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High-precision measurements of third-sound velocity in *He films with surface densities
between 0.16 and 5.25 atomic layers have been taken between 0.1 and 1.5 K. By reformulating
Landau’s quantum hydrodynamics in two dimensions we have been able to accurately describe
these measurements in terms of a surface phonon and surface roton branch of the elementary ex-
citation spectrum. In the thin-film limit surface tension falls to zero and the surface rotons are

characterized by an energy gap of 5.3 K.

I. INTRODUCTION

We present high-precision measurements of third-
sound velocity in “He films between 0.1 and 1.5 K for
superfluid surface densities between 0.16 atomic layers
and 5.25 atomic layers. We argue that the film thick-
ness and the healing length are not definable for
monolayer films and we provide a workable theory by
reformulating Landau’s quantum hydrodynamics using
only the areal density. The theory predicts the
surface-phonon branch of the elementary excitation
spectrum and.we add the surface-roton branch in an
ad hoc way. We then can calculate the temperature
dependence of the third-sound velocity from the ele-
mentary excitation spectrum. Finally, we fit the meas-
ured third-sound velocity by adjusting parameters in
the elementary excitation spectrum. In this way we
find an experimental elementary excitation spectrum
with a surface-phonon branch with upward dispersion
due to surface tension and consistent with a surface-
roton branch with a gap of about 5.3 K at shorter
wavelength.

Third-sound waves in thick *He films were first gen-
erated and detected using a chopped infrared beam
and a polarimeter by Everitt et al.! in 1962. Third-
sound waves are similar to shallow-water waves.
However, Atkins? pointed out two modifications
necessary to describe their behavior in thick helium
films. First, the restoring force is not gravity by the
Van der Waals force F (D) binding the helium atoms
to the substrate. F(D) varies as D~ for thick films
where D is the film thickness. A detailed measure-
ment of F(D) on CaF, has been performed by Ander-
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son and Sabisky.> Second, only the superfluid fraction
ps/p of the liquid portion d can participate in the wave
motion. The remaining thickness (D — d) is primarily
the solidified layer of helium on the substrate. The
resulting expression for surface-wave phase velocity

c2=|F(p)2sp + X2BD | tanh(kD) "
' p p kD

contains two terms. The first term dominates for

kd << 1, where k is the wave vector, and gives the
third-sound velocity. For kd >> 1, the second term,
proportional to the surface tension 8, dominates. The
surface wave goes over to the bulk-surface wave, the
deep-water wave, and these elementary excitations are
called ripplons.*

Third sound became a tool to understand thin heli-
um films with the work of Kagiwada er al.> Time-of-
flight measurements of third-sound velocity were
made with a pulsed resistive heater and an aluminum
superconducting bolometer. Additional measurements
at constant thickness down to coverages of 2.1 atomic
layers and temperatures of 0.1 K by Scholtz et al.% pro-
vided third-sound velocities with a precision of 1 part
in 10°. They interpreted their measurements within
the framework of the Ginzburg-Pitaevskii (GP)
theory’ to produce a temperature-dependent healing
length. This. healing length describes the variation of
the superfluid density perpendicular to the substrate.
Near T,, where the healing length is macroscopic, and
for thick films the GP theory should be valid; however
there are still unresolved questions about the boun-
dary conditions. For thin films with a superfluid sur-
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face density of order one atomic layer the GP healing
length concept is clearly not applicable at any tempera-
ture. Even the film thickness D is a fuzzy concept
and is definable only with an accuracy of monolayer.
For monolayer superfluid films the film thickness is
not a macroscopically definable quantity and it cannot
be used in the macroscopic hydrodynamic theory to
derive Eq. (1). Figure 1 illustrates schematically these
difficulties. The outermost atoms in this figure should
be drawn blurred in the horizontal direction by at least
a free-particle de Broglie wavelength Af.

By allowing the helium film to close upon itself on
the inner surface of a quartz capsule, we have been
able to establish a third-sound resonance. As a result
we have been able to measure the third sound velocity
to 1 part in 10°. The observed 7> dependence? of the
changes in the square of the third-sound velocity at
low temperatures suggested a two-dimensional spec-
trum of Landau elementary excitations (surface pho-
nons). The thermally excited elementary excitations
form a normal fraction which is pinned to the sub-
strate; the resulting reduction in the superfluid surface
density explains the T° dependence of ¢ (T). This
point of view is common to bulk *“He where, below 1
K, Landau’s elementary excitations® describe the nor-
mal fraction. This interpretation, for restricted
geometries, is also argued for by Padmore and Rep-
py. 10

Padmore'! has calculated the elementary excitation
spectrum of a strictly two-dimensional *He system us-
ing the Feynman-Cohen method. He finds a surface
roton with a gap less than the bulk roton gap for areal
densities less than one atomic layer. Chester'? has
pointed out that the order of magnitude and tempera-
ture dependence of Scholtz’s data above 0.8 K can be
explained by a surface-roton contribution to the nor-
mal surface density. Thus the surface phonon and
surface roton have been discussed previously.

We have carried out an extensive set of measure-
ments of third-sound velocity on thin films. In order

Ae~20R
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FIG. 1. Schematic of the substrate and adsorbed helium
film. This sketch might correspond to a coverage of 1.5
atomic layers. The outer layer should be blurred in the hor-
izontal direction by at least the free-particle de Broglie
wavelength.

to understand our measurements we have developed
the natural macroscopic theory for thin films, an ex-
tension of Landau’s quantum hydrodynamics. We as-
sume a two-dimensional condensate wave function
Y(X) from which we can generate a two-dimensional
superfluid hydrodynamics. The elementary excitations
appear as collective modes of the condensate. The
thermodynamic calculations are then standard. The
concept of superfluidity in a two-dimensional system is
an interesting one; we should emphasize that our
films are thin enough to be truly two dimensional.
Hohenberg has shown that there is no long-range ord-
er at finite temperature in a two-dimensional
superfluid. However, at low temperature the
superfluid correlations extend over great distances
which can be greater than the wavelength of our
third-sound probe (—~1 cm). One would then expect
to observe superfluid behavior and we do observe a
third sound mode with a mean free path greater than
10* cm (cavity Q ~10%). The question of
superfluidity is a subtle one and involves a discussion
of dissipative mechanisms. We will present a detailed
study of third-sound dissipation in a separate paper.
For our present purposes it is sufficient to note that
one can define a condensate wave function in the
ground state (at zero temperature) in two dimensions
and this is all that is required for quantum hydro-.
dynamics. Our theoretical model predicts the correct
correlation-function at finite temperature.

The helium films we have studied were absorbed on
an estimated 15 atomic layers of argon. We assume
that down to a helium coverage of 1.2 atomic layers
the interaction with the argon substrate is dominated
by the standard Van der Waals 1/D? interaction.
Down to a coverage of 2.75 atomic layers on argon the
measurements of Anderson and Sabisky clearly estab-
lish the helium-substrate interaction to be 1/D°.
There is no thermodynamic data for helium coverages
less than 2.75 atomic layers on a weak binding
substrate—that is, for first layer binding energies
characterized by a I of less than 50 K. However,
there is indirect evidence from third-sound studies
that the standard Van der Waals attraction of 1/D?
dominates for smaller coverages. Scholtz et al.®
demonstrate this dominance down to 2 atomic layers
on glass and CaF,. More recently, Berthold, Bishop
and Reppy'® successfully interpreted third-sound velo-
city measurements down to 0.06 atomic layers of
mobile helium by assuming only a Van der Waals in-
teraction. Finally, it is interesting to note that the
4.2-K isotherm data of Lerner and Daunt'* for *He
absorbed on grafoil preplated with a monolayer of ar-
gon can be fit to within 5% of coverage down to 1.2
atomic layers of *He by the Frenkl-Halsey-Hill isoth-
erm with a I’ of 60 K. This I" can also be obtained by
using a 1/D? model for the compositie surface. Thus,
in this paper, we will assume a 1/D? interaction even
for our thinnest films.- This assumption establishes
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the form of the Hamiltonian in Sec. III and is verified
by the agreement between the calculated and meas-
ured third:sound velocity at T =0.

The plan of the paper is as follows: In Sec. II we
discuss the experiment and present the working data
in Table I. We develop, in Sec. III, the two-
dimensional quantum hydrodynamics bringing in a
parameter B, related to-surface tension, a two-
dimensional "rotonlike" excitation, and an extension
to slightly thicker films. From this model an expres-
sion for the third-sound velocity at finite temperature
is derived. In Sec. IV the analysis of the experimental
results, within the above framework is described. The
results and conclusions are presented in Sec. V and in.
Table II.

II. EXPERIMENT

We have measured the temperature dependence of
the third-sound velocity ¢ (T), the vapor pressure over
the helium film P(T), and determined the total area
density D (7T) in units of atomic layers (1 atomic layer
is 7.7 x 10'* atoms/cm?) from the vapor-pressure
curve using the Frenkel-Halsey-Hill isotherm equa-
tion. Here we describe the measurements and the
data analysis.

A. Cell

The helium film lies on an argon substrate inside of
a 0.7 x2 x0.001-cm quartz envelope, called a cell,
constructed from two thin (0.002—0.004-in.) optically
flat sheets of vitreous quartz. First a hole having
about a 0.004-in. diameter to serve as an electrical
feed-through and a means of admitting the argon is
made in each of the quartz sheets. The hole is burned
through each sheet by focusing a 7'0--sec pulse from a

CO, laser operating at about 3 W total power. The
resulting holes are smooth and the quartz sheet
around each hole us not thickened or distorted. On
one side we evaporate a 43< 10-mm rectangular alumi-
num capacitor plate 2000 A thick with the hole includ-
ed in tohe area of the plate. On the other side an
8000-A-thick aluminum dot is evaporated over the
hole. During the evaporation, enough aluminum con-
denses into the hole from each side to form a continu-
ous film and provide eelectrical contact between the
dot and the capacitor plate; which will even}’ually be
on the inner wall of the cell. Finally 3000 A of silicon
monoxide are evaporated over one of the aluminum
plates to prevent the two plates from shorting togeth-
er.

The quartz sheets are then pressed between two
‘stainless steel rectangular anvils with the aluminum
capacitor plates face to face. The faces of the anvils
have a length and width 3 mm smaller than ‘those of
the sheets so that the edges of the sheets extend

beyond the anvils by l% mm on all sides. In additior
the top anvil is hollowed out to within % in. of its
bottom and filled with tin. After placing the sheets
between the anvils, their edges are melted together
with a small oxy-hydrogen torch. While welding the
edges, care is taken so that the tin does not melt,
guaranteeing that the aluminum films are kept cool
enough to avoid bubbling. The result is a cell with
about 0.001 cm inside separation and two capacitor
plates separated by this distance.

Finally, a heater and thermometer are attached and
the cell is filled with argon gas. The heater is made by
evaporating a %-in.-wide Chromel A strip at one end
of the cell and across its width. During the evapora-
tion, the heater’s resistance is monitored and the eva-
poration is stopped when the resistance reaches 1000
Q. At the opposite end of the cell, a %-in-wide

' DAG paint' carbon-resistance thermometer is painted

across the width of the cell. Finally, the holes
through the cell are plugged with epoxy while the cell
is filled with and surrounded by < atm of argon gas.

When the cell is cooled, a thick argon film solidifies
from the vapor phase on the inside walls of the cell to
form the substrate for the film. See Fig. 2.

The end of the cell is then glued with a small
amount of Epoxy to a heat sink and mounted inside a
brass can attached to the mixing chamber of a dilu-
tion refrigerator. The helium required to form the
film is put into the cell by diffusing it through the
quartz walls. To fill the cell, the brass can is filled
with an appropriate pressure helium gas while the can
and cell are at room temperature. The helium diffuses
to equilibrium in 24 h and after this period of time the
cell and refrigerator are cooled to 77 K. The can is
then evacuated to 107 Torr before cooling into the

experimental temperature range.

Heater and
Thermometer

Inner Capacitor
Plates

Closed Inner Surface
Coated with Argon

FIG. 2. Schematic of the quartz cell. A thin-film heater
on the outside of the cell excites third sound in the superfluid
“He film on the inner surface. The thermometer at the oppo-
site end of the cell detects the temperature oscillations due to
third-sound resonance. The capacitor plates allow in situ pres-
sure measurements for a determination of film thickness.



2158 RUTLEDGE, McMILLAN, MOCHEL, AND WASHBURN 18

B. Temperature scale

The temperature scale is established below 4 K by a
Superconducting Fixed Point Thermometer'® pur-
chased from the National Bureau of Standards (NBS).
The fixed points are used to calibrate a noise ther-
mometer which is in turn used to calibrate the carbon
resistors, including the DAG thermometer on the cell,
that are used as working thermometers during the ex-
perimental run. Below 4 K our temperature scale is
accurate to 1.5%.

Above 4 K our temperature scale is provided by a
commercial germanium resistance thermometer'’
measured at 22 Hz with a low-noise ac resistance
bridge.'®

C. Third-sound velocity

As the cell cools below about 10 K, the helium con-
denses on the already frozen argon and forms a con-
tinuous film on the inside the cell. - Below 1 K, third-
sound waves can be generated and detected. As the
heater drives temperature oscillations in the adjacent
quartz wall, third-sound waves radiate over the film.
Because the film covers the entire inside surface of
the cell, it is possible to set up a third-sound reso-
nance if, for a given path on the inside surface of the
cell, the third-sound wave can return to the heater
with its temperature oscillations in phase with the
heater. The lowest-frequency resonance the cell can
sustain corresponds to having a third-sound wave
travel the length of one sheet down to the thermome-
ter and return to the heater up the length of the other
sheet. The temperature oscillations are much larger
(in fact by as much as 10* times larger) for the
standing-wave resonance modes than for the non-
resonant signals. It is this that allows the high resolu-
tion we achieve for c;, the third-sound velocity. We
obtain the third-sound velocity by multiplying the fre-
quency at which the lowest standing-wave mode is ob-
served by the inside perimeter of the cell.

In practice even at resonance, the temperature oscil-
lations of the thermometer are quite small (107'° K)
at the lowest temperatures and for the thinnest films.
To detect the temperature oscillations of the ther-
mometer a constant current is passed through it and
the resulting voltage oscillations due to (3R /dT)AT
are then measured with a lock-in amplifier. The
heater frequency is swept through a narrow range
(Af/f =1073) so that the entire lineshape of the
third-sound resonance is measured. The amplified
and demodulated signal from the lock-in amplifier is
averaged (5 min to 10 h) until the signal-to-noise ratio
is sufficient to determine the resonant frequency to
about % of the full width at half-maximum (FWHM).
Near the transition temperature the ratio of the
resonant frequency to the FWHM is about 10, but the

ratio grows rapidly to as large as 2 x 10* as the cell is
cooled. This establishes the high resolution of our
velocity measurement.

D. Film thickness

The aluminum films on the inside walls of the cell
form a parallel plate capacitor. As the temperature of
the cell rises above 0.6 K the film begins to evaporate
and the rising pressure causes the cell walls to move
apart and the capacitance decreases. The distance
between the walls is governed by Hooke’s law

P=K(x—xp ,

where P is the pressure, x is the spacing between the
plates, and x is the P =0 spacing. This is verified by
applying external gas pressure at 4.2 K and measuring
the capacitance. The spring constant k does not
change as a function of temperature over the range of
interest as determined by measuring the vapor pres-
sure of bulk *He in the cell at the Cd fixed point of
the NBS standard and comparing the result to the *He
vapor-pressure tables. The spring constant & meas-
ured at 30 K is also identical to the one at 4.2 K as
determined by external gas-pressure measurement.

The coverage is determined from the Frenkel-
Halsey-Hill isotherm at low temperatures

In(Po/P)=A/TD? ,

where Py is the bulk vapor pressure and A4 is 14.5 K.
We cannot directly measure the isotherm because we
cannot independently determine the total amount of
helium in the cell. We determine D by measuring P
as a function of T and fitting the isotherm equation to
obtain D vs T. Since the capacitance C is proportional
to 1/d we have

P=k'(C—-Cy/C

Our measurements have a sensitivity to pressure of
about 107* Torr.

The experimental data for 11 different surface den-
sities are presented in Table I. ¢3,(7T) is calculated
from the resonant frequency as described in this sec-
tion with the cell perimeter taken to be 3.82 cm.
c37(T) are the velocities resulting from the theory of
Sec. III and the fitting procedure described in Sec. IV.

III. THEORY

A. Quantum hydrodynamics

We propose a theoretical model for superfluidity in
thin helium films. We assume that a condensate wave
function exists and write down a phenomenological
equation of motion for the macroscopic superfluid
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TABLE L. T, ¢;3,(T), and D(T) are from measurement. Temperature T is known to £1.5% or =5 mK. D(T), the coverage
of *He, is calculated from in situ pressure measurements with an absolute uncertainty of 5%. ¢3,(T) is calculated from the
resonant frequency, which at low temperatures is measured to two parts in 10°, and the internal circumference of the cells, 3.82
cm. c37(T) is calculated using the model described here.

T C3P(T) D(T) C3T(T) ) T CJP(T) D(T) C}T(T)

Run (K) (cm/sec) (atomic layers) (cm/sec) Run (K) (cm/sec) (atomic layers) (cm/sec)
I 0.100  6335.50 1.41 6334.41 v 0.132 6619.60 1.85° 6620.22
0.150  6325.30 1.41 6321.75 0.162 6618.70 1.85 6618.89
0.150  6328.10 1.41 6321.75 0204  6616.30 1.85 6616.30
0200  6307.60 1.41 6297.79 0250  6612.80 1.85 6612.44
0.250  6204.60 1.41 6255.54 0.298 6607.70 1.85 6607.20
0300  6158.30 1.41 6180.53 0.348 6600.40 1.85 6600.31
0350  6075.30 1.41 6053.03 0.405 6590.50 1.85 6590.16
0.375 6098.00 1.41 5963.30 0480  6570.10 1.85 6570.61
0.400 5931.50 1.41 5853.22 0.552  6537.70 1.85 6539.83
0.425 5913.30 1.41 5720.62 0.602 6506.40 1.85 6507.35
0.450 5593.00 1.41 5563.47 " 0650  6465.20 1.85 6464.43
0.700  6480.10 1.85 6404.61
1 0.112  6279.10 1.45 6275.83 0.750  6327.80 1.85 6326.54
0.153 626770 145 626775 0.800  6227.40 1.85 6227.54
0.187 6257.10 1.45 6257.22 0.850 6092.60 1.84 6105.30
0260  6219.80 1.45 6218.94 0.900  '5893.90 1.83 5948.59
0300 618340 1.45 6183.20 0.965 5§322.30 1.79 5638.71
0.332 6136.20 145 6141.06 0.972 4924.30 1.79 5605.31
0.342 6120.30 1.45 6124.48 :
0.406 5975.10 1.45 5963.02 Vv 0.225 6262.60 211 6262.21
0.424 5899.90 1.45 5895.23 0.306 6258.00 211 6256.90
0.449 5754.70 1.45 5780.14 0.373 6251.80 2.11 6250.81
0.466 5507.70 1.45 5686.11 0.472 6240.10 2.11 6237.12
0.501 6229.60 2.11 6231.18
1 0.147 6805.10 1.77 6804.23 0.548 6217.40 211 6218.42
0.191 6801.00 1.77 6801.07 0.596  6198.20 211 6199.79
0.224 6797.50 1.77 6797.75 0.650 - 6170.90 2.11 6169.48
0252 6794.30 1.77 6794.21 0.700  6133.90 211 6129.91
0282 6789.80 177 6789.56 0.750  6083.60 S 6076.70
0319  6782.50 1.77 6782.29 0.800  6015.50 211 6007.43
0.341 6777.90 1.77 6776.95 0.850 5946.80 2.10 3935.16
0355 677310 117 677305 0.900 5859.30 2.09 5838.30
0374  6767.10 1.77 6767.05 0.950  5707.50 207 5723.14
0.393 6759.90 1.77 6760.11 1.000 3459.60 2.02 5581.26
1.030 5132.70 1.99 5454.28
0.411 6752.70 1.77 6752.57 040 4978.20 o8 <403.50
0.428 6743.20 1.77 6744.46 : ‘ : :
0.445 6734.20 1.77 6735.32
0.465 6723.00 1.77 6723.11 % 0.125 5§935.30 2.311 5935.36
0.482 6711.80 1.77 6711.41 0.150 5934.60 2311 5934.78
0.500  6696.50 1.77 6697.60 0.200 5933.50 2.311 5933.23
0.518 6681.20 1.77 6682.25 0.250 5931.70 2311 5931.14
0.544 6657.40 1.77 6657.20 0.250 5931.80 2311 5931.14
0.570 6629.10 1.77 6628.61 0300  5929.40 2.311 5928.51
0.599 6595.30 1.77 6592.33 0.350 5925.50 2311 5925.25
0.623 6559.60 1.77 6558.72 0.400 5921.20 2311 5921.16
0.651 6514.30 1.77 651533 0.450 5914.60 2311 5915.70

0.681 6453.90 1.77 6463.73 0.509 5906 44 2311 5907.86
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TABLE 1. (Continued)
T c3.(T) D(T) c37(T) T c3.(T) D(T) c37(T)
Run (K) (cm/sec) (atomic layers) (cm/sec) Run (K) (cm/sec) (atomic layers) (cm/sec)
Vi 0.525 5899.40 2.311 5902.56 VI 0.700 4573.60 2.89 4571.07
0.550 5895.40 2.311 5896.05 0.800 4584.80 2.86 4583.25
0.575 5887.60 2.311 5888.04 0.900 4651.60 2.77 4667.58
0.650 5859.90 2.311 5852.08 1.000 4829.70 2.60 4833.07
0.700 5835.10 2.311 5820.79 1.100 4973.40 2.37 4963.84
0.740 5810.40 2.310 5803.57 1.190 4479.30 2.11 4774.07
0.760 5797.80 2.290 5796.05 1.210 4011.40 2.06 4624.20
0.780 5784.80 2.270 5790.32
0.830 5750.90 2.240 5766.73
0.860 5730.30 2.210 5742.74 IX 0.200 3656.40 3.31 3656.46
0.900 5688.80 2.170 5691.80 0.268 3656.00 3.31 3655.94
0.930 . 5672.50 2.150 5631.44 0.360 3654.90 3.31 3654.71
0.950 5647.00 2.110 5577.93 0.465 3652.40 3.31 3652.46
0.990 5581.70 2.060 5421.21 0.550 3649.30 3.31 3649.87
0.650 3646.40 3.31 3645.82
0.800 3690.50 3.27 3688.90
Vil 0.109 5109.60 2.49 5110.49
0.144 5109.80 2.49 5109.96 X 0.150 2723.25 4.05 2722.59
0.168 5109.30 2.49 5109.51 0.175 2722.55 4.05 2722.62
0.207 5108.50 2.49 5108.64 0.200 2720.41 4.05 2722.64
2.82 5106.10 2.49 5106.46 0.225 2723.05 4.05 2722.66
0.360 5102.60 2.49 5103.41 0.250 2722.51 4.05 2722.66
0.445 5096.00 2.49 5098.77 0.300 2720.75 4.05 2722.63
0.550 5085.20 2.49 5088.79 0.350 2723.95 4.05 2722.56
0.625 5070.50 2.49 5075.45 0.400 2721.17 4.05 2722.44
0.700 5054.30 2.49 5053.22 0.450 272243 4.05 2722.28
0.725 5050.70 2.49 5043.22 0.500 2721.42 4.05 2722.10
0.750 5045.40 2.48 5050.44 0.550 2720.60 4.05 2721.89
0.800 5047.40 2.46 5058.79 0.600 2720.09 4.05 2721.68
0.776 5045.40 247 5055.12 0.650 2721.16 4.05 2724.01
0.850 5055.90 2.44 5057.66 0.700 2725.99 4.04 2729.72
0.900 5084.60 2.40 5079.90 0.750 2738.95 4.02 2748.25
0.950 5125.10 2.34 5117.68 0.800 2759.67 3.99 2775.57
1.000 5139.20 2.27 5142.27 0.850 2804.13 3.93 2823.58
1.060 5146.00 2.15 5147.49 0.900 2864.01 3.86 2886.38
1.070 5061.60 2.13 5135.63 0.950 2975.67 3.75 2993.38
1.075 5108.00 2.12 5127.97 0.970 3044.26 3.69 3054.13
1.100 5044.20 2.07 5069.84 1.000 3146.35 3.58 3160.15
1.115 © 4971.40 2.01 5009.68 1.050 3357.62 3.39 3371.12
1.150 4553.90 1.96 4807.57 1.100 3621.84 3.17 3630.46
1.160 4165.80 1.94 4723.97 1.150 3921.11 2.92 3959.42
1.200 421798 2.68 4306.81
. 1.250 4418.43 2.44 4660.58
VIII 0.178 4611.70 2.89 4611.60 1.271 4448.31 2.36 4767.83
0.229 4610.90 2.89 4610.89 1.324 4212.90 2.19 4960.15
0.270 4610.00 2.89 4610.17 1.333 3811.28 2.14 4997.02
0.300 4609.20 2.89 4609.56
0.395 4605.00 2.89 4606.96
0.503 4597.20 2.89 4601.73 X1 0.181 1445.80 6.58 1445.97
0.598 4586.60 2.89 4592.10 0.293 1446.40 6.58 1446.20
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TABLE L. (Continued)

T c3,(T) D(T) c37(T) T c3,(T) “D(T) c37(T)
Run (K) (cm/sec) (atomic layers) (cm/sec) Run (K) - (cm/sec) (atomic layers) (cm/sec)
XI 0.490 1447.40 . 6.58 1446.19 X1 1.050 1853.40 5.58 1804.35
0.647 . 1449.20 6.58 1444 .84 1.100 2076.00 5.20 1983.63

0.700 1452.90 6.55 1453.29 1.150 2481.40 4.69 2271.25

0.800 1473.80 6.49 1470.20 1.200 2941.40 3.75 2993.01

0.850 1491.90 6.42 1491.49 1.300 3744.00 3.42 3305.99

0.900 1533.00 6.32 1523.24 1.350 3904.90 3.14 3606.26

0.950 1594.90 6.16 1577.16 1.390 3619.80 293 3841.84

1.000 1700.40 591 1668.82 1.410 3652.00 2.84 3941.01

flow. We then find the elementary excitation spec-

trum and calculate the third-sound velocity at finite

temperature. The theory is the natural extension to
thir; films of Landau’s bulk superfluid hydrodynam-
ics.

In the discussion of bulk helium or thick helium
films one uses the superfluid (particle) density p,(T)
and velocity V,(T) as well as film thickness as macros-
copic variables. As the superfluid surface density falls
below a monolayer the thickness clearly fails to
describe the coverage. Even for somewhat thicker
films it is wrong to model the film as a slab of liquid
at bulk density. The only macroscopic variables which
one can define are the superfluid surface density o (X)
(atoms per unit area which, at T =0, corresponds to
D — a; see Fig. 5) and the tangential superfluid veloci-
ty V,(X). Here X is a two-dimensional vector describ-
ing position on the surface.

We now reformulate quantum hydrodynamics using
surface quantities. We define a complex order param-
eter Y(X) which is proportional to the wave function
of the consensate so that the surface density at 7 =0
of superfluid atoms is

a(X) =|y(x)|? . (1a)
The usual quantum-mechanical current density is then
35 (X) =Rel(#im)y* TPl =0 () V,(X) , ()

where m is the helium atomic mass. Note that there
is no conceptual difficulty in defining a condensate
wave function for a two-dimensional system at 7 =0.
There are several terms in the energy of this quan-
tum state. The kinetic energy of the moving film is

2
= [ ax Lyl 3)

where the integral is taken over the physical surface
area. Since, as argued in Sec. I, the helium atoms
propagate in a uniform potential in a liquid with
Galilean invariance we will choose m to be the bare
‘He mass. The van der Waals binding of the film to

the substrate can be represented by the following ex-
pression: .
A

= 2 — 2
Hy= [ dx A= 0)

where 4 and a are constants. The chemical potential
term is

Hy=— [ d*x po . )

In addition to these three "obvious" terms, we include
a fourth term of the form

Ho= [ dx x 1B(0)(Fa)? ©)

where B may be a function of surface density. For
thick films we can write o(X) = pod (X), where py is
the bulk particle density and d is the film thickness.
Then we have

Hy=1B(o)pd [ dx (Ta)? ™

which is just the surface energy with B (co0) p¢ = By, the
surface tension. For bulk helium B8, =0.378
ergcm™2." For thick films H,4 has a simple physical
interpretation as a surface energy; for thin films the
film thickness and therefore the surface tension are
fuzzy concepts and we can only state that a term of
this form is permitted by symmetry. The total energy
is the sum of these four terms.

To complete the formulation we must write the
equation of motion of the condensate wave function.
Since ¢ is a wave function, the natural equation of
motion is the nonlinear Schrodinger equation

ik () _ - 8H
MY’ Sy *(x,1)

. ‘ ®)

where the variational derivative is taken treating ¢ and
Y * as independent quantities. Treating B as a con-
stant, we find

2
,-ﬁ_@_"l‘_=_l_v2d,

Y o —py— Byl .

9

___ Ay
(a +|y|D?
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One can show easily from this equation that o(X)
obeys the two-dimensional continuity equation

a—‘: +975.=0 . (10)
This completes the formulation of the theoretical
model.

We now examine the solutions of Eq. (9) for the
ground state and the low-lying excited states. The
ground state is that of the uniform superfluid at rest

“y(x,t) =¢o. Minimizing the energy with respect to Y
yields

p=—A/(a +|yo|)? an

and a time-independent solution of Eq. (9). The
chemical potential is measured relative to the bulk
chemical potential. For thick films, |¢o|? = pod and the
constant A is related to the van der Waals attraction
of helium atoms to the argon substrate. We have no
measured value for the constant 4 but Sabisky and
Anderson? find a theoretical value of 4 =14.5
[K (atomic layers)®] [we measure o in atomic-layer
units where one atomic layer is 1/(3.6 A)2]. As the
superfluid density goes to zero the chemical potential
is —A /a® which is the chemical potential of the first
mobile helium atoms. This form of the chemical po-
tential is valid in the range of 1 to 5 atomic layers as
discussed in Sec. I. Our expression, Eq. (4), for H, is
a phenomenological expression which interpolates
smoothly between these limits. )
Having found the ground state we look for excited
states by examining small phase and amplitude fluc-
tuations of the condensate. That is, we look for col-
lective excitations of the condensate; these excitations
are surface density waves which involve motion of the
superfluid. We write

YOt =g +y(xt) +igplxt) , 12)

where vy is a small amplitude variation of ¢ which
modulates the surface density and ¢ is a small phase
variation of ¢ which gives rise to a superfluid velocity.
We seek propagating-wave solutions

d(x,1) =y cos(K-X—awit)
(13)

Cy(x 1) =y sin(KX—wit)

and substitute this expression for y(x,t) into the
equation of motion, Eq. (9), retaining only first-order
terms in y; and ¢,. We find a solution provided

Yk="(ﬁ'k2/2mwk)¢k (14)
and

34 oo k2

(h’wk)2= 2

+ (#2k2/2m)*(1 +4Bm oo/ K2 ,
m{a + o)

1s)

where o= |yo|? is the average superfluid surface den-
sity of the film. The frequencies given by Eq. (15) are
the frequencies of the collective modes of the conden-
sate which are the elementary excitations of -the thin
film. These elementary excitations are surface density
waves with a linear dispersion and a sound velocity
c2=3A4 oy/m(a +ay)* at long wavelengths and an up-
ward dispersion for shorter wavelengths. We call
these elementary excitations surface phonons. In the
thin film limit the elementary excitation spectrum ap-
proaches the free particle energy for large k.

Note that a collective mode of any amplitude is a
valid solution of Eq. (9); the amplitude is not quan-
tized. This emphasizes that we have treated the equa-
tion of motion (9) as a classical field equation and
y(x,1) as a classical field. This is perfectly valid in
treating a condensate wave function since quantum
fluctuations of the wave function amplitude are unim-
portant. At this point, however, we wish to compute
thermodynamic quantities and we must quantize the
theroy. We neglect the interactions among the ele-
mentary excitations and the Hamiltonian is simply the
sum of harmonic oscillators with frequencies w;. We
compute thermodynamic quantities from the elemen-
tary excitation spectrum in the usual way.?!

The theory is based on macroscopic quantum hydro-
dynamics and the elementary excitation spectrum
equation (15) is expected to be valid only for wave
numbers less than 1 per interparticle spacing and less
than 1 per superfluid film thickness. For short
wavelengths and thicker films we expect our surface-
wave excitation to go over smoothly to the classical
ripplon excitation®* We can easily modify our disper-
sion relation so that it goes over to this limit correctly:

34 o, i2k? w2 k2 2
hw )=
(o) [m(a +ag)?t I 2m
X l+—4Bsz° tanh koo koo
13 Po Po

(16)

This correction is not very important for the ra{nge of
film thicknesses and temperatures where the surface
phonons are the dominant excitations.

We observe in our experiment an excitation which
is consistent with a "surface-roton" model with an en-
ergy gap. This is presumably closely related to the
two-dimensional roton studied theoretically by Pad-
more using the Feynman-Cohen method.!' A simple
intuitive picture of this excitation is that of a bound
pair of vortices of opposite circulation, with the sur-
face roton being the smallest or most tightly bound
pair permitted by quantum mechanics. We will as-
sume a phenomenological dispersion relation in the
surface-roton region
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Bw, =A+ B2k — ko)2/2m* an

in close analogy to the bulk-roton dispersion relation.
The two branches of the dispersion curve cross at a
wave number k.. The thermodynamics is insensitive
to the details of this crossover region; we retain the
surface-phonon branch for k < k. and the surface-
roton branch for k > k..

B. Third-sound velocity

At finite temperature the third-sound wave is a
long-wavelength surface density wave accompanied by
a temperature wave. The thermally excited elementa-
ry excitations behave as a "normal fluid" which is
pinned to the substrate. The superfluid surface densi-
ty os(T) can be calculated using an argument due to
Landau. The thermodynamic energy E (o, T) is a
well defined function of surface density o and tem-
perature. The work done to increase the surface den-
sity by an amount d oy is

dE
(]

dO’O . (18)

dW=[
s

Now using the standard macroscopic hydrodynamic ar-
gument, the third-sound velocity under adiabatic con-
ditions is

3 (N =|K(T) o (T)/m| , (19)
where the adiabatic elastic constant is

d’E
2

K(T)= dol

(20)

N

This assumes that the thermal boundary resistance
between the substrate and the elementary excitations
in the film is large enough that the thermal equilibra-
tion time is much longer than the period of the
third-sound wave; this condition is satisfied at low
temperatures in the present experiment. One can
define an isothermal third sound velocity but we will
not need this quantity.

The thermally excited elementary excitations affect
the third-sound velocity in two ways. First, as dis-
cussed above, the superfluid surface density is reduced
at finite temperature. Second, the energy of the ele-
mentary excitations is a function of surface density, so
that the elementary excitations also modify the elastic
constant. We now calculate these two effects.

The free energy per unit area is

l

ek/T

FooT) = +rzm(1-e ) .

(“*‘o)2

@n

where E (k) = kw, is the elementary-excitation energy.
Since dW = ud oy, we have

_|_dF | _|_dE
n= —d(ro . _dao ]S (22a)
and
d
K(T) ==&
( ) Cf(ro [ G(ro ]T [ 6 T L)
X ,  (22b)
{aaolr/[ ](ro
with
-_9OF
S= T (22¢)

where u, S, and F are considered to be functions of
oo and T, and E (k) is a function of a. The
differentiations in Eq. (22) can be carried out analyti-
cally and the sum over k performed numerically to
find K(T). At low temperature we can approximate
the elementary excitation spectrum by E (k) = kkc
and carry out the integration analytically to find

34 1.2027° %
. 23
(a + ap)? mkc? dod (23)

K(T)=

In order to find the superfluid surface density we
follow Landau and calculate the momentum of the
moving fluid with the elementary excitations at equili-
brium in the rest frame

l—’.=m0'oVs+2fil—<'nkEm(rs(T)Vx - (24)
3

where the number of excitations of momentum k is
1

e exp{lE (k) + #kk-V,]/T} -1 @
We find

o (T)=a— ; ;Zc; (eEka)(/kT)/_Tl)z (26)
The integral can be performed numerically for the
general case; at low temperature we find

o (T) =a9—3 x1.202T3/27m K’c* . 27

We see that the third-sound velocity approaches the
surface-phonon velocity at low temperature with
corrections proportional to T

1.20273
2 T) = 2 1]-—
ef (T) C[ 2wmkictay
3 od ¥
3_o . 28
[3-3 @)
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At higher temperature there are deviations from the
T3 law due to dispersion and the integrals in Eq. (21)
and (26) must be performed numerically. It is con-
venient to write

(M) =c1-a(T)T] , (29)

and to discuss the quantity «(7). At low temperature
only the linear portion of the excitation spectrum is
involved and «(T) is a constant. At intermediate
temperatures the upward dispersion of the excitation
spectrum is important in reducing the number of exci-
tations and «(7T) decreases. Finally, at high tempera-
ture (0.6 K) the surface roton branch is excited and
a(T) increases exponentially. :

We make two approximations in the numerical work
which are numerically unimportant. In the calculation
of K(T) we neglect dB/d oy and dA/d ay. It turns
out that dA/d o is small over most of the range of
film thicknesses studied. For small coverage correc-
tions to the velocity enter as (dA/d a¢)? and could be
included. The result would be a reduction in the mag-
nitude of dA/d o and a further flattening of the curve
in Fig. 9. We have not done this since the errors due
to the model and experiment both become large for
a < 2 atomic layers. Thus the entire surface roton
correction appears in o,(7). We do not correct for
the transition from adiabatic to isothermal behavior at
high temperature; the surface rotons are the dominant
excitation in this temperature range and the surface-
roton corrections to K (T) has already been neglected.

IV. ANALYSIS OF DATA

For small k, E (k) is given by Eq. (16) and requires
three parameters: o, u, and B. For large k, E (k) is
given by Eq. (17) and also requires three parameters:
A, ko, and m* With E (k) given in these two
domains, o,(T) and K (T) are generated numerically
via Egs. (26) and (22) and then ¢;(T) is calculated
and compared with the experimental results as shown
in Fig. 3.

Because of the dominant T° behavior, comparison is
also made with the function

1=c3(T)/c?

a(T) = 7

, (30)
as shown in Fig. 4. In fact the experimental curve
a(T) motivated the attempt to make detailed calcula-
tions of E (k) for thin films. The remarkable preci-
sion of our measurement allows us to measure the de-
viations of E (k) from a linear dispersion. If only
dispersionless, surface phonons were present and
dc/da, were zero then a(T) would be independent of
temperature. Had the scatter in the measurements of
the third sound velocity below 0.6 K been as large as 1
part in 10°, the experimental a(T) would have been
scattered about a horizontal line and E = hck would
have been consistent with our measurements.

6000 -

5800 1

Cslem/sec)

5600

5400

6800

6700

6600

Cslcm/sec)

6500

FIG. 3. Open circles are the measurements of third-sound
velcoity vs temperature. At low temperatures the resolution
is 2 parts in 10% note the expanded scale on the ordinate.
The solid line is our model of two-dimensional superfluidity
discussed here. D is the coverage of *He in atomic layers.

Since the net coverage D is determined from the
vapor-pressure measurements, there are only two in-
dependent parameters needed for small k since

D=a +0‘0. (31)

However, we can also determine a directly from the
third-sound data. Since measured values of ¢;(7T) are
within 1% of ¢ we can, for this analysis, let ¢ equal the
coldest ‘measured value of the third-sound velocity.

At T =0, Egs. (23) and (27) can be substituted into
Eq. (19) using Eq. (31) to give

cAD*=BA/m)(D —a) . (32)

In Fig. S the intercept gives a value for a of

1.25 = 0.05 atomic layers. a is considered as that por-
tion of the *He coverage which does not participate in
third-sound wave motion. No more can be said about
a. We cannot tell whether a is the coverage of frozen
helium or of some temperature-independent normal
fluid, or a combination of both. From the slope of the
line drawn in Fig. 5, 4 is 13.7 K which is within 6% of
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0.1 02 03 04 05 06 o7
T(K)

FIG. 4. Open triangles are from experiment and the solid
line from the theory discussed here. « is defined by Eq. (30)
and would be independent of temperature if dispersionless
two-dimensional phonons were the only excitations. At low
temperatures the downward trend is due to surface tension;
at higher temperatures the upward trend is due to surface-
roton excitations.

2 x IO9 -
ko)
K5
9
1 x 10}
0 1 1 1
1.0 ‘[ 20 30 40
0:1.25%£.05

D(coverage in atomic layers)

FIG. 5. Tests of the validity of Eq. (32) near 7 =0 and
the intercept gives @ =1.25 *+ 0.05 atomic layers. a is the
coverage of “He which does not participate in third-sound
wave motion. The vertical error bars result from an uncer-
tainty of the coverage of =5%. That the slope is within 6%
of 14.5 K indicates that the geometric path length chosen for
the third-sound resonance (L =3.82 ¢cm) is within 3% of the
actual path length.

the calculated value for an argon substrate of 14.5 K.
In practice then there is only one adjustable parameter
for T less than about 0.4 K, the surface tension.
However, ¢ becomes our second working parameter
for low k because D and a are known to only a.few
percent and ¢ must be adjusted to a part in 10° for the
analysis of the surface tension. Of the three adju-
stable parameters for high k, the effective mass m*,
and the momentum of the roton minimum ko can be
combined into a single parameter (m*k$). Since we
cannot separate m* from kg in this analysis we have
arbitrarily fixed m* to 0.2m, the value of the roton

TABLE II. Results of fitting theory to experiment. c is the surface phonon velocity for k =0 and the third-sound velocity for
T =0. Bis the surface energy in the thick-film limit. A is the energy of the roton minimum and kg is the momentum of the roton

minimum.
Run -D(0) c B A ko
(cm) ‘ (cm/sec) (erg/cm?) K) (3")
(=5%) ‘ (£0.1) (%0.025) (%0.2) (x0.1)
I 1.41 6340.0 0.05 2.40 08=*0.5
11 1.45 6281.3 0.02 3.15 1.35 +0.1
11 1.77 6807.2 0.12 3.35 0.9
v 1.85 6622.1 0.27 4.90 1.6
\" 2.11 6267.2 0.23 5.26 1.9
VI 2.35 5936.4 0.30 5.22 2.0
VIi 2.49 5111.2 0.34 5.40 1.8
VIII 2.89 4612.8 0.32 5.32 1.8
IX 3.31 3657.1 0.33 845 1.85
X 4.05 . 2722.5 0.37 80x.5 1.8
XI 6.58 1445.8 0.37 8.0 =1 19+0.2
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effective mass for bulk helium. A partial justification
for this choice is the resulting behavior of kg as a
function of coverage. To leave k fixed and vary m*
during the fitting procedure would have produced
unphysically small values for m* of 1073 m.
Evaporation of the thicker films above 0.7 K pro-
duces significant changes of the adjustable parameters.
Since the thinner films were studied first, these
changes were incorporated in the thicker-film analysis.
To adjust ¢ we use the expression based on Eq. (32),

[D(T) = al'*D*(0)

(D(T)) = 33
¢ “ID©) —al"DX(T) 33
This is the most important thickness correction.
To adjust B, we use
13
B(D(T)) =0378—L2(D —al (34)

d3+ID(T) —al®

This function has no physical basis but provides an
adequate description of the surface tension for thinner
films. d. is found to be 0.6 atomic layers. These two
corrections provided more than a tenfold reduction in
x? for the thicker films. Similar corrections for A and
ko were tried and found to make no significant im-
provement in the fitting and thus were not used.
Fitting was carried out by displaying the experimen-
tal ¢;(7) and a(T) on a graphic display terminal. Fit-
ting parameters were inputed and the computer gen-
erated numerically a ¢;(7) and «(T) and superim-
posed these curves on the experimental curves. The
value of X? for the fit was also displayed. In this
fashion not only X? could be minimized but slopes and
curvatures could quickly be matched. In practice
fitting with the four working parameters ¢, B, A, and |
ko, using a(T), breaks down into two rather-rapid
two-parameter fits. Below 0.4 K, ¢ and B are impor-
tant. Adjusting ¢ brings a(T) for theory and experi-
ment together and adjusting B matches the slopes of
the a(7)’s. At higher temperatures, A and k, dom-
inate. Adjusting the numeric ratio A/kq brings a(T)
for theory and experiment together and adjusting kg
matches the high-temperature curvature of a(7).
There are at least three limitations of this analysis.
First, for the thinnest film studied the roton and
surface-phonon portions of E (k) have moved so
closely together as to make a separate description of
them questionable. The details of the intermediate re-
gion of k are important only for the two thinnest films
and will modify both B and ko. Second, at about 0.6
K the surface phonons are more correctly described as
isothermal, wehreas we have used the adiabatic form
of K(7T). In most cases the roton contributions to
a(T) have, at the same temperatures, become large
enough to swamp this difference. This difficulty can
be seen in Fig. 4(a) where, at intermediate tempera-
tures the data is flatter than the theory. Finally, for
the thickest two films reported here, 4.05 and 6.58

atomic layers, accurate analysis becomes impossible
because of a rapidly changing film thickness. In fact,
for such thick films, the two-dimensional model
developed in Sec. II is probably no longer valid.

20
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0 ! 1 1 1 1 1
(0] 0.5 1.0 1.5 20 2.5 3.0
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0 1 1 | 1 1
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FIG. 6. E (k) for three coverages of *He based .on a fit of
theory to experiment. There is no component of k perpen-
dicular to the film. Near k =0 the slope approaches the 7 =0
third-sound velocity indicated by the straight line. For larger
k the surface energy causes an upward bending which is
larger for thicker films. For large k a surface-roton contribu-
tion is required to describe the experimental results. The
crossover region between surface phonons and surface rotons
has not been drawn because neither theory nor experiment
describe this region.
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V. CONCLUSIONS

Table II summarizes the results of fitting theory to
experiment. The errors represent the range over
which a good fit can be made while optimizing the
other parameters. In Fig. 6 the resulting E (k) is plot-
ted for three thicknesses. The intermediate range of
E (k) is not shown since we have no information or
model to reveal this region.

Perhaps the most satisfying result is in the thick-
film limit where surface tension, energy gap, and ro-
ton minimum approach the bulk values as indicated by
the arrows in Figs. 7—9 (the thickest film is not shown
in these figures but appears in Table II). There was
no a priori reason, within the theory, for this to hap-
pen.

The straight line in Fig. 6 has a slope of ¢ for each
film thickness. The rise of the surface phonon branch
above this line illustrates the effect of the free parti-
clelike excitations for very thin films and in addition,
ripplons for thicker films. As shown in Fig. 7 when D
approaches a, the superfluid surface tension falls to
zero. The curve drawn through the points in Fig. 7
has the functional form given by Eq. (34) with a
characteristic thickness of 0.6 atomic layers.

Both the roton gap and roton minimum fall toward
zero along with the surface tension. Again, they both
turn downward in the vicinity of a as shown in Figs. 8
and 9. Both the reduction in surface tension and the
reduction in k indicate a decrease in the surface den-
sity of the mobile portion of the film. The energy gap
behaves in a rather peculiar fashion, having a constant
value of 5.3 =0.1 K between a D of two and three
atomic layers. Finally, for larger D the gap abruptly
jumps to near its bulk value.

o
iy
1

o
w
T

rd

Surface Energy(erg/cm?)

0 1 1 1
1.0 2.0 30 4.0

D(coverage in atomic layers)

FIG. 7. Surface energy, the coefficient of the square of
the gradient of the coverage, required to fit experiment. The
arrow at the top of the ordinate indicates the surface energy
of bulk *He. The surface energy is near zero while the film is
still superfluid indicating a two-dimensional gaslike state.

20+
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D(coverage in atomic layers)

FIG. 8. Momentum of the roton minimum kg required to
fit experiment. The arrow at the top of the ordinate indicates
the value of kg for bulk *He. The fall of ky with smaller D

_indicates, as does surface tension, that the superfluid is

becoming more gaslike as D approaches a.

We have presented high-precision measurements of
third-sound velocity versus temperature for several
very thin films. We have developed a quantum-
hydrodynamic theory of the elementary excitation
spectrum at long wavelength and have calculated the
third-sound velocity. The theory permits a quantita-
tive interpretation of our data in terms of an elemen-
tary excitation spectrum and we have determined an
elementary excitation spectrum for superfluid surface
densities from 0.16 monolayer to 5.25 monolayers.

10
—_) ’
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6 -
< |
4 | -
¢
2 | -
1 1 1
Ol.O 20 3.0 4.0
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FIG. 9. Energy A of the roton minimum required to fit ex-
periment. The arrow at the top of the ordinate indicates the
value of A for bulk *He. The average value of A between 2
and 3 atomic layers is 5.3 = 0.1 K. The sharp jump to the
bulk value of A is not understood.
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The fact that the experimental «(T) curves go
through a minimum shows that the real dispersion
curve must bend upward for small k and then bend
down again for larger k. We have forced our theoreti-
cal dispersion to bend properly by replacing the
surface-phonon branch by a surface-roton branch for
k > k. and rather arbitrarily assumed that the roton
effective mass was the same as that for bulk rotons.
The details of our dispersion curve may not be right in
that the region around k. may not be as sharply
peaked and the roton minimum may be shallower

than the dispersion curves shown in this paper, espe-
cially in the thinner films. The surface tension, roton
gap, and roton momentum from the fitting all go to
their proper bulk helium values as the film thickens.
As the surface density falls toward a, the surface ener-
gy and the roton minimum move toward zero. In this
respect, the films begin to resemble two-dimensional
superfluid gas. Thus we have shown that the third-
sound measurements provide a detailed, quantitative
probe of the elementary excitation spectrum in thin
superfluid-helium films.
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