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We propose a new real-space renormalization approach for the conductivity of bond-disordered conductance
lattices, and investigate two-dimensional square and three-dimensional simple cubic lattices with a binary

distribution of conductances, p(tr) = p5(tr —cr,) + (I —p)5(cr —trs). It is shown that our transformations
not only give a good description of the percolation conductivity near the critical point, but lead to an
approximation for the lattice conductivity o(p) which is superior to the effective-medium approximation for
all values of 0.2/0.

&
and p. In particular, the slopes of cF(p) at p = 0 and p = 1 are reproduced exactly, and

in two dimensions the transformations satisfy the selfdual symmetry of the square lattice. For percolation
conduction prob1ems (cr,/o. , = 0) we determine the conductivity exponents t and s, and compare our results

with alternative estimates. We also present a simple approximate solution to the renormalization relations
which is very accurate for all values of p and produces reasonable rough estimates of t and s.

I. INTRODUCTION

Over the past few years random conductance'
lattices have received a great deal of attention. ' "
Particular interest has been focused on the behav-
ior of the conductivity in so-called percolation con-
duction problems. ' " These investigations relate
to systems with a fraction of conductances whose
value is either zero (nonconducting bonds) or in-
finite (superconducting bonds). The presence of
such bonds defines a percolation problem on the
underlying lattice, and the conductivity either van-
ishes or diverges at the percolation threshold. As
only a few exact results are available, """ ran-
dom conductance lattices have mainly been investi-
gated by Monte Carlo techniques' ""on the one
hand, and by a number of analytic approxima-
tions""" "on the other hand. It has been demon-
strated that outside critical regions the conductiv-
ity. is well approximated by effective-medium type
theprj. es. '2"~ Recently, hpwever, an increasjng
number of investigations have concentrated on the
behavior of the conductivity near critical points. ' ""'
The similarity with thermodynamic phase transi-
tions has been noticed, and scaling assumptions for
the conductivity have been proposed. """The cor-
responding critical exponents have been estimated
from Monte Carlo simul. ations performed on large
finite lattices, ' ' and from a number of real-space
renprmalj. zatj.pn appr paches. ~ Mpnte Carlo cal-
culations face the problem that statistical fluctu-
ations inhibit Bn accurate evaluation of the results
close to the critical point. 4 The numerical esti.-
mates therefore rely on the assumption that the
behavior of the conductivity can be described by
a constant critical exponent over quite an extended
critical region. We shall come back to this point
later in the paper. Real-space renormalization
procedures, on the other hand, suffer from the

serious problem that the approximations involved
are very difficult to quantify. Different approaches
lead to appreciably different values for the critical
exponents, and it does not seem possible to esti-
mate the influence of the various approximations
on the accuracy of the results.

In this paper we consider bond-disordered twp-
dimensional square and three-dimensional simple-
cubic lattices with a binary distribution of conduct-
ances o,&,

p(tr) =&~(ir - tr, )+ (I -p)&(tr - tr, ).
We propose a new real-space renormalization ap-
proach which has several advantages over other
treatments. In particular, i:t is not only applicable
near a critical point, but for all o; and o, leads to
a surprisingly accurate description of the lattice
conductivity o(P) over the whole range of f values. .

In the percolation probl. em our proc@-'" -";-: &.e:.l.ds tp
a bond-probability j.enormalization, which is iden-
tical with that proposed recently by Reynolds,
Klein, and Stanley, "Bnd the two-dimensional ver-
sion of pur approach can be regarded as an exact
description of the "iterated Wheatstone bridge, "
a pseudolattice introduced in. a previous paper. '6

In Sec. II we describe the renprmalization pro-
cedure and discuss some of its properties. In
particular, we show that the resulting approxi-
mation for V(P) becomes exact in the lo.w-concen-
tration limits P 0 and p-1 for all values of o', and
o,. We furthermore devel. op a simple approximate
solution to the renormalization relations. In Sec.
III we present our results for the conductivity of
binary bond-disordered lattices and compare them
with Monte Carlo simulations and with effective-
medium approximations. Particular emphasis is
put on percolation conduction problems (o,/o, = 0),
where we estimate the critical exponents and make
comparison with alternative approaches. In Sec.
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IV, finally, we investigate our results near criti-
cal points in more detail and present some argu-
ments that numerical approaches might under-
estimate the true exponents in certain cases.

II. REAL-SPACE RENORMALIZATION FOR BOND-

DISORDERED CONDUCTANCE LATTICES

A. Transformations

We consider infinite two-dimensional square and
three-dimensional simple cubic lattices, the
bonds of which represent conductances o&& that are
independently distributed according to a probabil-
ity density p(o) of the form of Eq. (1). A real-
space renormalization of the lattice can be de-
scribed by a transformation 8' which transforms
a lattice of spacing l with a probability density
p„(cr) into a lattice of spa. cing M with probability

. density p„„(o')= Wfp„(o')J. To define the transfor-
mations used in this paper, we consider a parti-
tion of the lattice into equivalent cells (clusters)
that maintain the symmetry of the lattice. Each
cell is then renormalized to a basic unit of the
transformed lattice, consisting of one bond in
each lattice direction. Most of our calculations
are based on the simple cell of Fig. 1(a) and its
three-dimensional analog, which both lead to
transformations with a rescale factor of b = 2.
Only in two dimensions we have also investigated
the corresponding b = 3 transformation.

For the renormalization of p„(o) we propose the
following transf ormation:

wheie g(o'„. . . , o„) is the normalized equivalent
conductance of a cell, measured between two par-

0) O~

O~

allel equipotential surfaces which are perpendic-
ular to a lattice direction. o». .. ,O„denote those
conductances of the cell which are relevant for the
determination of g. For the two-dimensional b = 2

cell of Fig. 1(a), g(o'„. . . , o,) is thus the conduct-
ance of a Wheatstone bridge [Fig. 1(b)], and for
the three-dimensional 5 = 2 cell g(o'„. . . , o'») is
the conductance between two diagonally opposite
vertices of an octahedron (normalized with a factor
of —,').

Repeated application of Eq. (2) to an original
probability density p, (o) of the form of Eq. (1)
will eventually lead to

where erg; o'„v, ) is our renormalization approxi-
mation for the lattice conductivity o(p; o'„o',). In

the subsequent sections of this paper we shall
evaluate o'(P; o„v,) by different methods and dis-
cuss some of its most important properties.

For the special case of the percolation conduction
problem (o, = 1, o; = 0) it is often convenient to
write'

(4)

The renormalization transformation of Eq. (2) is
then split up into the two transformations

(5)

and

p„„(o')= &uo. (o')l,

where the kernel of the integral Eq. (6) depends on

p„. The fixed point properties of Eqs. (5) and (6)
determine the percolation critical point p„ the
correlation length exponent v and the conductivity
exponent t (see Sec. IIIB), where we note that P,
and v are obtained from Eq. (5) alone. A similar
treatment of the case a, =~, a, = 1 yields the sec-
ond conductivity exponent s.

We observe that our renormalization transfor-
mation of the bond probability, Eq. (5), is identi-
cal to that proposed recently by Reynolds, Klein
and Stanley. " Straley' also uses the same cells
in his renormalization of the percolation conduction
problem, but his transformation for p(a') is differ-
ent from ours.

B. Some properties

(b)

FIG. l. (a) 5 =2 renormalization of the square lattice
(cf. Fig. 3a of Ref. 23). (b) Schematic representation of
the conductance g(0&, "',o~) which defines the renormal-
ization of the probability density p(0) [see Eq. (2)].

In Sec. III we shall see that our renormalization
group approach leads to an excellent description of
the lattice conductivity, outside critical regions as
well as near a critical point. Here we want to
present some rigorous results. We first prove
that for our b = 2 transformations in both two and
three dimensions &(P; a;, v, ) becomes exact in the
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limits p-0 and p-1.
We define

(a) f„d-=a op„(v),

and first consider the limit p-0. From an analy-
sis of the properties of g(o„.. . , o») it is then
straightforward to show that

22"(o, —o2)P
& )2 2 2 (2an 1)~ + [(d 1)222+ 1]o

~here d is the dimensionality of the lattice. As
lim(c)„= a [see Eq. (3)], we immediately obtain

(9)
dP 2., ' o, +(d —l)o2

'

The limit p -1 is simply obtained by exchanging
o, with o, and P with (1-P) in Eq. (8). The slopes
of Eq. (9), and their counterparts atP=1, coin-
cide with those obtained from the effective-medium
approximation"' which has been shown' to become
exact in the low concentration limits.

In two dimensions our transformation further-
more preserves the self-dual symmetry"'"" of
the square lattice. This follows from the fact that
our g(o„.. . , o, ) [see Eq. (2)] 'is the equivalent
conductance of a Wheatstone bridge which is self-
dual. As a consequence our results satisfy all ex-
act relations. "'""that follow from the selfdual
symmetry, as, e.g. ,

8(P; o„o2)a(1 —P; o„o2)= o,o, .
Equation (10) implies that our renormalization ap-
proach reproduces the exact percolation critical
point, P, = ~, and that the two conductivity expo-
nents t and s are equal.

Finally, we note that the corresponding two-
dimensional transformations with b = 3, 4, . . . also
preserve self-duality, but do not lead to the exact
slopes at P =0 and P = 1. The deviations, however,
are very small for all values of v, and o,.

C. Evaluation of & {p;o&,o2)

If we start with a p, (a') which is the sum of two
5 functions [see Eq. (1)] and repeatedly apply our
transformation of Eq. (2), each p„(o) also is a sum
of 5 functions. The number of these 5 functions,
however, increases very rapidly with increasing
n, and it seems impossible to determine lim p„(o')
= 5(o' —o'), i.e., 8(P; o'„o', ), exactly. We therefore
have to use approximate methods to investigate the
p rope r ties of o (P; o„o,).

For example, we may use the fact that & = lim
(a)„, where (o)„ is defined in Eq. (7) and can be
evaluated by Monte Carlo techniques. We have

into

p...(&) = (1 -P.„)~(&)+ e)(P.)5(& —g$(&.)),
~ l

(12)

where P~, is related to P„by Eq. (5), and the con-
ductances q, (o„) denote the M possible nonzero val-
ues of the functiong(&x„. . . , o») when o„.. . , o» are
distributed according to p„(o'). The coefficient
q&(P„) is the probability with which the value g&(o„)
is assumed. The sum over the M 5 functions is
then replaced by a single 5 function,

p...(o) =(1-P,)&( ) oP+,,&( oo...),
where o„+, is defined as the geometric mean of the
conductance s g&(o„), so that our renormalization
transf ormation is described by

1
o~, = exp q)(P„) Ing, (o„)

Ptl+1 k~1
(14)

and by Eq. (5). A similar approximation can easily
be constructed for the case o, = , o, = 1; and even
for arbitrary 0, and a, we can successfully use the
same ideas, although here the recursion relation
for o„becomes slightly more complicated.

In both two and three dimensions the convergence
of o'„ to o„=—&„,„ is extremely fast (less than 10
iterations are needed if P is not very close to P,).
Over the whole range of P values, &„„,„ turns out
to be an excellent approximation of o and therefore
of the true lattice conductivity (see Sec. Ill). It
can be argued that the approximation introduced by
Eqs. (13) and (14) is somewhat arbitrary and un-
controlled. On the other hand, one can consider
Eqs. (5) and (14), or their analogs for general o;
an'd o„as the definitions of a renormalization

performed such calculations for n up to n = 10 in
two dimensions and up to n=6 in three dimensions.
These values correspond to systems with 5"
=9.8 && 10' and 12' = 3.0 & 10' bonds, re spectively, so
that the fluctuations in the Monte Carlo data are al-
ready very small and the resulting approximations
for o should be very accurate. The results of these
calculations are presented in Sec. III.

A simple approximation, which replaces p„(o)
in Eq. (4) by a 5 function after each renormaliz-
ation step, has been applied to several renormal-
ization transformations"" "in order to obtain
rough estimates for the conductivity exponents. In
the following, we propose a modification of this
approach which turns out to lead to an excellent
approximation for &(P; o'„o;) for all values of g„
a„and p. For siniplicity we consider the percola-
tion conduction case o, = 1, o', = 0. Our transfor-
mation of Eq. (2) transforms a p„(o) of the form

p„(o) = (1 -P.)&(o)+P.&(o —&.)
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transformation which, despite its simplicity, leads
to reasonable results both for the critical expo-
nents and for the overall behavior of the lattice
conductivity. Similar simplified transformations
have been considered in Refs. 11 and 12.

Our approximative treatment of the renormaliz-
ation transformations differs from the usual ap-
proach"" "by the use of the geometric instead of
the arithmetic mean [see Eq. (14)]. One can give
general arguments why the geometric mean, rather
than some other average, should be used (see Sec.
VI of Ref. 16), and it can be shown, e.g. , that the
use of the arithmetic mean in our treatment would
not lead to a meaningful approximation of the lat-
tice conductivity o(p; o„o,). In all approaches
(Refs. 8 and 10-12, and present wo'rk) the geomet-
ric mean furthermore leads to much better esti-
mates for the critical exponents t and s than the
arithmetic mean.

III. RESULTS

A. 0(p; o&,-0& ) as an approximation of the lattice conductivity

We have applied our b = 2 renormalization proce-
dures to several two-dimensional square and
three-dimensional simple cubic lattices with a
binary distribution of conductances [see Eq. (1)].
The resulting approximation of the lattice conduc-
tivity, o'(P; o'„o', ), has been eva. luated by Monte
Carlo techniques and by a simple approximate
treatment of the renormalization transformations
(see Sec. IIC). Our results for 8 can then be com-
pared with those obtained from other approxima-
tions for the lattice conductivity, as e.g. , the ef-
fective-medium theory" and large-scale numer-
ical simulations. '" '

Before we present some explicit results, we can
summarize our investigations as follows:

(a) For all values of o'„o„and p the result of
the simple approximate treatment 0„„,„ leads to
an extremely accurate approximation of &Q; o'„o,).

(b) 8(P; &r„o,) gives an excellent description of
the true lattice conductivity, near critical points
as well as outside critical regions. It represents
an approximation which is superior to the effective
medium theory in all cases where the two can be
distinguished.

If o, and o, are comparable, o'(p; o„o,) and its
approximation o, „,„practically coincide with the
effective medium result in both two and three dim-
ensions, which is known"' to be very accurate in
these cases. Even if o, and o, differ by one order
of magnitude, 8 and cr~pppgx agree with the effective
medium approximation to within 1% or 2/q, and
existing numerical simulations"' are hardly accu-
rate enough to favor one of the approximations.

We therefore concentrate on percolation conduc-

1.0

2- DIM

o SQ

0.5-

0.5 1.0
FlG. 2. Bond-percolation conductivity (0.&= 1, 0) = 0)

for the two-dimensional square lattice. The heavy line
represents the approximation cr (P; 1,0) obtained from
our b =2 renormalization, and is compared with the ef-
fective medium result (dashed line) and with Monte Carlo
simulations of Kirkpatrick (Ref. 2) and Straley (Ref. 24)
(vertic al bars).

R (P) =P'(2+ 2P —5p'+ 2ps)

in two dimensions, and

(15)

R(P) =P'(4+ 8P 14P' 40P'+ 16p' p 288p' 655P'

+ 672P' —376P'+ 112P' —14p") (16)
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I I
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FIG. 3. Same as Fig. 2, but for the three dimensional
simple cubic lattice.

tion problems, where cr,/o, =0. The P dependence
of O'Q; 1, 0) is displayed in Fig. 2 for the two-dim-
ensional square lattice and in Fig. 3 for the three-
dimensional simple cubic lattice. Comparison is
made with the effective medium approximation and
with numerical simulations by Kirkpatrick"' and
Straley. " The percolation critical point P, is given

by the unstable fixed point of Eq. (5), with
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in three dimensions. We obtain p, = —, in two dim-
ensions and p, = 0.2085 in three dimensions. " The
two-dimensional value is exact (self-dualityl) and
the three-dimensional value is reasonably close to
the exact one of about 0.247." The agreement be-
tween a and the Monte Carlo data is excellent over
the whole region of p values, i.e. , p, ~ p&1, and
the resulting description of the lattice conductivity
is by far superior to that obtained from the effec-
tive-medium theory. In particular, the critical
behavior, which will be discussed in mope detail
in the following sections, is represented very well.
The small systematic deviations in the critical
region of the three-dimensional system are due to
the slightly too-low value we obtain for p,.

For the case (o, =~, o, =1), b(P;~, 1) gives a
similarly accurate description of the lattice con-
ductivity o in the region 0- p -p, . As o diverges
at p„our too-low p, value in three dimensions
makes the absolute accuracy of 6(P; ~, 1) some-
what less spectacular than in the case o, = 1, o, =0.
The general behavior, however, is very well rep-
resented, especially if compared with the effective
medium approximation.

TABLE I. Critical exponents in two dimensions.

b=2 b=3 Numerical

1.428

1.32 + 0.02

1.32 + 0.02

1.380

1.33 + 0.02

1.33 + 0.02

1.33 + 0.05

1.1 + 0.1

1.15 + 0.2

1.15 + 0.25
1.0 + 0.1

le
2

'References 5, 28, and 29.
"References 3-6.
' Reference 7.
"Reference 8.' Exact.

where the eigenvalue X, is defined analogous to ~„
but for the case o, = ~, o, = 1.

For the determination of X, we use a method sim-
ilar to that described by Stinchcombe and Watson.
We start with po(o) =&(o —o,) and use Eq. (6) to
generate p„(o'), n = 1, 2, . . . . Thenthapproximation
&,
'"' to &, is then defined by

B. Critical exponents do X,'"'p„X,'"'o o = do p„„o o . (22)

In this section we shall estimate the critical ex-
ponents v, t and s from an analysis of our renor-
malization transformation near P =P, . The corre-
lation length exponent v and the two conductivity
exponents t and s are defined as follows. "'"'"
As iP -P, i-0, the correlation length $ is assumed
to diverge as $ ip -p, i

and the lattice conduc-
tivity o(p; a„o,) is assumed to vary as o - (p -p, )'
for the case o, =l, o, =0, and as V-(p, -p) ' for
the case o', =~, o2=1.

The correlation length exponent v is determined
by the transformation of the bond probability, Eq.
(6), alone" ~

v = lnb/ln k~,

where

Stinchcombe and Watson' use f(o) = o' and estimate

X, by extrapolation of the sequence (X,
" j.

found it useful to generate several such sequences

by using different f(o), e.g. , f(v) = o', f(o) = lno' and

f(o') = a '. This allows a reasonably accurate extra-
polation from only the first two or three members
of the sequences. The determination pf A., is car-
ried out by exactly the same method, but instead
of Eq. (6), we have to use the appropriate analo-
gous equation for the case a', =~, a, =1. Our esti-
mates for the critical exponents are listed in Tab-
les I and II, and compared with the best numerical
estimates from Monte Carlo simulations. In two

dimensions we have also analyzed the transforma-
tion with rescale factor b = 3. The critical expo-

(16)
d

and b is the rescale factor of the transformation.
In the case 0, = 1,o, = 0 we observe that at p =p,
Eq. (6) has a solution of the form'

~, p. (~,o)=~(p (o)), (»)
and t can be determined from v and from the eigen-
value &, of Eq. (19),

b=2 Numerical

1.031
2.14 + 0.02
0.76 + 0.01
0.74 + 0.01

0.85 + 0.05, 0.95 + 0.05
1.70+ 0.05, 1.6 + 0.1

P.7P+ P.P5, 0.9 + P. l

0.72 + 0.05, 0.67 + 0.08

TABLE II. Critical exponents in three dimensions.

f = v ink, /lnb =ink, /ink~.

Similarly, s is given by'

s =-vlnA, ,/lnb =-ink.,/ink. ~,

(20)

(21)

' References 5 and 28.
"Reference 29.
' Reference 4.

References 3 and 5.' Reference 6.
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nent u which describes the behavior of o at p =p,
and near o, =0,""

(23)cf(p„o'„o',) o', G„o',-0,
'I

has not been determined independently, but is cal-
culated from t and s according to Straley's rela-
tion4& ~~

u =f/(f+s). (24)

We finally note that within the approximate treat-
ment defined by Eqs. (5) and (14), X, is simply
given by XI" as calculated from Eq. (22) with

f(o) = 1no'. The resulting rough estimates for the
conductivity exponents, f = s = 1.26 (b = 2) and

f = s = 1.27 (b = 3) in two dimensions, and t = 2.10,
s =0.71, and u=0. 75 in three dimensions, are al-
ready quite close to the values listed in Tables
I and II.

In two dimensions our results satisfy the exact re-
lation t = s which implies u = ~. The v values in both
two and three dimensions coincide 'with those ob-
ta, ined by Reynolds et aL" and are some~~h"t nigh-
er than the best numerical estimates. A compari-
son of the conductivity exponents shows that our
three-dimensional values for s and u agree well
with the numerical. estimates, while our values
for t = s in two dimensions and for t in three dim-
ensions seem rather high. In the following sec-
tion, however, we present some arguments which

indicate that the corresponding numerical esti-
mates might be too low.

A compa, rison with exponent values obtained from
alternative real-space renormalization approaches
is rather confusing. Estimates quoted include
1 13 ' 1 33 ' 132~ and 128 (Ref. 9) for f =s in

two dimensions; 2.36,'0 2.34,' and 2.04 (Ref. 9) for
t in three dimensions; and 0.46,' 0.64,' and 0.81
(Ref. 9) for s in three dimensions. The same
methods lead to p values of 1.63,' 1.31, '1.32,'and
1.22 (Ref. 9) in two dimensions and of 1.22, ' and
0.94 (Ref. 9) in three dimensions.

regions a.s well as outside. The slopes at p =0 and

p = 1 are even reproduced exactly, and in two dim-
ensions the transformations preserve the self-dual
symmetry of the square lattice. As a consequence,
the percolation critical point for the square lattice,
P, = ~, is given exactly, and other rigorous rela-
tions, as, e.g. , f=s and Eq. (10), are satisfied.
In three dimensions the p, value is still reasonably
close to the exact one, so that even in percolation
conduction problems the behavior of the conduct-
ivity is very well approximated.

With respect to the accuracy of the conductivity
exponents t and s we would like to add a few re-
marks. Numerical estimates of t and s are usually
based on fitting Monte Carlo data for lnVvs ln

~p -p, .
~

in the "critical region" by a straight line.
The large fluctuations in the Monte Carlo data
close to p„however, restrict the useful fitting
region to p values with ~p

—p,
~

& 0.05-0.1.' The
estimates therefore rely on the assumption that
o obeys a simple power law over quite an extended
critical region. As there exists no theoretical
justification of such an assumption, we have inves-
tigated the detailed behavior of our approximation
o as we move away from the critical point. We de-
fine "p-dependent exponents" t (p) and s(p) by

and

f (P) = dln6(P; 1, 0)/din(P —P, )

s (p) = -d ln6'(p; ~,1)/d ln(p, —p)

(26)

(26)

and present the results in Figs. 4 and 5. In two
dimensions t and s are of course symmetric with
respect to p =p, =-,' and decrease quite rapidly with
increasing ~p

-p, ~. The decrease is even more
pronounced for t in three dimensions, while here
s varies only slowly with increasing ~p

—p, ~. From
a fit of ina'(p; 1,0) vs ln(p-p, ) by a straight line in
a region O. 1~p -p, S 0.2 we would therefore ex-
pect to obtain t values of approximately 1.2 and

IV. CONCLUSIONS AND DISCUSSION 1~4 I I s

'

~ ~ ~ a

Stinchcombe and Watson' have a.ttempted to ad-
just their critical exponents by estimating the ef-
fects of certain approximations made in their re-
normalization treatments. Nevertheless, it seems
impossible to obtain accurate information about
the reliability of the results from different real-
space renormalization approaches. On the other
hand, we believe that the renormalization proce-
dure presented and and analyzed in Sec. II and III
has some definite advantages over alternative ap-
proaches. For all values of o, and o; it leads to
an excellent approximation of the lattice conduct-
ivity over the whole range of p values, in critical

1.2 —1.2

—1.0

0 0.5 1.0

FIG. 4. Plot of the "p-dependent exponents" t (p) and

s (p), defined by Eqs. (25) and (26), for the bvo-dimen-
sional square lattice.
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I
' ' ' ' —2.2

1.0— —2.0

—1.8

0.5—
—1.6

—1.4

0 ~ ~ ~ ~

0 p

—1.2

1.0
0.5 p 1.0

1.9, respectively, in two and three dimensions.
These values are appreciably lower than the cor-
rect ones of about 1.32 and 2.14 (see Tables I and

II). If the true lattice conductivity would show a
behavior similar to tha. t of our approximate re-
sults, we would therefore expect that the numeri-
cal estimates for the exponent t are too small. In

FIG. 5. Same as Fig. 4, but for the three-dimensional
simple cubic lattice.

this connection we remark that Watson and Leath"
also obtain a smaller value for t if they enlarge the
fitting region in their study of site percolation con-
duction in two dimensions. From different stud-
ies"'" the onset of the critical region was esti-
mated to occur at ~p

—p, ~

-0.1. Two additional
observations seem to support our argument. As

. we go from the b = 2 to the b = 3 cell iq. two dimen-
sions, v decreases appreciably while t stays prac-
tically constant (Table I). The estimates for the
s value, finally, are in good agreement with our
result in three dimensions (Table II) where s(P)
varies very slowly in the critical region. These
arguments are of course by no means rigorous,
as the exact analytic behavior of the conductivity
near p, is not known. We think, however, that this
problem deserves further investigation.

ACKNOWLEDGMENT

This work was supported by the NSF and by the
U.S. ONR Contract No. N00014-75C-0245.

*Permanent address: Brown Boveri Research Center,
CH-5405 Baden, Switzerland.

S. Kirkpatrick, Phys. Rev. Lett. 27, 1722 (1971).
~S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).
3I. Webman, J. Jortner, and M. H. Cohen, Phys. Rev. 8
ll, 2885 (1975).

4J. Straley, Phys. Rev. 8 15, 5733 (1977).
~A. B. Harris and S. Kirkpatrick, Phys. Rev. 8 16, 542

(1977).
6I. Webman, J. Jortner, and M. H. Cohen, Phys. Rev.
8 16, 2593 (1977).

7M. E. Levinshtein, J. Phys. C 10, 1895 (1977).
R. B. Stinchcombe and B. P. Watson, J. Phys. C 9, 3221
(1976).

J. Straley, J. Phys. C 10, 1903 (1977).
S. Kirkpatrick, Phys. Rev. 8 15, 1533 (1977).

~~P. M. Kogut and J.Straley, AIP Conf. Proc. 40, 382
(1978).

~ R. Rosman and B. Shapiro, Phys. Rev. 8 16, 5117
(1977).
J. Straley, J. Phys. C 10, 3009 (1977).

~4J. Marchant and H. Gabillard, C. R. Acad. Sci. (Paris)
8 281, 261 (1975).
R. 8. Stinchcombe, J. Phys. C 6, Ll (1973); 7, 179
(1974).
J. Bernasconi, W. R. Schneider, and H. J. Wiesmann,
Phys. Rev. 8 16, 5250 (1977).

~~C. H. Seager and G. E. Pike, Phys. Rev. 8 10, 1435
(1974).
M. Hori and F. Yonezawa, J. Math. Phys. 16, 352, 365
(1975).
J. A. Blackman, J. Phys. C 9, 2049 (1976).

~ J. Bernasconi and H. J. Wiesmann, Phys. Rev. 8 13,
1131 (1976).
J. Straley, J. Phys. C 9, 783 (1976).

~~8. P. Watson and P. L. Leath, Phys. Rev. 8 9, 4893
(1974).

~3P. J. Reynolds, W. K[ein and H. E. Stanley, J. Phys. C

10, L167 (1977).
~4J. Straley (private communication).
~~our results for p~ and v in three dimensions differ

slightly from those of Ref. 23, although the bond prob-
ability renormalizations seem to be identic al.

~6V. K. S. Shante and S. Kirkpatrick, Adv. Phys. 20, 325
(1971).

~A. P. Young and R. B. Stinchcombe, J. Phys. C 8, L535
(1975).

~8A. G. Dunn, J. W. Essam, and D. S.Hitchie, J. Phys. C
8, 4219 (1975).

%l. E. Levinshtein, B. I. Shklovski, M. S. Shur, and

A. L. Efros, Zh. Eksp. Teor. Fiz. 69, 386 (1975) tSov.
Phys. JETP 42, 197 (1976)].

3 P, L. Leath and G. R. Reich (unpublished).


