2). These
states are distinguished fromthe three (2 x 1)states
by the values of the expectation of the three order-
parameter components

g, ,
= g cos(k, r)n(r) .

r
In the (2 x 1) state, two of these components vanish.
In the (2 x 2) states all three components are non-
zero. To determine which states are expected
to be reached by the continuous transition, we
construct the LGW Hamiltonian

12' p. + — V ~ +gg
i

(3.17)

+Qp 2 2+ g~ ~4 (3.18)

In general, gv is nonvanishing. The(2 x 2) statesfor
which the product g„- g-„g„- is negative clearly give
a lower energy than the (2 x 1) states for which the
product vanishes. Thus we predict that the (2 x 2)
states will be reached by the continuous transition,
not the (2 x 1) states. To identify the class of this
transition we note that the above Hamiltonian is
that of the four-state Potts model, "provided that
ze does not vanish. Particle-hole symmetry of the
particular lattice-gas model of Eq. (2.1) does force
m to vanish at p, =2, leaving the LGW Hamiltonian
of the Heisenberg model with cubic anisotropy.
This model, recently discussed by Domany and
Reidel, '""has different critical behavior from the
four-state Potts model. As noted earlier, howev-
er, the physical system does not possess particle-
hole symmetry, so that at p0=2 this different be-
havior is not predicted to be observed. Rather the
critical behavior will remain that of the four-state
Potts model.

Returning to the case m Wo, note that we assumed
that the lowest-order anisotropy term [i.e., the
third-order anisotropy term in (3.18)] determines
the ordered structure. If the sign of the fourth-
order term is such that it competes with the third-
order term (i.e, if v, &0and, say, (g„-,) 40, (g~, )
=(P,) =0 is preferred), the system may exhibit a
first-order transition from one ordered phase to
another.

Finally, we remark that for neither the two-di-
mensional or the three-dimensional representation

can an invariant linear in a different representa-.
tion be constructed. Transitions to structures not
listed above are expected to be first order.

In this section we have determined the critical
behavior which can be observed in order-disorder
transition on various substrate arrays. We have
restricted. our treatment to simple arrays, i.e.,
identical to the Bravais lattice. An important case
in adsorption is that of a hexagonal or honeycomb
array of sites which has a triangular (P6mm) Bra-
vais lattice and a basis of two adsorption sites per
unit cell. Extension of our method to classify the
continuous transitions for a honeycomb and other
arrays will be presented elsewhere.

IV. SUMMARY

We have presented a classification of possible
continuous order-disorder transitions on all sim-
ple adsorbing substrates. Our study did not in-
clude experimental situations where the adsorbate
has different possible orientations with respect to
the substrate (i.e., adsorbed molecules). Also, we
have limited the discussion to the case of a single
adsorption site per substrate unit cell.

These restrictions are not essential, and their
removal will result only in the need to consider
more complicated representations than was neces-
sary so far.

We have also assumed that the periodicity of the
superlattice does not vary continuously with tem-
perature. This seems to be satisfied by a, great
number of reportedly observed structures. We be-
lieve that the cases that at'e included in our study
cover the majority of systems of current experi-
mental interest. The various universality classes
that can be realized are summarized in Table I.
The entries in the first row are based on the exact
solution for the Ising model, while for the X-Y
model with cubic anisotropy on Refs. 14 and 15.
For the three-state Potts model, we quote recent
series estimates, "while for the four-state Potts
model the exact results for the Baxter-Wu" model
(which has the same LGW Hamiltonian as four-.
state Potts) are quoted.

One central assumption was used in making the
identification of the universality classes. We as-
sumed that a transition can be completely charac-
terized by the Landau-Ginzburg-Wilson Hamiltoni-
an of the system. This assumption has not been
extensively tested in two dimensions. The only ex-
perimental confirmations we can invoke are for
various Ising-like systems"" and one single mea-
surement of the specific heat of a three-state
Potts-like system. ' In addition, apparently con-
tinuous transitions were observed for one system"
predicted to behave as four-state Potts, and one"
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TABLE I. Substrates (first column) of various symmetries. Universality classes that can
be realized and the expected critical behavior are listed in first row. The entries identify the
corresponding ordered superlattice structures.

P2mm
Zx fcc(110)

C2mm
Ex bcc (110)
P4mm
Ex fcc(100)

bcc (100)
P6mm
Ex bcc (111)

fcc (111)
Graphite

Ising
e='0 (log)
P= 0.125'

(2 x])
(1 x2)

c(2 x2)

g(2 x2)

c(2 x2)

X-Y with
cubic

anisotropy
nonuniversal

(2 x])
2 x2)
2 x1)

(2 x2)

Three-state
Potts

n -0.42 + 0.05
P 0.1

( 3 x&3) R30'

Four-state
Potts

n = 0.6667
P = 0.0833

(2 x2)

of anisotropic X-7 eharaeter.
As to theoretical verification, renormalization-

group studies" confirm our assumption —namely,
that systems that on symmetry grounds are ex-
pected to exhibit Potts-like behavior do yield val-
ues of exponents in the approriate range.

In addition, we can compare our predictions with
studies of hard square-lattice models. '"" ln moat
cases our conclusions about the order of the tran-
sit. ion agree with the results of the various matrix
methods quoted by Bunnels. '4

In the case of a (2 x 2) structure on a triangular
lattice, we predict that the transition can be con-
tinuous with a four-state Potts model behavior,
while the matrix methods" yield a first-order
transition in the corresponding lattice gas of hard
hexagons. These two results are not inconsistent,
in that the matrix method deals with a particular
case, and it is quite possible that phase transitions
with this particular symmetry change are continu-
ous for certain choices of parameters in the Ham-
iltonian and first order for other choices —a situa-
tion which occurs (for example) on the vicinity of a

tricritical point. "
Finally, we point out that some of the realizable

universality classes are of great current theoreti-
cal interest, and express our hope that this inves-
tigation will stimulate experimental interest in the
study of appropriate adsorbed systems in the crit-
ical region.
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