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Three-body correlations in the variational wave function of liquid He
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A product of two-body (f;,) and three-body (f;,k) correlation functions is used as a variational wave function
for liquid He. The f;k take into account the backflows produced by two particles recoiling from each other.
The distribution functions, the energy, and its uncertainty are all calculated using the Lennard-Jones-deBoer-
Michel potential, and diagrammatic hypernetted-chain summation methods. The calculated equilibrium

energy of —6.72 (+0.2)'K, is significantly lower than the —5,9'K obtained with only a product of f,, ,
and agrees with the —6.84'K estimated from a Monte Carlo integration of the many-body Schrodinger
equation. The proposed wave function is simple enough to be useful in Fermi liquids.

I. INTRODUCTIGN

An upper bound to the energy of Bose liquids may
be easily calculated' with the "Jastrow" wave
function

4z = IIA&

using a single-parameter set of correlation func-
tions, obtained by minimizing the two-body cluster
contribution with constraint f(r& d) = 1. The energy
can be accurately calculated for this class of f's
with the hierarchy of hypernetted chain equations
'hand minimized with respect to variations in the
"healing distance" d. The approximations in this
method are discussed in Ref. 1, and they have
little influence on the energies calculated within
the functional space spanned by (1.1).

In the present work the method of constrained
variation is further developed to obtain a two-
parameter set of variational wave type:

approximation, and -7.14 'K and p, from experi-
ment.

Several diagrams neglected in the above calcula-
tion are studied in Sec. V to estimate the accur-
acy of the calculation to be =0.2 'K. This estimate
includes the effect of the neglected long-range
pair correlations as well as that of the three-body
triple dipole interaction. ' At least two other meth-
ods have been used to improve upon the "Jastrow"
wave function. These are Feenberg's perturba-
tion theory in the correlated basis, ' and the
"Green's-funetion" Monte Carlo method. ' A com-
parison of the results obtained with these methods
is given in Sec. VI.

II. THE VARIATIONAL V(AVE FUNCTION

In the context of Fermi fluids Pandharipande
and Bethe' studied the correlated wave function
g(k, ,r) of a pair of particles with a relative mo-
mentum k by constrained variation. The g(k, r)
is conveniently expressed as

&. -~IIAg IIA~a
i&/ i&/&%

(1.2)
q(k, r ) = pi'(2l+ 1)f(l, k, r)j, (kr)P, (cose),

l~0
(2.1)

The three-body correlation f,» primarily takes
into account the Feynman-Cohen' baekflows pro-
duced by two-particles recoiling from each other
in the liquid.

The calculation of the two-parameter wave func-
tion (1.2) is discussed in Sec. II, while Sec. III il-
lustrates the use of standard cluster-expansion
and chain-summation techniques to calculate dis-
tribution functions and expectation values. A set
of coupled-integral equations which sums hypernet-
ted chains of a selected class is used to calculate
the ground-state energy and density of liquid He
in Sec. IV. The equilibrium E, and p, calculated
using the I ennard- Jones-deBoer-Michels poten-
tial are, respectively, -6.72 K and 1.04p, ', as
against -5.9 K and 0.9p, obtained in the "Jastrow"

u, (k, r) =f(l, k, r)j, (kr)r,
O'

„

I(I + 1)
", (k, r) —,r, (). , r)) rr, ()., r)

(2.2)

r() ))r,()r). (2, .S),2

yn

The "Schrodinger" Eq. (2.3) is valid for r &d,
and y, (k) is obtained from the boundary condition
f' (I, k, r = d) = 0.

We may now define a complex correlation func-
tion f(k, r) such that

f(k r) e~r r g(k r) (2.4)

and the correlation function f(l, k, r) in the lth par-
tial wave is obtained from the equations
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In the limit k 0 the f(k, r) reduces to a, simple
operator F, (Ref. 7),

eg(d) = Qf)~(d) (2 8)

7 =f(I =O, k-0, r)+[f(I = 1,k-o, r)
—f(I = 0, k - 0, r)]r &

—= f+qr ~ V. (2.5)

~0d'r e '"'Ft — (& +k')+v ly e'"'

The second term of F generates the Feynman-
Cohen backflow and successfully explains the ef-
fective mass of 'He impurities in liquid 'He. ' Even
though the above 7 is strictly valid onl. y at small
~k

~

it certainly is better than f by itself. As a.

matter of fact, the contribution of the gr V' term
to the two-body cluster energy

used in Ref. 1. As a next approximation we con-
sider

(d) IIf I[ I,g 1 %~ra'(+d~a)
f&J f&j&k i chic Agffkn„'„(,y„)+

AaAy

(2.9)

which has the desired form (1.2) and is correct
up to terms linear in ri. Z„,represents a sum of
the three terms obtained by replacing. ijk by jki
and kij Fi.nally, we note that q and f &J

are both
sharply peaked beyond the core, and have similar
shapes. Thus, instead of (2.9), we may use the
simpler wave function

3 m
k q ——[(f'+q')4r+rl"r ]+vri r dr,

(2.6)
is proportional to k' at all values of k.

The operators F,f, P &k, . . . do not commute, and
thus the variational wave function has to be de-
fined as

4 =Sg [fq(+ arlqqrq~
~ (Vq —V))], (2.7)

f&f

whe re S is a s ymmetrizing ope rator. This wave
function is a bit complicated, though it may be
possible to work with it using the cluster expansion
developed by Wiringa and Pandharipande' for
noncommuting correlation operators.

The 7l&& is quite small (=0.2 at the maximum)
and we may expand (2.7) in powers of q. The
zeroth order corresponds to the single-parameter
Jastrow wave function

+,(d, P) = IIf(g(d) II I +Q k (,(d, &)
i&j&k cyc

x („(d,Plr„re)
== lifer II (' e 2 xu .)

5(d, &) = &-,(d)-,
n(d)

J

(2.10)

(2.11)

and treat P as an additional variational parameter.
At equilibrium P should be of order of the square
root of the average value of f'/2rlr.

III. CLUSTER EXPANSION AND CHAIN SUMMATION

A diagrammatic cluster expansion of the expecta-
tion value of an operator O„„(r„)

J IIf II (1 +Z x ) o .(r .) II (1 +5 x ) IIf «
& &f&k cyc f&j&k cyc f&j

is obtained by replacing all the f' except f'
„

in the
numerator by 1+E. (This E should not be con-
fused with the 7 operator in Sec. II.) The integrals
in the numerator and the denominator are then
represented by diagrams in which the points repre-
sent the particle coordinates, a wiggly line join-
ing m and n represents the function f „O„„f„,E,&

is a dashed lineij, and solid linesij andik with a
marking on the angle j of the triangle ijk denote

The numerator diagra, ms must contain the
wiggly line mn, and the expectation value is given
by the sum Of all irreducible numerator diagrams.
Simila, rly the expectation value of a three-body

operator 0 „0is given by the sum of all irreducible
diagrams containing a triangle mn0 representing

f .f f"(1+Fr:0 .. reer .).
f .f,f.,

cyc cyc

(3.2)

In the hypernetted chain (HNC) approximation all
diagrams containing single or multiple chains
connecting two particles are summed, neglecting
the coupling between the chains. The validity
of the HNC approximation may be ascertained by
an HNC/4 calculation' in which the effect of pair-
wise coupling between the hypernetted chains is
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y,» on the g(r), it merely increases the structure
by a small amount. At'its first maximum- and
minimum the g(r) for p„d= 2r„and 0 = 0 (no y)
is 1.254 and 0.953 in the HNC approximation, while
for P = 1.65 it is 1.266 and 0.942, respectively.

Two technical points may be mentioned here:
First, the f and rl are practically zero for r&0 5a.,
while g diverges as 1/r at small r Th. is diver-
gence has no practical significance since $ is al-
ways multiplied by r and f, however to avoid nu-
merical problems we set $ to zero at ra 0.5o

where I, (r) becomes less than 10 ". Second, the
required combination of C, -C, in the Eq. (3.3) for
g may be directly computed in a single integral.
as follows:

(2C, +4C, + C, + 2C, +4C, + 2C,)„„
2

1+ gX...
chic

(
x IO

II
~/
/I

/

IV. THE CALCULATION OF ENERGY

'The contribution to the energy expectation value
of terms containing the two-body potential v

„

and a part of the kinetic energy coming from
—(K'/2m)(&' f „)is called W,

' and is given by

F&G. 4. g, (I, —g), and C&, in He at p, d=2ro, p
= 1.65.

pX, k-0
4&r'g(r) dr

2 0

4&r'v(r)g(r) dr. (4.1)
I

(Fig. 2), and hence the approximation of the wave
function (2.9) by (2.10) may not be bad.

The ger [Fig. (3)] is a function peaked a,round
1.lcd; the Lennard-Jones potential changes sign
at x=0'=2. 556 A. Thus C» which has a cos8,
in its integrand changes sign at r „-v 2 x l.lo.
The angle min is =~m for zm, =r„y 1 10'p and rm„
—v 2 x l. lcr. The C, is negative and goes to zero
at z=d. Due to the cos'8, in its integrand, C4
has a minimum at =v 2x l. lo. It is second order
in y and thus rather small in magnitude. The C5 6 7

(not shown in Fig. 3) are all positive and have a
range d. Inside d they are comparable to C, in
magnitude.

The C, (Fig. 4) oscillates at large r and becomes
large positive at x&1.50. It is larger than C, ,
by an order of magnitude; and it is also bigger
than (1 —g). There is no prominent influence of

This contribution is very insensitive to the three-
body correlation X as can be seen from Table I.

The fraction of kinetic energy due to
—(jP/m)Y'„ f „Vf, is called U (Ref. 1);

5 p mn mo
P Rmngmogno + ~ Xmno

chic mn mO

md &meed &ma~ (4 2)

and it decreases rapidly with P (Table II). The
term linear in y ~ causes most of the reduction;
it has a cos 8 in the integrand and is negative
def inite.

Figure 5 illustrates the various terms of type
(V'Q,„,y „,) and (V f „)~ (V Z„,y „,) that con-
tribute to the kinetic energy. The filled, hollow,
and open arrows along line ij, respectively, repre-
sent the V& of f&&, r&z, and f&&, while a, double open

TABLE I. Composition of E(pep d 2I"0 y P). TABLE II. E(p, d, P . ).

0
—10.011
+ 4.362

0
5.649

1.45
—10.013
+ 2.550
+ 0.871

6.592

1.65
—10.014
+ 1.941
+ 1.394

6.679

1.85
—10.015
+ 1.233
+ 2.133
—6.649

d/r

1.8
2.0
2.2

2.5
1.7
1.35

E(d, P . )

-6.643
-6.679
-6.504
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5, l

n rn n Al r) r)l

5,3

The kinetic energy also has terms of type
(~.Z,„x„„.) ~ (&„Q„x.„,), (&.~„,x. ) (~.f.,),
more consistent to estimate these along with their
analogous distribution function diagrams in Sec. V.

The total energy E in this approximation is

n rn rn n E = W+U+T, (4.8)

5.5

5.9

5.6
0

5.IO

5.7
0

5. I I

and exhibits a, minimum with respect to variations
in P (Table I) and d (Table II). The E(d, P „)is
more sensitive to d than E(d, P =0),' and the d „/
xo increases from =1.85 at 0.8p, to =2.05 at 1.2p,
(Table III). The E(p,„)is estimated to be -8'.72
at p „=-1.04', .

m n rfl n rn n m
V. CONVERGENCE STUDIES

.5.I2 5.l 5 5.IO 5.I5

l IG. 5. Illustrations of the kinetic energy terms T~
—'I5

arrow denotes (V', $,&). The sum of diagrams con-
taining 5.1-8 is given by

~mngmogno 1 Xmno + mo~mn
CyC

x cosa

p, = —(E'/m)l $"r+4P + 2f '($'r+ $)/fj,

while that of diagrams having 5.9-11 is

(4.3)

Nmngmokno 1+ Xmno & mo
cyc

cos ~md &mnd ~ o
mn

~2 P gmnRmO Rno + ~mnO mO mn d mn +mO

(4.4)
v = (h'/m-) ($'r+ —', $ +f ' $r/f) .

The contribution of terms 5.12, 13 is

The "HNC-type" diagrams neglected in Sec. IV
can be separated into two groups. Simple examples
oi group I diagrams are shown in Fig. 6; 6.1-6.3
are distribution-function diagrams that have more
than one y connecting a pair ij,' 6.4-6.6 are X
dressings to the kinetic-energy diagrams included
in U and T; and 6.7-6.9 are kinetic-energy dia-
grams not included in U and T. These are dia-
grams in which there are two or more chains
ij,k, ij,k, . . . , ij„k, of type other than C„connect-
ing i and k; and their integrand contains the co-
sines of some of the internal. angles of triangles
ij,k, ij,k, . . . , ijnk. In contrast, the integrand of a
group II diagram has at least one cosine of an in-
ternal angle of a triangle ij,j,', j, and j, being par-
ticles in two different chains.

Group I diagrams can be easily summed. The
y hypernets in g and the y dressings of U and T
are summed by defining g and g in Eq. (3.3) and
(4.2)-(4.7) as

g = g= f' exp(C, + 2C, +4C, + C, + 2C, + 4C, + 2C, ) .

while that of 5.14 and 5.15 is, respectively,

P Pmnkmokno 1+ Xmno

The kinetic-energy diagrams of type 6.'|-6.9 are
calculated with the help of two functions n „and
y „defined as follows:

x (('r) „((r)„ocos8cos&„d'r„„d'ro,

(4.8)

8 2 . fTo =+ p gmngmogno 1+ X~wcyc, mo

(4.7)& ( „()r)„os8d'r„o„d'r„.o

The total T(= Z... .T, ) is positive and increases
rapidly with P (Table I).

0.8
0.9
1.0
1.1

1.2

TABLE III. E(p, d,.„).
d . /r~

1.85
1.90
1.95
2.00
2.05

E(d . )

-6.22
-6.54
—6.69
-6.68
-6.47
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fTl n

fO fl

7, 1

fD n fYl

7.2

6.I 6,3

7.4 7.5 7.6

6.4 tT) 0 fT!

7.7 7.8 7,9

6.8 6.9
7.IO 7.ll

FIG. 6. Examples of "group I" diagrams neglected in
Sec. IV. FIG. 7. Diagrammatic illustration of n~„and p~„.

(5.2)

&ma =P 4 „,'x+ +g„,

&& [(&r)„„cos'9+ (gr)„,cos &„cos8,]d'r,

+ p ', 4 „,2 r, „cos8—,x „,cos8„d'x,

where

x cos8 cos8„d'r, , (5.3)

@mnl +ml +nl 1 + ~mnl
CXC

(5.4)

The simplest of the diagrams contributing to &
„

(7.1-7.3) and y „(7.4-7.11) are shown in Fig. 7.
The diagrams of type 6.7 are given by

S2
p gmn mn( mn+ rmn) d mn sm

(5.5)

while those of type 6.8-6.9 are generated by the
replacement

~ „=p C.„,[2(gr)„,(('r) „cosa.+ t.,((r).„1d'r, ,

xd x d (5.7)

ditional bond between 1 and 2 in 6.1, 3 and 4
in 6.2, etc. , maybe comparable to that of the

group I diagrams. Consider 6.1 as a typical case;
most of the contribution comes from the region in
which r„„=r,=r, = v, where ger (or gf'/f) is
peaked. If we sum aLl chains connecting nl and

n2 we get (g —l)„,(g —1)„,in the integrand, and

the interesting region becomes 8, = 8, = —,'&, where
and 8, are the angles of the triangles mn 1,

mn2 at vertex m. Let r be the origin, r„onthe
Z axis, r, in the X-F plane and 4,, be the azimuthal
angle of r, . The 4, integration determines the
ratio of 6.1 and its HNC/4 counterpart denoted by
6.1/4. It gives a factor 2a in the contribution of
6.1, and --w in that of 6.1/4 if we take (g —I)»
= -1 for x & o., 0 for x& o. Thus we may expect
a reduction of groupI diagrams by a factor of
-2 from their HNC/4 counterpa. rts.

It should be noted that, even though summing
diagrams of type 6.1-6.3 by exponentiation of

C, , in Eq. (3.3) ma, y not increase the ca.lculation
accuracy significantly, the exponentiation of C,
does. The contribution of a HNC/4 diagram having
two coupled C, chains is

1 m1, & —1 fftP g —1 q1 g —1 f12 g —1

in the Eq. (4.2) for U.
However, the contribution of HNC/4 analogs of

group I diagrams, obtained by inserting an ad-

r 2

——p (g —1),(g —1)„,d'r, (5.8)

and, as we have argued in the case of 6.1, it may
well be of order
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C
y chains, ' as wel l as its correction to the supe r-

position approximation to the three-body distribu-
tion function' is calculated as follows: I et g,»
and h&& be defined as

8.1 8.I /4

n

IT) ~------- p I

/
4

/

0

8.2

FIG. 8. Examples "group II" diagrams.

A typical group II diagram xs shown j.n Fag. 8.1,
its integrand contains cosa, where 0 is the angle
of the triangle m12 at vertex m. To estimate the
ratio of 8.1 to its HNC/4 counterpart 8.1/4 (Fig.
7) we may express cose as

COSH = Z~Zo+XqX2 o + o COS$2. (5.10)

where z„z2,x„andx, are projections o. unit
vectors 7, and x„andwe have assumed that 8,
= 6), = —,'w in the region of interest. Only the z,2,
term contributes to 8.1, and thus the Q, integra-
tion gives there a factor w. In 8.1/4 the z,z,
term will give =-2r, while we ma, y expect =-1
from the x,x, term. Thus the ratio

8.1 + 8.1/4 & —v/2 —1
8.1 (5.11)

and in general calculating group II diagrams with-
out their HNC/4 analog will decrease the calcula-
tion a,ccuracy. It may be mentioned here that
group II diagrams of type 8.2 are summed if the
Jackson-Feenberg identity is used to calculate
the kinetic energy, ' and this deteriorates the con-
vergence. '

In order to estimate the uncertainty in the cal-
culations discussed in Sec. IV, the diagrams of
group I are calculated. At d=2z, and p, these
change the P „significantly from 1.65 to 2.6 but
leave the energy unaffected (—6.72 instead of
—6.68 in Table I). However, some of the diagrams
are quite significant (-0.4 'K), and the small
change in E is due to a -90% cancellation and may
not have any significance.

The HNC/4 diagram due to the coupling of two

However, it is still much smaller than —,'C'„
C2
2' =—p (g —1 —-,)„,(g —1)„,d'o, (5 9)

because 1C, 1» 1(g —1)1, as can be seen from Fig.

&~jn = &(r~~ r~~ rn)

= p I (g —l)„(g—1)»(g —l)»d'r, , (5.12)

yn(g —1),a(g —1)„d'rap (5.18)

is given by

p
2 2

tn= 6 ZmngmoZno I++ Xeno
CXc

(5.15)

x (1+k„„o)v,~ „~d'x„d'o' o. (5.16)

Multiply the integrands of the equations for C,—C7

by (1+r „,), redefine g, g as

g =g =f''"xp(C, +2C, +4C, +C, +2C, +4C, +2C, +8),
(5.14)

multiply integrands of U, T, , by (1+r „,), and
those of n and y by (1+( „,). This raises the ener-
gy at p„d=2/p P 2 6 to 6.61. The g obtained
in this calculation has a little more structure.
The values at first maxima and minima, respec-
tively, are 1.2'78 and 0.921 as against 1.266 and
0.942 found for P =1.65 in the last calculation.
From our considerations in Sec. II, and the f'
and 17y in Fig. 1 we could have expected a p =2
at minimum which is in between the 1.65 found in
Sec. IV and 2.6 obtained here.

The effect of requiring the two-body f(y&d) = 1
on the variational energy may be studied by op-
timizing the Jastrow wave function. The optimumj—1 has a 1/r' long-range behavior, and the super-
position approximation used in the calculation of
U is not valid. Hence, only the results of cal-
culations using the Jackson-Feenberg (JF) identity
are available at the HNC and the HNC/4 level. At
the HNC level the difference between the energy
calculcated with the JF identity at p, with optimum
(-4.64'K) and present (-4.05) f 's is large', how-
ever, at the HNC/4 level it decreases significant-
ly (—5.24 and -5.05 K), to -0.2'K." The correct
energy at p, with the present f(d =2') is -5.67
+0.13 'K as known from Monte Carlo calculations
or cluster expansions using the S'+ U form. Thus,
one might expect the true effect of optimizing the
two-body f to be &0.2 K.

The energy of liquid 'He may also be influenced
by three- (or more-) body forces neglected in Sec.
IV. The contribution of the three-body triple di-
pole -interaction'
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The 8',,„atp, is found to be +0.15 'K and will sig-
nificantly compensate the decrease in E by oy-
timizing the f.

VI. CONCLUSIONS

The results of the calculations described in Sec.
IV are compared in Fig. 9 with those using (i) only
two-body correlations' (curve 2B); (ii) optimized
two-body correlations plus "perturbative" treat-
ment of three-body correlations' (curve 2- op+ 3-p);
(iii) Green's-function Monte Carlo (GFMC) cal-
culation of the hard-sphere model' (filled squares);
and (iv) GFMC of liquid 'He (filled triangles). "
The curve (2+3) gives the present results, while
the filled circle denotes the experimental equili-
brium point.

The effects of long-range correlations and three-
body forces are neglected in curves 2B, (2+ 3),
and the filled triangles, while (2-op+ 3-p) curve
and the filled squares take into account the lower-
ing of the energy due to long-range correlations
but neglect the roughly equal but opposite effect
of three-body forces. Thus the (2-op+ 3-p) and
solid squares should be raised by =0.15 'K to make
meaningful comparisons. The curves 2B,
(2-op+3-p), (2+3) and the squares probably have
uncertainties of =0.2 'K, while the triangles have
lesser uncerta, inties. The GFMC is in principle
"exact"; the uncertainties in its results being due
to numerical accuracies and surface effects. The
comparison indicates that a good fraction of the
difference between the "exact" ground-state energy
and the upper bound obtained with two-body corre-
lations can be covered with a rather simple three-
body correlation that takes into account the back
flows produced by two atoms recoiling from each
other in the liquid.

The equilibrium energy and density obtained

~ -6—
0
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(2- op + &-p).-

EXPT.
P~

I I 4 I

0.30 0.35 0.40 0.45
p(a ~)

FIG. 9. The E(p) of liquid He obtained in various cal-
culations.
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in (2-op+ 3-p), (2+3), and GFMC calculations is
nearer to experiment than that in the 2B calcula-
tion. The inadequacy of the structure of the cal-
culated g(x), and the large value of the equilibrium
density are probably because the Lennard- Jones-
deBoer-Michels potential has too small a core
radius.

The required computational effort may more than
double if (2.9) is used as a variational wave func-
tion instead of its approximation (2.10). However,
since (2.9) has only one variational parameter, it
may in fact be more economical to use it directly.
The present calculations are rather simple and
easily extendible to Fermi liquids.
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